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Abstract
Plant defensins are small, cysteine-rich

cationic antimicrobial peptides that possess
biological activity towards a broad range of
pathogenic organisms. These defense peptides
are ubiquitous within the plant kingdom and acts
as the first line of plant defense. Plant defensins
are expressed in several plant tissues, such as
seedlings, leaves, tubers, ûowers, pods, roots and
fruits. They are mainly secreted at peripheral
layers of cells and play an integral role in
protecting storage, developmental and
reproductive parts of the plants, against pathogen
attack or injury as part of a systemic defense
response. The expression of plant defensins might
be constitutive or can be induced in response to
pathogenic attack, abiotic stress or downstream
to hormone signaling pathways. Moreover, most
defensins are localized and expressed in particular
tissues, performing very specific functions, thereby
bestowing various benefits in respective hosts.
From past few years plant defensins have become
interesting and important candidates in transgenic
technology, owing to their multifunctional but
specific biological roles, especially for their broad-
spectrum antifungal activity. This review
summarizes about the biological roles displayed
by plant defensins when constitutively over
expressed in targeted tissues of transgenic plants,
under the control of tissue specific promoters, and
the predominant role exhibited by plant defensins
in defense and developmental processes of plants.

Key words : Plant defensins, tissue specific,
constitutive, floral organs, fruit specific, antifungal
activity, promoter induced, genetic engineering,
transgenic plants.

1. Introduction
Plant defensins are endogenous

antimicrobial polypeptides that form an important
component of the plant innate immune system.
They are produced as the first line of defense in
response to invading pathogens (1, 2, 3). In
addition, some plant defensins are also induced
in response to environmental stress such as
drought, salinity (4, 5, 6), and signaling molecules,
including methyl jasmonate (MJ), ethylene (ET)
and salicylic acid (SA). These plant defensins have
multifarious functions such as antifungal,
antibacterial and antiviral activities. They also act
as protease inhibitors, leading to insecticidal
activity (7, 8). The multifunctional roles exhibited
by many plant defensins include growth inhibitory
effects against microbial pathogens such as
bacteria (gram positive  and gram negative
bacteria), virus, fungi, protozoa and yeast (9, 2,
10, 11) inhibitors of digestive enzymes like α-
amylases and serine proteases, anti-herbivore (12,
13), in  abiotic stress tolerance (14, 15), heavy
metal tolerance (16), plant development,
protection of storage and reproductive organs (17,
18, 19, 8), ion channel blockers  in mammalian
and microbial cell walls (20, 21), antiproliferic
activity (22, 7), boosting the herbicide property of
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BAR gene (23, 24), antiparasitic  activity (25) and
root growth inhibition activities (26).  The most
widely studied and reported biological role of plant
defensins is their antifungal role.

Plant defensins form a small gene family
comprised of around 15 to 50 defensins per plant
species (27). So far more than 1200 plant
defensins have been identified from plant species
such as Arabidopsis thaliana, Medicago
truncatula, Brassica rapa, Vitis vinifera, many
legumes and grass species (28, 3). The
occurrence of multiple copies of defensins across
the genome can be attributed to gene duplication
events (29). However, sub-functionalization and
neo-functionalization of these duplicate genes over
the year lead to vast functional diversity on the
defensin family. Though most plant genomes have
multiple defensin genes, it is intriguing how only
few members of the family are responsible for a
specific function (30). For example, two defensins
MtDef1 and MtDef2 identified from M. truncatula
show difference in antifungal activity (31),
suggesting that different defensins may be play
specific functional roles.

The functional specificity of defensins can
be reviewed at three levels, (i) tissue specific
expression of defensin genes in response to
particular conditions (ii) distinct subcellular
localization of the protein and (iii) structure-
dependent activity with respect to target
molecules. There are numerous reports that
describe the structures of various plant defensins,
and their interactions with potential target
molecules (17). Moreover, the mode of action of
defensins and related pathways has also been
studied. The specificity in biological roles of
individual plant defensins can be attributed not
only to the large structural disparity in the patterns
of interconnected cysteine loops and disulphide
bridges (10, 32), but also to their distinct spatio-
temporal expression patterns. Although members
of the defensin family are expressed ubiquitously
throughout the plant organs such as seeds,
leaves, tubers, flowers, pods, roots and fruits,
individual members are usually expressed in
specific organs or in response to particular stimuli

(33, 30). For example, defensins play an integral
role in protecting storage, developmental and
reproductive parts of plants, through high
expression in the epidermal cells and stomatal
cells, which are likely to be the initial points of
pathogen attack or injury (34, 3). Expression of
most plant defensins is tissue-specific and
developmentally regulated, thereby allowing them
to perform  specific biological functions (35, 36).
Although the protein structures and their
contribution to the mode of action of defensins
have been well reported (37, 30, 28, 38, 39, 3), a
detailed account on tissue specific expression of
defensins are lacking. This review summarizes
how the tissue specific expression imparts more
specificity to the function of individual defensins.

2. Structure of plant defensins
Plant defensins were initially identified in the

seeds of wheat and barley and were  grouped as
distant members of the thionin family due to
homogeneity in molecular mass, amino acid
sequence and the number of cysteine residues
(40, 17, 10, 3). However, later studies revealed
that these proteins differed in structure, pattern of
disulfide bridges and spacing of cysteine residues,
demonstrating that they were not a part of thionins,
but an independent family (17, 2, 41). In
subsequent years these peptides were termed
as plant defensins after the identification and
characterization of two novel antifungal proteins
from Raphanus sativus Rs-AFP1 and RsAFP2
(40). Plant defensins are small, globular, cysteine
rich cationic peptides with molecular masses
between 5-7 kDa (37, 42, 43, 38, 44). The three-
dimensional structure of plant defensins is highly
conserved with a pattern of eight cysteine residues
stabilized by four disulphide bonds, interconnected
with three antiparallel beta-sheets and one alpha-
helix which is in turn stabilized by a structural
motif CS-αβ (28, 45).

Plant defensins can be classified in to two
groups based upon the structure of the mature
transcript. The first consists of a signal peptide
with size 25-30 amino acid residues, an acidic
rich precursor protein (except Ha-DEF1, Lm-def,
PCP-A1 and TAD1) and a mature peptide, basic
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in nature with about 45-54 amino acids (37, 30).
The signal peptide helps in targeted subcellular
localization and mitigates the biological activity
of mature peptide when required. The mature
peptide is composed of eight strictly conserved
cysteine residues that are intended in four
intrachain disulfide bridges responsible for the
stabilization of the typical defensin structure.
These intra-connected disulfide bridges form the
CS-αβ motif that is responsible for typical
antimicrobial activity exhibited by plant defensins
(28, 45, 46). Although most plant defensins contain
four disulphide bridges in its structure, some
peptides PhD1 and PhD2 from Petunia hybrid,
contain the fifth disulphide bridge interconnecting
the α-helix and the β1-strand, further improves
stability of the defensin peptide structure (47). The
second group of defensins has an additional
carboxy-terminal pro-domain, observed especially
in solanaceous species.

X- ray crystallography studies of certain
defensins such as R. sativus (RsAFP1), Nicotiana
alata (NaD1), Pachyrrhizus erosus  (SPE10), P.
hybrida  (PhD1), Pisum sativum (Psd1) and 
Saccharum officinarum (Sd5) (48, 49, 47, 50, 51,
52) revealed that carboxy-terminal domain is
composed of high content of acidic and
hydrophobic amino acids (33 amino acids) along
with signal peptide and mature defensin domain
(30). This acidic nature of the pro-domain is used
to neutralize the basic nature of the mature
defensin domain leading to neutrally charged
peptide. In addition, carboxy terminal domain also
acts as a targeting sequence for sub-cellular
sorting, post-translational proteolytic processing
and intermolecular steric chaperone (47, 30).
Another highly conserved motif found in the plant
defensin structure is the γ-core. This motif
comprises of two antiparallel β-sheets with an
interposed turn region called the β2β3 loop. The
β-core is cationic amphipathic motif contains
specific residues proline and cysteine, that
contributes to the secondary structure and
amphipathicity of the motif (53). This motif plays
an important role in the antifungal activity of
defensin peptides, by inducing effective membrane
permeabilization in susceptible fungi (54, 55, 2).

Multifunctional roles and mechanisms of
action displayed by plant defensins is been
illustrated in detail, along with the signaling
cascades and pathways using case studies
RsAFP1 and RsAFP2 from R. sativum, Psd1 from
P. sativum pods, MsDef1 from M. sativa, and
MtDef4 from M. truncatula, and NaD1 from N.
alata, DmAMP1 from the seed of Dahlia merkii,
HsAFP1 antifungal peptide Heuchera sanguinea
(28, 2, 3). The proposed mechanisms include
three steps, f i rst  is receptor-mediated
internalization- defensins specifically interacts
with the lipid rafts of fungal plasma membrane
composed of sphingolipids and phospholipids, the
most common spingolipids is glucosylceramide
(GlcCer) (56, 2). Different plant defensins have
been shown to interact with different classes of
sphingolipids, for example the plant defensin
RsAFP2 from R. sativam interacts with GlcCer
(57), whereas the plant defensin DmAMP1 from
D. merkii interacts with mannosyl di-inositol
phosphoryl ceramide (M(IP)2C) (58) . In
contrast, the plant defensins NaD1 from N. alata
was recently shown to interact with a variety of
phospholipids, including phosphatidyl inositol
mono-/bis-/tri-phosphates, phosphatidyl serine
and phospatidic acid, but not with sphingolipids
(59). Second is membrane translocation- upon
interact ion plant defensins are ei ther
internalized in to the fungal cell and interact
with intracellular targets, or they stay at the
cell surface and induce alteration of membrane
integrity and distorts the membrane permeability
(60, 61). The third is membrane permeabilization
thus results in an increased Ca2+ uptake and K+
efflux and ultimately leads to cell death through
induction of signaling cascades (62, 63).
Kushmerick et al. (1998) have described the ability
of plant defensins 1-zeathionin and 2-zeathionin,
isolated from Zea maize kernels in block Na+ ion-
channel on fungal membrane, which leads to
fungal membrane impermeability followed by
fungal death. Likewise the ability of  MsDef1
isolated from M. sativus seed tissue to block L-
type Ca2+ channels of fungal membranes. A
specific γ-core motif (RGFRRR) is been identified
in the MtDef4 sequence acts as translocation
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signal required for fungal cell entry (64).
Alternatively, ROS production and oxidative
stress, most often play a role in defensin-
mediated cell death, as has been reported in
RsAFP2, HsAFP1, DmAMP1 ,  and NaD1
defensins (52, 65,  66, 67).

3. Tissue specific localization and expression
of plant defensins:

Plant defensins are widely distributed in
various tissues across the plant. At least one
defensin gene is expressed in each plant tissue
and some tissues show expression of two or more
defensins. The tissue specific localization and
expression patterns of these peptides unfold the
critical roles they play in defense and development
of plants (68). Plant defensins have been identified
in leaves, tubers, flowers, pods, seeds,
germinating seeds, seedlings and also localized
in other peripheral sites like xylem, stomata, and
stomata cells, parenchyma cells, where they are
expressed either constitutively or upon pathogenic
infection, by mechanical wounding and other
stress responses (69) Fig. 1. Overall, most of plant
tissues constitutively express two or more
defensin genes, implying that each defensin is
expressed under specific conditions or in specific
tissues and display target-oriented functions
(Table-1).

Amongst the numerous plant defense
peptides isolated from a variety of plant species
certain deliver tissue specific expression, for
instance four defensin genes isolated and
characterization from Heliophila coronopifolia (Hc-
AFP1-4), have a tissue-specific expression
patterns confirmed by differential gene expression
studies in the native host. The peptides Hc-AFP1
and 3 expressed in mature leaves, stems and
flowers, whereas Hc-AFP2 and 4 are exclusively
expressed in seed pods and seeds. All four
peptides were active against two test pathogens
Botrytis cinerea, Fusarium solani, but displayed
different levels of antipathogenecity and modes of
action. The expression patterns of the peptides
suggests role in protecting vegetative and
reproductive structures against pathogen attack,
but their roles in plant developmental and
physiological processes have not been clearly
distinguished yet (8).

3.1 Seedlings :   SPI1defensin (PR-12)-like protein
from Picea abies, was found to be expressed only
in the radicles, roots, stem, and aerial part of
seedlings, but was not detectable in the embryo
(70). In more mature plants, expression was
observed in leaves most predominantly in epithelial
cells such as guard cells of stomata (71), since
stomata are the main entryway used by many
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various tissues.
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leaf infecting fungal pathogens. Likewise, A.
thaliana defensins Pdf2.2 and Pdf2.3 were
expressed in seedlings, roots, leaves, stems, and
flowers. Besides Pdf2.1 gene was strongly
expressed in syncytia region of roots in host
plants, which is a feeding site of beet 
cyst nematode Heterodera schachtii, apart from
the feeding site it was expressed only
in siliques but not in other healthy tissues. Hence
the promoter of the Pdf2.1 gene turned out to be
an interesting candidate to drive root specific
expression of nematocidal products that would
subsequently inhibit syncytium development (72).
In addition, A. thaliana defensin Pdf1.2 may be
induced in response to ET and MJ further protects
the host by minimizing attack of phytopathogenic
fungus Verticillium dahlia.

3.2. Shoots and leaves : Defensins and defensin-
like peptides are functionally diverse and are
commonly presented as an immune reaction
between plant and pathogen. High expression
levels of the defensin (DF1 and DF2) transcripts
were observed in Solanum lycopersicum leaf
tissues collected from the plants grown in soil
treated with Trichoderma viridae and Bacillus
subtilis as biological control agents to suppress
the activity of the pathogenic fungi Fusarium
oxysporum and Rhizoctonia solani (73).  Lai and
colleagues studied about the expression levels of
three homologous Pisum sativum defensin genes
DRR230-a, DRR230-b, DRR230-c in various P.
sativum tissues under biotic stress. Relatively high
levels of DRR230-a and DRR230-c transcripts are
present in mature leaves and stems, with
intermediate expression levels in young leaves,
tendrils and flowers, and low levels in roots and
pods (1, 74). Three specific defensin genes PDF3,
PDF5, and PDF30 expressions were investigated
in shoot tissues of seven commercial Egyptian
Triticum aestivum varieties: Misr1, Giza168,
Sakha94, Sids1, Gemmiza7, Gemmiza11, and
Shandawel1 during seed germination, showed
that there was difference in defensin gene
expression among the seven varieties. This
included absence of PDF5 expression in Sids1and
PDF30 expression in Gemmiza7, Misr1 showed

lowest and Shandawel1 gave the highest
expression levels of the three studied genes. Other
varieties represented various degrees of
expression for the three genes (75). The
observations can be related to the resistance of
T. aestivum varieties to diseases and abiotic
stresses, would certainly contribute information
for wheat breeding programs and variety evaluation.

3.3 Roots   Mitra and Long, (2004) reported that
majority of defensins and defensin like proteins
(DEFLs) were expressed in root nodules and
seeds in M.  truncatula, since they are the nutrient
rich sources, composed of large amounts of
protein, polysaccharides, and lipids that provide
energy and raw materials for germination and
development of the seedling, and also most
vulnerable sites for attack of multitude soil
pathogens to attack (77). Therefore nodule-
speciûc DEFLs are engage in complex synergistic
interactions with other AMPs to increase their
efficiency against broad spectrum microbial
population invitro and in field conditions as well
(78, 79, 80). Defensins and defensin like proteins
also play heavy metal remediating role, by
accumulating toxic metal in edible plant parts
while producing safe and nutritious edible by-
products. Similarly defensin-like protein CAL1
(cadmium (Cd) accumulation in leaf 1) is
expressed preferentially in root exodermis and
xylem parenchyma cells of Oryza sativa. CAL1
acts by chelating Cd in the cytosol and
facilitating Cd secretion to extracellular spaces,
hence lowering cytosolic Cd concentration while
driving long-distance Cd transport via xylem
vessels. CAL1 does not allow Cd or other heavy
metals accumulation in rice grains, thus
providing an eff icient molecular tool to
agriculture biotechnology, to develop O. sativa
varieties that produce safe grains while
remediating paddy soils (81).

3.4 Flower  Several plant defensins and other
DEFLs are highly expressed in flowers
(Lay et al., 2003). These flower abundant
antimicrobial peptides were shown to be crucial
for plant reproduction, playing different functions
during flower fertilization. In Brassica campestris
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and Brassica pekinensis defensin 1 (BSD1) was
expressed only in stamens of flowers (82). Flower-
specific expression of defensin genes was also
observed in solanaceous plants like, N. tabacum
(83), N. alata (47), and N. paniculata (84). This
suggests that flower specific defensin genes are
more likely to protect the reproductive organs from
effective pathogenic attack. The expression
patterns of N. alata plant defensin (NaD1) was
observed in floral organs like anthers, pistils,
ovaries and petals of ornamental N.tobaccum
flowers, and barely expressed in any other organs.
NaD1 expression was highest in young floral buds
and decreased significantly as the flower matures.
It is noteworthy that this peptide was expressed
in the outermost layers of the sepals and petals
and in tissues that surround the pollen or pollen
tubes. The location of NaD1 is consistent with its
defense role as it protects the germ cells against
possible damage by invading pathogens (47).
Similar expression patterns were observed in two
other floral defensins FST, TPP3 (83, 85).
According to Lay et al. (2003), floral defensins
are of two types in solanaceous plants. One with
C-terminal pro-domain which is deposited in the
vacuoles this type is present only in floral buds,
and the other type that does not have the C-
terminal pro-domain is produced in epithelial layers
of cells (47). V. vinifera defensin like peptide
VvAMP2 is highly conserved peptides with 10
cysteine residues, and active against the fungal
pathogen Botrytis cinerea. Quantitative expression
analysis revealed that VvAMP2 and related DEFLs
are specifically expressed in V. vinifera
inflorescences, highly expressed in pollen/
stamen, and weak expression was observed in
calyptrae and carpels suggesting a role in V.
vinifera fertilization (86). Similarly LURE and
ZmES4, DEF l ike genes from Torenia
fournieri and Zea mays are highly expressed in
the gametophyte synergid cells and functions as
pollen tube attractants during fertilization (18, 19). 

Plant defensins are also induced in response
to plant hormones in floral tissues. For example,
the flower defensin Thi2.1 in A. thaliana can be
induced by abiotic stress mediated by the

activation of SA induction within the systemic
acquired resistance pathway (87). In flowers the
induction of defensins may also be correlated with
flower development suggesting that other factors
may be involved in flower defensin gene
transcription. An intriguing defensin transcript,
Pollen coat protein class A1(PCP-A1), from B.
oleracea, accumulate in microspores in flower and
associated with self-incompatibility systems,
further studies are required to elucidate its exact
role (88). Certain transcriptional reprogramming
like inverse regulation or antisense suppression
occurs in host tissues occurs during plant defense
activation against pathogenic attack. Stotz et al.
(2009) reported the defensin gene DEF2
expression was observed in developing flowers
tissues in S. lycopersicum, constitutive over
expression of DEF2 enhances foliar resistance
against B. cinerea and displayed inversely
regulations like reduces pollen viability and seed
production, alterations in various developmental
and storage organs (73).

3.5 Seed and fruit  Recently, microarray analysis
in two model plants A. thaliana and M. truncatula
showed a set of defensins and defensin-like genes
were expressed specifically in seeds or fruits (89).
Plant defensins play a very important role in
protection of seed and seedlings from soil borne
pathogens (40) R. sativum seeds with pathogens
infected or mechanically damaged seed coats
showed 30 folds increased expression of defensin
genes. Various experiments on the location of
plant defensins within the seed revealed that they
are located in high levels in the peripheral cell
layers and in the spaces between different seed
organs, middle lamellae of the cell walls of the
different seed tissues. Like the other defensins
RsAFPs is localized in seeds organs where the
first contacts with invading fungal pathogens occur.
Furthermore, defensin peptides (Psd1) isolated
from the seed of P. sativum, was shown to be
localized primarily in vascular bundles and
epidermal tissues of P. sativum pods, which are
the first barriers to pathogen invasion (62). Plant
defensins has an important activity like anti-
insecticidal inhibition (12). They could interfere
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with α-amylase enzyme secreted in the insect
gut and seize the insect energy derived from the
starch degradation activity. Three defensin peptides
SIα1, SIα2 and SIα3 isolated and characterized from
these seed tissue of plant Sorghum bicolor
inhibited the amylase activity of insects
Periplaneta americana and Locusta migratoria
migratorioides and attributes weak antifungal
activity against fungus Aspergillus oryzae (90).

Fruits are especially vulnerable to pathogen
infection at the fully ripe stage due to significantly
high amount of nutrient rich material are stored in
fruits, therefore, the putative extracellular
localization of antimicrobial proteins like plant
defensins enhances the chances of the
maintenance of fruit integrity and seed maturation
(91). The defensin peptides J1-1 isolated from
Capsicum annum is associated with fruit specific
expression, but not in other tissues such as leaf,
stem, root, flower. Protein levels of J1-1 were
gradually increased in the fruits from the early
stage of the ripening to maturity, because this
stage is more prone to the infection of anthracnose
pathogen, Colletotrichum gloeosporioides.
Furthermore J1-1 defensin gene expression levels
were likely increased both transcriptional and
translationally in infected fruits during ripening.
This peculiar characteristic of the C. annum
defensin was further exploited in developing
transgenic C. annum plants overexpressing J1-1,
as expected the products showed increased
tolerance to anthracnose fungus (91).

Semi quantitative expressions of defensin
genes from Fragaria ananassa (FaDef1) were
analyzed in root, stem, leaf, flower, and fruit
tissues in three cultivars namely, Queenelisa,
Camarosa, and Paros. The results revealed that
higher amount of FaDef1 expression was observed
in developed fruits compared to that of immature
fruit, and there was no observable expression in
the root. Moreover, FaDef1 is responsive to biotic
and abiotic stress signal compounds and showed
significant resistance against B. cinerea (92).
Hence these peptides may be used as a
candidate gene for engineering plants against gray
mold. Prunus persica defensin gene (PpDfn1) is

expressed in bark tissues of an year-old shoots,
and is also expressed in early fruit development
stages. A recombinant version of rDFN1 was
expressed in the yeast, Pichia pastoris, the
obtained protein inhibited germination of the fungal
pathogens Penicillium expansum and B. cinerea,
but not the Gram-negative bacterium Erwinia
amylovora (93).This study clearly indicated that
both physiological role and antifungal potential
exhibited by plant defensins in specific tissues.
Defensins VuDEF expressed in seeds of Vigna
unguiculata and defensinVrD1from Vigna radiata
expressed in the germinating seed exhibited anti-
insecticidal activity against α-amylase enzyme
activity in insects Acanthoscelides obtectus,
Callosobruchus   maculates, Zabrotessub
fasciatus,  Tenebrio molitor (12, 9, 94).

3.6 Hormone-responsive constitutive
expression  Defensin-like protein from Citrullus
lanatus Cldef2.2, had high amino acid homology
with the A. thaliana PDF2 cluster and is close to
AtPDF2.5. The expression profiles revealed that
expression was observed in all the examined
tissues, including leaves, roots, and stems, the
highest expression level was observed in roots.
The protein abundance was observed in various
tissues especially when subjected to SA, MJ and
ET, also to F. oxysporum challenge (95). Similarly,
the gene expression studies of Bjdefensin gene
from source B. juncea revealed that the transcript
levels of Bjdefensin gene increased significantly
upon Alternaria infection, Jasmonic acid and
wounding treatments but was not induced by SA.
Consequently, the Bjdefensin promoter (2.5 kb)
was isolated and cloned upstream of GUS gene
in pORER2 vector. In silico studies of Bjdefensin
promoter showed many important conserved cis-
elements, responsive to biotic and abiotic
stresses. Histochemical GUS assay showed
pathogen-inducible expression of Bjdefensin
promoter after fungal infection and also induced
by JA and wounding (96).

Effect of fungal infection, wounding, various
plant hormones and chemicals induces the
accumulation of plant defensin transcripts in
various tissues (97). As per the literature
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chemicals such as mercuric chloride, MJ, ET and
paraquat led to the induction of defensin gene
expression (97). In M. truncatula defensin genes
MtDef1.1 and MtDef2.1are highly expressed in
dry mature seed and are strongly induced by
exogenous MJ application in young seedlings but
not by ET or SA (98). Interestingly in closely related
M. sativa, defensin gene expression is not
observed by treatment with MJ, and down-
regulated expression was observed by ET
treatment (98). The Arabidopsis defensin gene
PDF1.2, has been shown to be induced strongly
in leaves by MJ and ET, but not by SA (99, 100).
The data presented here suggest that some
aspects such as induction of defensin genes via
hormones applications or chemicals may not be
uniform in inter and interspecific plant species.
Similarly, pdf1.1 and pdf1.2 is induced in fruit,
peel and leaf tissues of papaya upon cold stress
and MJ treatment, which suggests the presence
of analogous defense mechanisms in the
vegetative and fruit tissues of plants (101, 102).
Pervieux et al. (2004) demonstrated that Picea
glauca Defensin 1 (PgD1) is up-regulated by
wounding and JA in leaf and root tissues, more
importantly, that recombinant PgD1 displays
antifungal activity against Cylindrocladium
floridanum, F. oxysporum, and Nectria galligena
(102).

4. Tissue specific expression of defensin
genes in transgenic plants Certain attempts
have been made by deploying heterologous
defense peptides in many susceptible plants as
tools to enhance their disease-resistance
capability (103). Although most of them were not
so successful, few of them were inspiring in the
search for new alternatives (79, 104). The reasons
behind might be low expression levels, or low half-
life of the transgene or transgene product
inactivation by host proteolytic enzymes (105,
106). Numerous studies have demonstrated the
efficient role of plant defensins when cloned and
expressed in different host plants and assayed
against various pests and pathogen exists, most
of them were efficacious in invitro and field
conditions (2). As already discussed, plant

defensin genes are induced by biotic, abiotic
factors, during seed germination, flowering and
hormonal treatments. They might be constitutively
expressed, or show tissue-specific and
developmentally regulated expression patterns
(35, 36, 17, 19, 47). Plant defensins have been
recognized as prominent candidates for generating
transgenic crops due to their multifunctional role
to pave ways for generating durable resistance
against broad range phytopathogens. To validate
the presumed role, plant defensins from distinctive
plant sources have been cloned and transgenically
expressed in various hosts (97, 1, 79). The first
attempt was made to evaluate transgenic tobacco
plants expressing antifungal defensin genes Rs-
AFP2 source from radish, high levels of peptide
expression in leaf and root tissues was observed
in transgenic plants, and showed an increasing
resistance towards Alternaria longipes in invitro
assays (40).

Wasabi defensin gene (0.5 kb) gene
expression driven by the root-specific LjNRT2 and
AtNRT2.1 promoters were overexpressed in the
roots of transgenic N. tobaccum and S.
esculentum plants showed stable integration and
expressed in the root tissues but not in the leaf
tissues. In fungal bioassays all transgenic plants
showed increased resistance towards F.
oxysporum compared to non-transformed plants.
The study suggests that LjNRT2 and AtNRT2.1
promoters triggered the antifungal gene expression
in the roots tissues and conferred increased
resistance to the root pathogen Fusarium
oxysporum. The transgenic products are safe in
terms of biosafety issues since the roots of
Solanum esculentum are not edible (107).
Similarly, transgenic Solanum esculentum plants
expressing the Capsicum annum defensin gene
(CaDef) under the control of CaMV 35S promoter,
accumulated defensin peptide in the leaf tissue
showed enhanced ability in effective growth
inhibition of fungi Fusarium sp. and Phytophthora
infestans in vitro (108).

Jha and Chatoo, (2009) performed a
successful attempt of generating transgenic O.
sativa plants expressing cleavable chimeric gene

tissue specific expression leading to distinctive functions



Current Trends in Biotechnology and Pharmacy
Vol. 13 (2) 212-231, April 2019, ISSN 0973-8916 (Print), 2230-7303 (Online)

223

constructs consists of a leader peptide and two
Dm-AMP1 and Rs-AFP2, defensin genes from the
seeds of D. merckii and R. sativus, driven by
control of single maize ubiquitin promoter, peptides
were targeted to express at the extracellular
spaces of leaf and root tissues. Plants transformed
with polyprotein construct showed 70-90%
significant disease resistance against
Magnaporthe oryzae and Rhizoctonia solani
pathogens (109). Similarly, transgenic Triticum
aestivum genotypes expressing a chimeric gene
encoding an apoplast-targeted antifungal plant
defensin MtDef4.2 from M. truncatula, displayed
resistance leaf rust pathogens without affecting
the root colonization of a beneûcial arbuscular
mycorrhizal fungus Rhizophagus irregularis. Histo-
pathological analysis suggested the presence of
both pre- and post-haustorial resistance to leaf
rust in these transgenic lines expressing plant
defensin MtDef4.2 can provide substantial
resistance to leaf rust disease in transgenic T.
aestivum without negatively impacting its
symbiotic relationship with the beneûcial
mycorrhizal fungus (110). Similarly transgenic
Arachis hypogeae genotypes expressing
Medicago defensin genes MtDef4.2, MsDef1 in
seed tissues showed enhanced resistance
against Aspergillus flavus infection and low to non
existence levels of aflatoxin accumulation (111).
Constitutive expression of NmDef02 gene derived
from N. megalosiphon, in leaf tissues of transgenic
N. tobaccum and S. tuberosum plants delivered
enhanced resistance against various plant
microbial pathogens, including the oomycete
Phytophthora infestans, causal agent of potato
late blight disease, under greenhouse and in field
conditions (112).

In addition plant defensins isolated from
forest tree species contribute to sustainable
forestry practices and the improvement of
commercially grown trees to combat many
microbial pathogens (113). These AMPs elevate
host defense and can be used as molecular
markers for resistance breeding. Transgenic N.
tobaccum plants expressing the gene encoding
Pinus sylvestris antimicrobial protein Sp-AMP2,

gene showed enhance resistance and reduced
lesions size caused by the necrotrophic pathogen
B. cinerea. The transcript of Sp-AMP2 was
abundantly secreted in extracellular spaces of leaf
and root tissues in most transgenic lines. This
study provides an insight into the role of Sp-AMP2
and its functional and ecological significance in
the regulation of plant–pathogen interactions (113).
The characterization of tissue-specific and
pathogen-inducible promoters is essential for
localized expression of defense-related genes.
Transgenic T. aestivum and O. sativa plants were
developed through the stable transformation with
four defensin promoters pathogen responsive and
resistance genes (PRPI) promoter from T.
aestivum and O. sativa source, along with GUS
reporter gene as fusion constructs. The promoters
were active before and at anthesis in both
transgenic T. aestivum and O. sativa plants with
activity mainly concentrated in the ovary. In
transgenic O. sativa, GUS activity was also
observed in vascular tissue of lemma and anthers.
After fertilization, GUS was strongly expressed
in the outer cell layers of the pericarp and in
vascular bundle of the grain. T. aestivum
promoters were active in transgenic rice embryos,
roots and coleoptiles. All T. aestivum and O.
sativa promoters were strongly induced by
wounding in leaf, stem and grain of transgenic O.
sativa plants. These results suggest that PRPI
promoters will be useful for tissue specific targeting
and accumulation of proteins for resistance
towards pathogens in vulnerable tissues of
developing and germinating grains (36).
Furthermore, P. glauca Defensin 1 (PgD1)
promoter fragment fused to the uidA gene (GUS)
was cloned, characterized in A. thaliana and P.
glauca to analyse spatio-temporal promoter
activity. The transgenic plants were subjected JA,
wounding and infection by the hemibiotrophic
pathogen Pseudomonas syringae, Ceratocystis
resinifera, showed an up-regulation of both
endogenous defensin and PgD1:GUS transgene,
in transgenic spruce embryos, expression was
clearly restricted to the shoot apical meristem. In
Arabidopsis, leaves, flowers, guard cells and
trichomes showed upregulation of transgene, and
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also resistance against infection with the
necrotrophic pathogen Ceratocystis resinifera and
wounding (114).  This study demonstrated that
inspite of being expressed in evolutionarily
divergent hosts A.  thaliana and P. glauca, the
promoter fragment appears relatively conserved
and fully functional in regulatory mechanism and
the defence signaling pathways. A defensin like
ORF from Mytilusedulis chilensis driven by 35S
promoter transformed in to N. tobacum plants,
showed reasonably good transgene expression
in leaf tissues not in other tissues, further offered
detectable resistance to N.  tobacum leaves when
challenged with Pseudomonas syringae tissues
(115).

Conclusions
Plant defensins are important components

of the plants innate immunity, and exhibit
protective antimicrobial role in various plant tissues
and organs. Plant defensins are ubiquitous among
different plant species, and are localized in wide
range of plant organs, including seeds, leaves,
pods, flowers and tubers. The tissue specific
localization of plant defensins play a vital role in
protection and development of plants, where they
are expressed either constitutively or induced upon
fungal infection, abiotic stress conditions or
mechanical wounding. Plant defensins are mostly
secreted in the periphery layers of plant organs,
since these locations are consistently prone to
stress, they are activated in the initial defense
response against pathogens and inturn activate
other antimicrobial pathways. Furthermore, plant
defensins display an array of biological activities
including protein translation inhibition activities
and enzyme inhibitors of α-amylases and
proteases, antiproliferic, antiparasitic and heavy
metal remediation and many more. Considering
the broadspectrum antipathogenic activity, tissue
specific expression and various developmental
roles of plant defensins, they are considered as
prominent candidates in agricultural and
pharmaceutical biotechnology. For last two
decades tremendous scientific efforts were made
and progress has been achieved, by using genetic
engineering technology in plants. Expression of

antimicrobial peptides in specific tissues towards
fungal pathogens and their role in enhanced
resistance to combat the infection attracted the
scientific community. Engineering tissue-
specifically expressed plant defensins or
pathogen-inducible promoters, to develop the
transgenic traits that are effective against a broad
range of pathogens. Utilization of chimeric defensin
peptides and polypeptide construct shows double
impact to enhanced disease resistance.
Successful evaluation of transgenic plants for their
efficacy against pathogenic attack invitro and in
field conditions is a prerequisite to augment in
on-going disease management practices.
Transgenic plants with targeted expression of
defensin genes with enhanced disease resistance
can become an integral component of food
security and disease management programs in
the future.
Acknowledgments

AP acknowledges the Department of
Science and Technology, Govt. of India for the
fellowship through the INSPIRE FELLOWSHIP,
Code No. IF120374

References
1. Wang, Y., Nowak, G., Culley, D., Hadwiger,

L. A., and Fristensky, B. (1999). Constitutive
expression of pea defense gene DRR206
confers resistance to blackleg
(Leptosphaeria maculans) disease in
transgenic canola (B. napus), Molecular
plant-microbe interactions, 12 (5): 410-418.

2. Lacerda, A., Vasconcelos, É. A. R.,
Pelegrini, P. B., and Grossi-de-Sa, M. F.
(2014). Antifungal defensins and their role
in plant defense, Frontiers in microbiology, 
5: 116.

3. Parisi, K., Shafee, T. M., Quimbar, P., van
der Weerden, N. L., Bleackley, M. R., and
Anderson, M. A. (2018). The evolution,
function and mechanisms of action for plant
defensins, In Seminars in cell &
developmental biology, Academic Press.

4. Mittler, R. (2006). Abiotic stress, the field
environment and stress combination, Trends
in plant science, 11(1): 15-19.

tissue specific expression leading to distinctive functions



Current Trends in Biotechnology and Pharmacy
Vol. 13 (2) 212-231, April 2019, ISSN 0973-8916 (Print), 2230-7303 (Online)

225

5. Takeuchi, H., and Higashiyama, T. (2011).
Attraction of tip-growing pollen tubes by the
female gametophyte, Current opinion in plant
biology, 14(5): 614-621.

6. Ramegowda, V., and Senthil Kumar, M.
(2015). The interactive effects of
simultaneous biotic and abiotic stresses on
plants: mechanistic understanding from
drought and pathogen combination, Journal
of plant physiology, 176: 47-54.

7. Lin, P., Wong, J. H., and Ng, T. B. (2010). A
defensin with highly potent antipathogenic
activities from the seeds of purple pole
bean, Bioscience reports, 30(2): 101-109.

8. De Beer, A., and Vivier, M. A. (2011). Four
plant defensins from an indigenous South
African Brassicaceae species display
divergent activities against two test
pathogens despite high sequence similarity
in the encoding genes, BMC research
notes, 4(1): 459.

9. Pelegrini, P. B., and Franco, O. L. (2005).
Plant γ-thionins: novel insights on the
mechanism of action of a multi-functional
class of defense proteins, The international
journal of biochemistry and cell
biology, 37(11): 2239-2253.

10. Tam, J., Wang, S., Wong, K., and Tan, W.
(2015). Antimicrobial peptides from
plants, Pharmaceuticals, 8(4): 711-757.

11. Kraszewska, J., Beckett, M. C., James, T.
C., and Bond, U. (2016). Comparative
analysis of the antimicrobial activities of plant
defensin-like and ultrashort peptides against
food-spoiling bacteria, Applied and
environmental microbiology, AEM-00558.

12. Chen, K. C., Lin, C. Y., Kuan, C. C., Sung,
H. Y., and Chen, C. S. (2002). A novel
defensin encoded by a mungbean cDNA
exhibits insecticidal activity against bruchid,
Journal of agricultural and food
chemistry, 50(25): 7258-7263.

13. Choi, M. S., Kim, Y. H., Park, H. M., Seo,
B. Y., Jung, J. K., Kim, S. T., and Kim, C.

K. (2009). Expression of BrD1, a plant
defensin from B. rapa, confers resistance
against brown plant hopper (Nilaparvata
lugens) in transgenic rice, Molecules and
cells, 28(2): 131-137.

14. Moreira, R., Medri, M. E., Neumaier, N.,
Lemos, N. G., Pimenta, J. A., Tobita, S.,
and Abdelnoor, R. V. (2010). Soybean
physiology and gene expression during
drought, Genetics and molecular research, 
9(4): 1946-1956.

15. Ahmed, N. U., Park, J. I., Jung, H. J., Seo,
M. S., Kumar, T. S., Lee, I. H., and Nou, I.
S. (2012). Identification and characterization
of stress resistance related genes of B. rapa,
Biotechnology letters, 34(5): 979-987.

16. Mirouze, M., Sels, J., Richard, O., Czernic,
P., Loubet, S., Jacquier, A., and Marquès,
L. (2006). A putative novel role for plant
defensins: a defensin from the zinc hyper
accumulating plant A. halleri, confers zinc
tolerance, The plant journal, 47(3): 329-342.

17. Stotz, H. U., Thomson, J., and Wang, Y.
(2009). Plant defensins: defense,
development and application, Plant signaling
& behavior, 4(11): 1010-1012.

18. Okuda, S., Tsutsui, H., Shiina, K., Sprunck,
S., Takeuchi, H., Yui, R., and Kawano, N.
(2009). Defensin-like polypeptide LUREs are
pollen tube attractants secreted from
synergid cells, Nature, 458(7236): 357.

19. Amien, S., Kliwer, I., Márton, M. L., Debener,
T., Geiger, D., Becker, D., and Dresselhaus,
T. (2010). Defensin-like ZmES4 mediates
pollen tube burst in maize via opening of the
potassium channel KZM1, PLoS biology,
8(6): e1000388.

20. Kushmerick, C., de Souza Castro, M.,
Santos  Cruz, J., Bloch, C., and Beirão, P.
S. (1998). Functional and structural features
of ã zeathionins, a new class of sodium
channel blockers, FEBS letters, 440(3):
302-306.

21. Ramamoorthy, V., Zhao, X., Snyder, A. K.,
Xu, J. R., and Shah, D. M. (2007). Two

Arunima Pothana et al



Current Trends in Biotechnology and Pharmacy
Vol. 13 (2) 212-231, April 2019, ISSN 0973-8916 (Print), 2230-7303 (Online)

226

mitogen activated protein kinase signalling
cascades mediate basal resistance to
antifungal plant defensins in Fusarium
graminearum, Cellular microbiology, 9(6):
1491-1506.

22. Wong, J. H., and Ng, T. B. (2005). Sesquin,
a potent defensin-like antimicrobial peptide
from ground beans with inhibitory activities
toward tumor cells and HIV-1 reverse
transcriptase, Peptides, 26(7): 1120-1126.

23. Huffaker, A., Pearce, G., and Ryan, C. A.
(2006). An endogenous peptide signal in
Arabidopsis activates components of the
innate immune response, Proceedings of the
National Academy of Sciences, 103 (26):
10098-10103.

24. Wang, W. Z., Yang, B. P., Feng, C. L., Wang,
J. G., Xiong, G. R., Zhao, T. T., and Zhang,
S. Z. (2017). Efficient sugarcane transforma-
tion via bar gene selection. Tropical plant
biology, 10(2-3), 77-85.

25. De Zélicourt, A., Letousey, P., Thoiron, S.,
Campion, C., Simoneau, P., Elmorjani, K.,
and Delavault, P. (2007). Ha-DEF1, a
sunflower defensin, induces cell death in
Orobanche parasitic plants, Planta, 226(3):
591-600.

26. Allen, A., Snyder, A. K., Preuss, M., Nielsen,
E. E., Shah, D. M., and Smith, T. J. (2008).
Plant defensins and virally encoded fungal
toxin KP4 inhibit plant root growth,
Planta, 227(2): 331-339.

27. Silverstein, K. A., Graham, M. A., Paape, T.
D., and VandenBosch, K. A. (2005). Genome
organization of more than 300 defensin-like
genes in Arabidopsis, Plant physiology, 
138(2): 600-610.

28. De Oliveira Carvalho, A., and Gomes, V. M.
(2009). Plant defensins-prospects for the
biological functions and biotechnological
properties, Peptides, 30(5): 1007-1020.

29. Wu, Y., Gao, B., and Zhu, S. (2017). New
fungal defensin-like peptides provide
evidence for fold change of proteins in

evolution, Bioscience reports, 37(1):
BSR20160438.

30. Lay, F. T., and Anderson, M. A. (2005).
Defensins-components of the innate immune
system in plants, Current protein and
peptide science, 6(1): 85-101.

31. Spelbrink, R. G., Dilmac, N., Allen, A.,
Smith, T. J., Shah, D. M., and Hockerman,
G. H. (2004). Differential antifungal and
calcium channel-blocking activity among
structurally related plant defensins, Plant
physiology, 135(4): 2055-2067.

32. Schmitt, P., Rosa, R. D., and Destoumieux-
Garzón, D. (2016). An intimate link between
antimicrobial peptide sequence diversity and
binding to essential components of bacterial
membranes, Biochimica et biophysica acta
(BBA)-biomembranes, 1858(5): 958-970.

33. Thomma, B. P., Cammue, B. P., and
Thevissen, K. (2002). Plant defensins, 
Planta, 216(2): 193-202.

34. Da Silva Conceição, A., and Broekaert, W.
F. (1999). 12 Plant Defensins,  Patho-
genesis- related proteins in plants, 248.

35. Padovan, L., Scocchi, M., and Tossi, A.
(2010). Structural aspects of plant
antimicrobial peptides, Current protein and
peptide science, 11(3): 210-219.

36. Kovalchuk, N., Li, M., Wittek, F., Reid, N.,
Singh, R., Shirley, N., and Hrmova, M.
(2010). Defensin promoters as potential
tools for engineering disease resistance in
cereal grains, Plant biotechnology
journal, 8(1): 47-64.

37. Broekaert, W. F., Terras, F. R., Cammue,
B. P., and Osborn, R. W. (1995). Plant
defensins: novel antimicrobial peptides as
components of the host defense
system, Plant physiology, 108(4): 1353.

38. Vriens, K., Cammue, B., and Thevissen, K.
(2014). Antifungal plant defensins:
mechanisms of action and production, 
Molecules, 19(8): 12280-12303.

tissue specific expression leading to distinctive functions



Current Trends in Biotechnology and Pharmacy
Vol. 13 (2) 212-231, April 2019, ISSN 0973-8916 (Print), 2230-7303 (Online)

227

39. Prema, G., and  Pruthvi, T. (2012). Antifungal
plant defensins, Current Biotica, 6: 254-270.

40. Terras, F. R., Eggermont, K., Kovaleva, V.,
Raikhel, N. V., Osborn, R. W., Kester, A.,
and Vanderleyden, J. (1995). Small cysteine-
rich antifungal proteins from radish: their role
in host defense, The plant cell, 7(5): 573-
588.

41. Finkina, E. I., and Ovchinnikova, T. V. (2018).
Plant defensins: Structure, functions,
biosynthesis, and the role in the immune
response, Russian journal of bioorganic
chemistry, 44(3): 261-278.

42. Zhu, S., Gao, B., and Tytgat, J. (2005).
Phylogenetic distribution, functional
epitopes and evolution of the CSáâ
superfamily, Cellular and molecular life
sciences CMLS, 62(19-20): 2257-2269.

43. Aerts, A. M., François, I. E. J. A., Cammue,
B. P. A., and Thevissen, K. (2008). The mode
of antifungal action of plant, insect and
human defensins, Cellular and molecular life
sciences, 65(13): 2069-2079.

44. Francisco, G. C., and Georgina, E. (2017).
Structural Motifs in Class I and Class II Plant
Defensins for Phospholipid Interactions:
Intriguing Role of Ligand Binding and Modes
of Action, Journal of plant physiology 
and pathology, 5, 1: 2.

45. De Oliveira Dias, R., and Franco, O. L.
(2015). Cysteine-stabilized áâ defensins:
from a common fold to antibacterial
activity, Peptides, 72: 64-72.

46. Cools, T. L., Struyfs, C., Cammue, B. P.,
and Thevissen, K. (2017). Antifungal plant
defensins: increased insight in their mode
of action as a basis for their use to combat
fungal infections, Future microbiology, 12(5):
441-454.

47. Lay, F. T., Brugliera, F., and Anderson, M.
A. (2003). Isolation and properties of floral
defensins from ornamental tobacco and
petunia, Plant physiology, 131(3): 1283-
1293.

48. Bruix, M., Jimenez, M. A., Santoro, J.,
Gonzalez, C., Colilla, F. J., Mendez, E., and
Rico, M. (1993). Solution structure of.
gamma. 1-H and. gamma. 1-P thionins from
barley and wheat endosperm determined by
proton NMR: a structural motif common to
toxic arthropod proteins,  Biochemistry,
 32(2): 715-724.

49. Fant, F., Vranken, W., Broekaert, W., and
Borremans, F. (1998). Determination of the
three-dimensional solution structure of R.
sativus Antifungal Protein 1 by 1H
NMR1, Journal of molecular biology, 279(1):
257-270.

50. De Paula, V. S., Razzera, G., Barreto-
Bergter,  E., Almeida, F. C., and Valente, A.
P. (2011). Portrayal of complex dynamic
properties of sugarcane defensin 5 by NMR:
multiple motions associated with membrane
interaction, Structure, 19(1): 26-36.

51. Song, X., Zhang, M., Zhou, Z., and Gong,
W. (2011). Ultra-high resolution crystal
structure of a dimeric defensin SPE10,
FEBS letters, 585(2): 300-306.

52. Van der Weerden, N. L., and Anderson, M.
A. (2013). Plant defensins: common fold,
multiple functions, Fungal biology
reviews, 26(4): 121-131.

53. Yount, N. Y., and Yeaman, M. R. (2006).
Structural congruence among membrane-
active host defense polypeptides of diverse
phylogeny, Biochimica et biophysica acta
(BBA)-biomembranes, 1758(9): 1373-1386.

54. Yount, N. Y., and Yeaman, M. R. (2004).
Multidimensional signatures in antimicrobial
peptides, Proceedings of the national
academy of sciences, 101(19): 7363-7368.

55. Sagaram, U. S., Pandurangi, R., Kaur, J.,
Smith, T. J., and Shah, D. M. (2011).
Structure-activity determinants in antifungal
plant defensins MsDef1 and MtDef4 with
different modes of action against Fusarium
graminearum, PLoS One, 6(4): e18550.

56. Thevissen, K., Osborn, R. W., Acland, D.
P., & Broekaert, W. F. (2000). Specific

Arunima Pothana et al



Current Trends in Biotechnology and Pharmacy
Vol. 13 (2) 212-231, April 2019, ISSN 0973-8916 (Print), 2230-7303 (Online)

228

binding    sites for an antifungal plant defensin
from Dahlia (D. merckii) on fungal cells are
required for antifungal activity, Molecular
plant-microbe interactions, 13(1): 54-61.

57. Terras, F. R., Schoofs, H. M., De Bolle, M.
F., Van Leuven, F., Rees, S. B.,
Vanderleyden, J., and Broekaert, W. F.
(1992). Analysis of two novel classes of plant
antifungal proteins from radish (R. sativus
L.) seeds, Journal of biological
chemistry, 267(22): 15301-15309.

58. Osborn, R. W., De Samblanx, G. W.,
Thevissen, K., Goderis, I., Torrekens, S.,
Van Leuven, F., and Broekaert, W. F. (1995).
Isolation and characterisation of plant
defensins from seeds of Asteraceae,
Fabaceae, Hippocastanaceae and
Saxifragaceae, FEBS letters, 368(2): 257-
262.

59. Poon, I. K., Baxter, A. A., Lay, F. T., Mills,
G. D., Adda, C. G., Payne, J. A., and van
der Weerden,N. L. (2014). Phosphoinositide-
mediated oligomerization of a defensin
induces cell lysis, Elife, 3, e01808.

60. Thevissen, K., Ghazi, A., De Samblanx, G.
W., Brownlee, C., Osborn, R. W., and
Broekaert, W. F. (1996). Fungal membrane
responses induced by plant defensins and
thionins, Journal of biological
chemistry, 271(25): 15018-15025.

61. Nicolas, P. (2009). Multifunctional host
defense peptides: intracellular targeting
antimicrobial peptides, The FEBS
journal, 276(22): 6483-6496.

62. Almeida, M. S., Cabral, K. M., Kurtenbach,
E., Almeida, F. C., and Valente, A. P. (2002).
Solution structure of P. sativum defensin 1
by high resolution NMR: plant defensins,
identical backbone with different
mechanisms of action, Journal of molecular
biology, 315(4): 749-757.

63. Muñoz, A., Chu, M., Marris, P. I., Sagaram,
U. S., Kaur, J., Shah, D. M., and Read, N.
D. (2014). Specific domains of plant

defensins differentially disrupt colony
initiation, cell fusion and calcium
homeostasis in Neurospora crassa, 
Molecular microbiology, 92(6): 1357-1374.

64. Sagaram, U. S., El-Mounadi, K., Buchko,
G. W., Berg, H. R., Kaur, J., Pandurangi, R.
S., and Shah, D. M. (2013). Structural and
functional studies of a phosphatidic acid-
binding antifungal plant defensin MtDef4:
identification of an RGFRRR motif governing
fungal cell entry, PLoS one, 8(12): e82485.

65. Aerts, A. M., François, I. E., Bammens, L.,
Cammue, B. P., Smets, B., Winderickx, J.,
and Thevissen, K. (2006). Level of M (IP) 2C
sphingolipid affects plant defensin sensitivity,
oxidative stress resistance and
chronological life span in yeast, FEBS letters,
580 (7):1903-1907.

66. Aerts, A. M., François, I. E., Meert, E. M.,
Li, Q. T., Cammue, B. P., and Thevissen, K.
(2007). The antifungal activity of RsAFP2, a
plant defensin from R. sativus, involves the
induction of reactive oxygen species in
Candida albicans, Journal of molecular
microbiology and biotechnology, 13(4):243-
247.

67. Aerts, A. M., Bammens, L., Govaert, G.,
Carmona-Gutierrez, D., Madeo, F.,
Cammue, B., and Thevissen, K. (2011). The
antifungal plant defensin HsAFP1 from
Heuchera sanguinea induces apoptosis in
Candida albicans, Frontiers in
microbiology,  2: 47.

68. De Oliveira Carvalho, A., and Moreira
Gomes, V. (2011). Plant defensins and
defensin-like peptides-biological activities
and biotechnological applications, Current
pharmaceutical design, 17(38): 4270-4293.

69. Broekaert, W. F., Cammue, B. P., De Bolle,
M. F., Thevissen, K., De Samblanx, G. W.,
Osborn, R. W., and Nielson, K. (1997).
Antimicrobial peptides from plants, Critical
reviews in plant sciences, 16(3): 297-323.

70. Fossdal, C. G., Nagy, N. E., Sharma, P.,
and Lönneborg, A. (2003). The putative

tissue specific expression leading to distinctive functions



Current Trends in Biotechnology and Pharmacy
Vol. 13 (2) 212-231, April 2019, ISSN 0973-8916 (Print), 2230-7303 (Online)

229

gymnosperm plant defensin polypeptide
(SPI1) accumulates after seed germination,
is not readily released, and the SPI1 levels
are reduced in Pythium dimorphum-infected
spruce roots, Plant molecular biology, 52(2):
291-302.

71. Kragh, K. M., Nielsen, J. E., Nielsen, K. K.,
Dreboldt, S., and Mikkelsen, J. D. (1995).
Characterization and localization of new
antifungal cysteine-rich proteins from B.
vulgaris, Molecular plant microbe
interactions, 8(3): 424-434.

72. Siddique, S., Wieczorek, K., Szakasits, D.,
Kreil, D. P., and Bohlmann, H. (2011). The
promoter of a plant defensin gene directs
specific expression in nematode-induced
syncytia in Arabidopsis roots, Plant
physiology and biochemistry, 49(10): 1100-
1107.

73. Hafez, E. E., Hashem, M., Balbaa, M. M.,
El-Saadani, M. A., and Ahmed, S. A. (2013).
Induction of New Defensin Genes in Tomato
Plants via Pathogens-Biocontrol Agent
I n t e r a c t i o n ,  J o u r n a l  o f  p l a n t
pathology and microbiology, 4: 167.

74. Lai, F. M., DeLong, C., Mei, K., Wignes, T.,
and Fobert, P. R. (2002). Analysis of the
DRR230 family of pea defensins: gene
expression pattern and evidence of broad
host-range antifungal activity, Plant
science, 163(4): 855-864.

75. Mona M. Elseehy. (2015). Expression of
defensin genes in Egyptian wheat (T.
aestivum) varieties during grain germination,
Journal of agricultural chemistry and
biotechnology, 6 (3): 65 -75.

76. Mitra, R. M., and Long, S. R. (2004). Plant
and bacterial symbiotic mutants define three
transcriptionally distinct stages in the
development of the M. truncatula/
Sinorhizobium meliloti symbiosis,  Plant
physiology, 134(2): 595-604.

77. Wang, W., Cole, A. M., Hong, T., Waring,
A. J., and Lehrer, R. I. (2003). Retrocyclin,

an antiretroviral è-defensin, is a lectin, The
journal of immunology, 170(9): 4708-4716.

78. Gao, A. G., Hakimi, S. M., Mittanck, C. A.,
Wu, Y., Woerner, B. M., Stark, D. M., and
Rommens, C. M. (2000). Fungal pathogen
protection in potato by expression of a plant
defensin peptide, Nature
biotechnology, 18(12): 1307.

79. Kanzaki, H., Nirasawa, S., Saitoh, H., Ito,
M., Nishihara, M., Terauchi, R., and
Nakamura, I. (2002). Overexpression of the
wasabi defensin gene confers enhanced
resistance to blast fungus (Magnaporthe
grisea) in transgenic rice, Theoretical and
applied genetics, 105(6-7): 809-814.

80. Zimmerli, L., Stein, M., Lipka, V., Schulze
Lefert, P., and Somerville, S. (2004). Host
and non host pathogens elicit different MT/
ET responses in Arabidopsis, The plant
journal, 40(5): 633-646.

81. Luo, J. S., Huang, J., Zeng, D. L., Peng, J.
S., Zhang, G. B., Ma, H. L.,  and Lin, H. X.
(2018). A defensin-like protein drives
cadmium efflux and allocation in rice, Nature
communications, 9(1): 645.

82. Park, H. C., Kang, Y. H., Chun, H. J., Koo,
J. C., Cheong, Y. H., Kim, C. Y., and Koo,
Y. D. (2002). Characterization of a stamen-
specific cDNA encoding a novel plant
defensin in Chinese cabbage, Plant
molecular biology, 50(1): 57-68.

83. Gu, Q., Kawata, E. E., Morse, M. J., Wu,
H. M., and Cheung, A. Y. (1992). A flower-
specific cDNA encoding a novel thionin in
tobacco, Molecular and general genetics
MGG, 234(1): 89-96.

84. Komori, T., Yamada, S., and Imaseki, H.
(1997). A cDNA clone for ã-thionin from N.
paniculata (accession no. AB005250;
PGR97–132), Plant physiology, 115: 314.

85. Milligan, S. B., and Gasser, C. S. (1995).
Nature and regulation of pistil-expressed
genes in tomato, Plant molecular
biology, 28(4): 691-711.

Arunima Pothana et al



Current Trends in Biotechnology and Pharmacy
Vol. 13 (2) 212-231, April 2019, ISSN 0973-8916 (Print), 2230-7303 (Online)

230

86. Nanni, V., Schumacher, J., Giacomelli, L.,
Brazzale, D., Sbolci, L., Moser, C., and
Baraldi, E. (2014). Vv AMP 2, a grapevine
flower specific defensin capable of inhibiting
B otrytis cinerea growth: insights into its
mode of action, Plant pathology, 63(4): 899-
910.

87. Epple, P., Apel, K., & Bohlmann, H. (1997).
ESTs reveal a multigene family for plant
defensins in Arabidopsis thaliana, FEBS
letters, 400(2): 168-172.

88. Tavares, L. S., Santos, M. D. O., Viccini, L.
F., Moreira, J. S., Miller, R. N., and Franco,
O. L. (2008). Biotechnological potential of
antimicrobial peptides from flowers, 
Peptides, 29(10): 1842-1851.

89. Tesfaye, M., Silverstein, K. A., Nallu, S.,
Wang, L., Botanga, C. J., Gomez, S. K.,
and Katagiri, F. (2013). Spatio-temporal
expression patterns of A. thaliana and M.
truncatula defensin-like genes, Plos
one, 8(3): e58992.

90. Bloch, C., and Richardson, M. (1991). A new
family of small (5 kDa) protein inhibitors of
insect á amylases from seeds or sorghum
(Sorghum bicolor (L) Moench) has sequence
homologies with wheat β purothionins, FEBS
letters, 279(1): 101-104.

91. Seo, H. H., Park, S., Park, S., Oh, B. J.,
Back, K., Han, O., and Kim, Y. S. (2014).
Overexpression of a defensin enhances
resistance to a fruit-specific anthracnose
fungus in pepper, Plos one, 9(5): e97936.

92. Zahirnejad, B., Bahramnejad, B., and
Rostamzadeh, J. (2018). Isolation and
Expression Analysis of a Defensin Gene from
Strawberry (Fragaria× ananassa cv.
Paros), Journal of agricultural science and
technology, 20(6): 1243-1257.

93. Wisniewski, M. E., Bassett, C. L., Artlip, T.
S., Webb, R. P., Janisiewicz, W. J., Norelli,
J. L., and Droby, S. (2003). Characterization
of a defensin in bark and fruit tissues of
peach and antimicrobial activity of a
recombinant defensin in the yeast, Pichia
pastoris, Physiologia Plantarum, 119(4):
563-572.

94. Dos Santos, I. S., Carvalho, A. D. O., de
Souza-Filho, G. A., do Nascimento, V. V.,
Machado, O. L., and Gomes, V. M. (2010).
Purification of a defensin isolated from Vigna
unguiculata seeds, its functional expression
in Escherichia coli, and assessment of its
insect á-amylase inhibitory activity, Protein
expression and purification, 71(1): 8-15.

95. Zhang, M., Yang, X. P., Xu, J. H., Liu, G.,
Yao, X. F., Li, P. F., and Zhu, L. L. (2014).
Cloning and differential expression analysis
of defensin gene Cldef2. 2 from watermelon
(Citrullus lanatus (Thunb.) Matsum. &
Nakai), In XXIX International Horticultural
Congress on Horticulture: Sustaining Lives,
Livelihoods and landscapes (IHC2014):
1110 (pp. 49-56).

96. Rawat, S., Ali, S., Nayankantha, N. C.,
Chandrashekar, N., Mittra, B., and Grover,
A. (2017). Isolation and expression analysis
of defensin gene and its promoter from
B.juncea, Journal of plant diseases and
protection, 124(6): 591-600.

97. Terras, F. R., Penninckx, I. A., Goderis, I.
J., and Broekaert, W. F. (1998). Evidence
that the role of plant defensins in radish
defense responses is independent of
SA, Planta, 206(1): 117-124.

98. Hanks, J. N., Snyder, A. K., Graham, M.
A., Shah, R. K., Blaylock, L. A., Harrison,
M. J., and Shah, D. M. (2005). Defensin
gene  family in Medicago truncatula:
structure, expression and induction by signal
molecules, Plant molecular biology, 58(3):
385-399.

99. Penninckx, I. A., Eggermont, K., Terras, F.
R., Thomma, B. P., De Samblanx, G. W.,
Buchala, A.,  and Broekaert, W. F. (1996).
Pathogen-induced systemic activation of a
plant defensin gene in Arabidopsis follows a
SA-independent pathway, The plant
cell, 8(12): 2309-2323.

100. Penninckx, I. A., Thomma, B. P., Buchala,
A., Métraux, J. P., and Broekaert, W. F.
(1998). Concomitant activation of MJ and
ET response pathways is required for
induction of a plant defensin gene in Arabid-

tissue specific expression leading to distinctive functions



Current Trends in Biotechnology and Pharmacy
Vol. 13 (2) 212-231, April 2019, ISSN 0973-8916 (Print), 2230-7303 (Online)

231

opsis, The Plant Cell, 10(12): 2103-2113.
101. Rivera-Domínguez, M., Astorga-Cienfuegos,

K. R., Tiznado-Hernández, M. E., and
González-Aguilar, G. A. (2012). Induction of
the expression of defence genes in Carica
papaya fruit by MJ and low temperature
treatments, Electronic Journal of
Biotechnology,  15 (5): 6-6.

102. Pervieux, I., Bourassa, M., Laurans, F.,
Hamelin, R., and Séguin, A. (2004). A spruce
defensin showing strong antifungal activity
and increased transcript accumulation after
wounding and MJ treatments, Physiological
and molecular plant pathology, 64(6): 331-341.

103. Castro, M. S., and Fontes, W. (2005). Plant
defense and antimicrobial peptides, Protein
and peptide letters, 12(1): 11-16.

104. Ponti, D., Mangoni, M. L., Mignogna, G.,
Simmaco, M., and Barra, D. (2003). An
amphibian antimicrobial peptide variant
expressed in N. tabacum confers resistance
to phytopathogens, Biochemical journal, 
370(1): 121-127.

105. Halpin, C., Cooke, S. E., Barakate, A.,
Amrani,  A. E., and Ryan, M. D. (1999). Self
processing 2A polyproteins–a system for co
ordinate expression of multiple proteins in
transgenic plants, The plant journal, 17(4):
453-459.

106. Owens, L. D., and Heutte, T. M. (1997). A
single amino acid substitution in the
antimicrobial defense protein cecropin B is
associated with diminished degradation by
leaf intercellular fluid, Molecular plant-
microbe interactions, 10(4): 525-528.

107. Kong, K., Ntui, V. O., Makabe, S., Khan,
R. S., Mii, M., and Nakamura, I. (2014).
Transgenic tobacco and tomato plants
expressing Wasabi defensin genes driven
by root-specific LjNRT2 and AtNRT2. 1
promoters confer resistance against F.
oxysporum, Plant biotechnology, 31(2): 89-
96.

108. Zainal, Z., Marouf, E., Ismail, I., and Fei, C.
K. (2009). Expression of the Capsicuum
annum (chili) defensin gene in transgenic
tomatoes confers enhanced resistance to

fungal pathogens, American journal of plant
physiology, 4(2): 70-79.

109. Jha, S., and Chattoo,  B. B.  (2009).
Transgene  stacking and coordinated
expression of plant defensins confer fungal
resistance in rice, Rice, 2(4): 143-154.

110. Kaur, J., Fellers, J., Adholeya, A., Velivelli,
S. L., El-Mounadi, K., Nersesian, N., and
Shah, D. (2017). Expression of apoplast-
targeted plant defensin MtDef4.2 confers
resistance to leaf rust pathogen Puccinia
triticina but does not affect mycorrhizal
symbiosis in transgenic wheat, Transgenic
research, 26(1): 37-49.

111. Sharma, K. K., Pothana, A., Prasad, K.,
Shah, D., Kaur, J., Bhatnagar, D., Sudini,
H. K. and Bhatnagar-Mathur, P. (2018).
Peanuts that keep aflatoxin at bay: a
threshold that matters, Plant biotechnology
journal, 16(5):1024-1033.

112. Portieles, R., Ayra, C., Gonzalez, E., Gallo,
A., Rodriguez, R., Chacón, O., and Enriquez,
G. (2010). NmDef02, a novel antimicrobial
gene isolated from N. megalosiphon confers
high level pathogen resistance under
greenhouse and field conditions, Plant
biotechnology journal, 8(6): 678-690.

113. Jaber, E., Kovalchuk, A., Raffaello, T., Keriö,
S., Teeri, T., and Asiegbu, F. O. (2017). A
Gene Encoding Scots Pine Antimicrobial
Protein Sp-AMP2 (PR-19) Confers Increased
Tolerance against B. cinerea in Transgenic
Tobacco, Forests, 9(1): 10.

114. Germain, H., Lachance, D., Pelletier, G.,
Fossdal, C. G., Solheim, H., and Séguin,
A. (2011). The expression pattern of the P.
glauca Defensin 1 promoter is maintained
in A. thaliana, indicating the conservation of
signalling pathways between angiosperms
and gymnosperms, Journal of experimental
botany, 63(2): 785-795.

115. Arenas, G., Marshall, S. H., Espinoza, V.,
Ramírez, I., and Peña-Cortés, H. (2006).
Protective effect of an antimicrobial peptide
from Mytilus edulis chilensis expressed in
N. tabacum L, Electronic journal of
biotechnology, 9(2): 0-0.

Arunima Pothana et al



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


