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Abstract: Malawi, in south-eastern Africa, is one of the poorest countries in the world. Food security in
the country hinges on rainfed systems in which maize and sorghum are staple cereals and groundnut
and pigeonpea are now major grain legume crops. While the country has experienced a considerable
reduction in forest lands, population growth and demand for food production have seen an increase
in the area dedicated to agricultural crops. From 2010, pigeonpea developed into a major export crop,
and is commonly intercropped with cereals or grown in double-up legume systems. Information on
the spatial extent of these crops is useful for estimating food supply, understanding export potential,
and planning policy changes as examples of various applications. Remote sensing analysis offers a
number of efficient approaches to deliver spatial, reproducible data on land use and land cover (LULC)
and changes therein. Moderate Resolution Imaging Spectroradiometer (MODIS) products (fortnightly
and monthly) and derived phenological parameters assist in mapping cropland areas during the
agricultural season, with explicit focus on redistributed farmland. Owing to its low revisit time and
the availability of long-term period data, MODIS offers several advantages, e.g., the possibility of
obtaining cloud-free Normalized Difference Vegetation Index (NDVI) profile and an analysis using
one methodology applied to one sensor at regular acquisition dates, avoiding incomparable results.
To assess the expansion of areas used in the production of pigeonpea and groundnut resulting from
the release of new varieties, the spatial distribution of cropland areas was mapped using MODIS
NDVI 16-day time-series products (MOD13Q1) at a spatial resolution of 250 m for the years 2010–2011
and 2016–2017. The resultant cropland extent map was validated using intensive ground survey
data. Pigeonpea is mostly grown in the southern dry districts of Mulanje, Phalombe, Chiradzulu,
Blantyre and Mwanza and parts of Balaka and Chikwawa as a groundnut-pigeonpea intercrop, and
sorghum-pigeonpea intercrop in Mzimba district. By 2016, groundnut extent had increased in Mwanza,
Mulanje, and Phalombe and fallen in Mzimba. The result indicates that the area planted with pigeonpea
had increased by 29% (75,000 ha) from 2010–2011 to 2016–2017. Pigeonpea expansion in recent years
has resulted from major export opportunities to Asian countries like India, and its consumption by
Asian expatriates all over the world. This study provides useful information for policy changes and the
prioritization of resources allocated to sustainable food production and to support smallholder farmers.

Keywords: crop monitoring; MODIS; spectral profile; NDVI; cropping patterns; groundnut;
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1. Introduction

Malawi is an agrarian economy with a 30% contribution to GDP generating 80% of its export
income [1]. Agricultural expansion is happening at the expense of dwindling forest cover. Maize, with a
production of 3.5 million tons in 2016/2017, is the staple food; it is mostly grown by subsistence farmers.
Farmers also grow sorghum, sugarcane, tea, tobacco, pulses and groundnut in different agroecosystems.
Frequent droughts, a lack of access to improved seed and other administrative deficiencies have
affected smallholder farmers’ income. Diversification of farming systems and the availability of quality
seeds with support from the government are key to increasing productivity and smallholder income.
The main cropping season is from October/November to April/May. The average land holding size is
1.2 ha, and above 90% of agriculture production comes from smallholder farmers [1,2]. Sorghum and
pigeonpea are intercropped over large areas [3]. Groundnut is also grown by smallholders for both
domestic consumption and exports. Groundnut varieties released by the Department of Agricultural
Research Services (DARS) in collaboration with the International Crops Research Institute for the
Semi-arid Tropics (ICRISAT) already have an advantage over traditional lower yielding varieties [4].
Smallholder farmers in Malawi cope with small farms, low soil fertility and production risks associated
with rainfed agriculture. Climate variability has been found to be the major cause for production risks
and high losses in the agriculture sector, including in maize [5,6].

The Government of Malawi strives to achieve agricultural development through a strategy that
focuses on diversification through the development and promotion of grain legumes crops. This is one
of the pillars for increasing smallholder income and reducing malnutrition [7]. Groundnut, common
bean, pigeonpea and soybean are the main legume crops grown (in descending order of areas sown) [8].
While all legumes have seen an expansion in area, pigeonpea has shown the fastest expansion in recent
years, with an annual growth rate of 4.5% compared to 2.6% for all other legumes [8]. Pigeonpea is
the most dominant legume in southern Malawi in terms of area and an important export earner [9],
although tariffs imposed recently by India on pulse imports has changed this scenario [10]. Groundnut
maintains its dominant position as a major income source for smallholders and also an inexpensive
source of balanced protein and essential fatty acids [4]. In this context, this study treats pigeonpea and
groundnut as the two key legume crops in Malawi.

Land use/land cover (LULC) monitoring and mapping can provide important information
for planning the efficient management of land resources, contingency planning and food security
assessment. Location-based information advising farmers to adopt a new varieties or management
technologies and alternate cropping strategies to overcome natural extremes such as climate change will
help ensure food security and sustainability. Location-specific information such as crop type and extent
can be used for estimating potential production to aid in food sufficiency planning [11]. Remote sensing
is a powerful tool that provides a quick and independent approach to estimate croplands over large
areas and show their dynamics [12–14]. Several studies have been conducted globally using various
remote-sensing techniques at different resolutions [15–18] to assess the spatial distribution of croplands.
Previous studies have reported the advantages of Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite imagery in mapping agricultural changes between water-surplus and water-deficit
years, including the dynamics of change in agriculture [19–24]. Over the years, several studies have
provided insights into and methods for measuring short- to long-term changes in land use [25–27].
However, remote sensing is seldom used to identify how cropland areas change in response to
variations in climate and crop demand for improving food production and livelihoods. Since the late
1980s, greater attention has been paid to the use of coarse resolution optical data with high spectral and
temporal resolution. The features of MODIS render it particularly suitable to mapping land cover and
for land use characterization [28]. It can also be used for identifying cropping patterns, tracking the
adoption of crops, monitoring their seasonal production targets and planning policies for sustainable
agriculture and livelihoods [29–31]. MODIS has varied products dedicated mainly to land cover
characterization, and provides three kinds of data: angular, spectral and temporal. MODIS NDVI
imagery (fortnightly and monthly products) and derived phenological parameters assist in mapping
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cropland area during the agricultural season, with explicit focus on redistributed farmland [32–34].
MODIS also offers several advantages such as the possibility of obtaining cloud-free NDVI profile and
an analysis using one methodology that is applied to one sensor at regular acquisition dates, thereby
avoiding incomparable results due to different acquisition dates or small study areas.

The major objective of this study is to monitor cropland areas in Malawi for 2010–2011 and
2016–2017 using MODIS 250 m 16-day time series data using spectral matching techniques. The key
products generated from this study were: (a) crop dominance map, useful in acreage estimation and
production monitoring; (b) spatio-temporal changes in land use, including expansion in pigeonpea
and groundnut areas and; (c) biophysical and socio-economic variability and exports in pigeonpea and
groundnut. The information generated can guide stakeholders in monitoring the changes taking place
between land uses like agricultural lands, fallows of different types (including major crops) and land
cover such as forest lands, water bodies and wetlands.

2. Study Area and Data

2.1. Study Area

Malawi lies in southeastern Africa, extending between 9◦21′51′′ S and 17◦34′4′′ S, and 32◦41′53”E
and 35◦53′11′′ E. It shares borders with Tanzania to the north, Zambia to the west and Mozambique to
the south and east. The total geographical area is about 11.8 Mha, it has approximately 7.2 Mha of
agricultural land including plantations and 28 administrative districts (Figure 1). It has an estimated
population of 18 million [35]. The economy of Malawi is predominantly agro-based with over 80% of
the population depending on agriculture [2].

Malawi experiences a subtropical climate with relatively predictable weather. It has three growing
seasons, hot wet (>95% rainfall) from December to April; cold dry season from May to August and
hot dry season from September to November. Rainfall is strongly seasonal and varies from 725 mm
to 2500 mm, and is mostly derived from the Inter Tropical Convergence Zone (ITCZ), the Zaire Air
Boundary (Congo Air Mass), and Tropical Cyclones as they veer away from the east to west path in the
Mozambique Channel [36]. Extreme conditions include drought (mainly caused by the El Niño and
Southern Oscillation phenomena) and floods indicating high inter-annual variability in rainfall in the
recent past along with problems like land degradation, declining soil fertility, weak implementation
of agricultural policies and a non-conducive macro-economic environment. About 90% of the crops
grown are mostly rainfed [37]. The rainfed nature of farming makes agricultural production vulnerable
to adverse weather conditions such as droughts and floods.
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Figure 1. Study area in Malawi showing agro-ecological zones with sub-national boundaries.

2.2. Satellite Data

MODIS 250 m resolution with 16-day surface reflectance from the Terra platform is ideal for
monitoring vegetation at a continental scale [38]. The present study used MOD13Q1.6 products, which
provide 16-day composite images at 250 m spatial resolution. MOD13Q1 products include vegetation
indices and NDVI, blue, red and near infrared and mid-infrared bands (Table 1). Four tiles covering the
required region were downloaded from Land Processes Distributed Active Archive Center (LP DAAC)
(https://lpdaac.usgs.gov) [39]. The MODIS re-projection tool (MRT) was used to re-project and mosaic
the four tiles of the study area and then stack them as a single composite. Each pixel in the MODIS
dataset contains the best observation during the 16-day period that it covers. The data is described in
greater detail in the Scientific Data Set documentation for MOD13Q1 [38].

https://lpdaac.usgs.gov
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Table 1. Characteristics of satellite data used in this study.

MODIS Data Sets Units Band Width nm/Range Potential Application

250 m 16 days NDVI NDVI Vegetation conditions

250 m 16 days red
reflectance (Band 1) Reflectance 620–670 Absolute land cover transformation,

vegetation chlorophyll

250 m 16 days NIR
reflectance (Band 2) Reflectance 841–876 Cloud amount, vegetation land

cover transformation

250 m 16 days blue
reflectance (Band 3) Reflectance 459–479 Soil/vegetation differences

250 m 16 days MIR
reflectance (Band 7) Reflectance 2105–2155 Cloud properties, land properties

The NDVI data was further processed to create monthly maximum value composites (NDVI
MVC) for each of the crop year months in the rainy season using Equation (1):

NDVIMVCi = Max(NDVIi1, NDVIi2) (1)

where, MVCi is the monthly maximum value composite of the ith month (eg: “i” is January–December),
i1 and i2 are every 16-day composite in the ith month.

2.3. Ground Survey Data

Ground survey data was collected during April 2016 for 778 sample sites covering major cropland
areas (mono-cropping, intercropping, single crops and double crops) following the rainy season and
with its fraction in a pixel of 250 m × 250 m at the location. Observations were recorded extensively
while driving by road and by capturing a few more locations for class identification and accuracy
assessment. Ground survey locations were identified based on the homogeneity of locations and
accessibility from roads. The effectiveness of the sample location in representing one of the classes was
considered important to ensure an accurate geographical location of the pixel.

A minimum sampling size of 250 m × 250 m was taken for ground data validation at each
location. The approach was to look for contiguous areas of homogeneous land use classes, which were
considered for sampling. The precise locations of the samples were recorded by a handheld Garmin
GPS unit (with <3 m error) in tracking mode to map the total route traveled (4200 km). The sample size
varied from 15–20 samples for each LULC category. For each location, photographs were taken using a
digital camera in order to illustrate cropping pattern and other LULC categories. Further evaluation
was done during class identification and labeling. Additional information, such as planting time,
irrigation apply and abiotic stresses was gathered from farmers and agriculture officers concerned.

Out of a total of 778 locations (Figure 2), 164 samples were used as training data for class
identification, labeling and generating ideal spectra [21], leading to the classification of images
based on acquired knowledge. These 164 samples were selected at ideal locations having large
homogenous patches of a particular LULC class. In-depth information about these sample points,
like pre- and post-season farm activities, irrigation methods, etc., was collected through farmer
interactions. The remaining 614 samples were used as validation data for accuracy assessment. The 164
samples that had detailed ground data characteristics were used in class naming and calculating crop
area fractions (within 250 m × 250 m). The 614 samples that had LULC based the observations (without
any interaction with farmers or extension officers). In the 164 samples, 123 were dominated by major
crops (maize, pigeonpea, groundnut, sorghum and, millets) and the other 41 samples had other LULC.
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Figure 2. The distribution of ground survey data locations in the study area. The precise location of the
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2.4. National Statistics

Statistics on cultivated area and production at the sub-national level (districts) were obtained
from the EPA (Extension Planning Area) offices under the Ministry of Agriculture, Irrigation and Water
Development [40]. The information was supplemented by the State Agriculture Department of Malawi.
The area under cultivation of legume crops from district statistics was used to crosscheck the crop area
obtained from remote-sensing techniques.

3. Methods

The process consisted of three steps: (a) Satellite imagery acquisition/procurement and image
processing, (b) Field information (ground reference data) and farmer interactions at the locations
selected for ideal spectra generation, and collection of validation points and (c) Technology adoption
and dissemination. The crop dominance mapping methodology involved various steps [40,41].
The resultant map was then assessed for accuracy using validation field data. The methodology used
to identify land use changes and key expanded areas is shown in Figure 3 and is described in the
following sections.
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Figure 3. An overview of the methodology used for mapping LULC areas using MODIS data.

3.1. Mapping Major Cropland

Temporal MODIS data of 16-day composites of MOD13Q1 with 250 m spatial resolution were
used to map cropland areas during two crop years (2010–2011 and 2016–2017). The process began with
downloading and then stacking them into a single data set for 2010–2011 (25 images) and 2016–2017
(25 images). Each crop year’s stacked dataset was classified using unsupervised ISOCLASS clustering.
At the regional scale when the NDVI signatures of all potential classes were unknown, unsupervised
classification captured the range of phenological variability for large areas. The classification was
performed by setting a maximum of 100 iterations and convergence threshold of 0.99. In all, 100 classes
were generated for an individual year. An ideal spectral data bank was created using MODIS 250
m monthly NDVI MVCs time-series based on the precise geographic location of croplands from
ground survey data. Initial grouping of classes was done using decision tree algorithm, and spectral
similarity values, resulting in an image with fewer classes that need to be identified and labelled.
Class labelling was done using SMTs, where 100 classes with spectrally similar values (SSVs) were
grouped and then matched against ideal spectra. The 100 classes obtained from the unsupervised
classification included both crop and non-crop lands. Each of those classes was investigated and
grouped into similar or near-similar broad classes, resulting in 12 LULC classes. The grouping of
class spectra was accomplished based on individual class spectral signatures acquired during ground
data collection. Additionally, rigorous protocols were employed to identify and label classes using
large volumes of ground data and very high-resolution imagery from Google Earth. This method,
called Spectral Matching Technique (SMT), is described in detail by [21,38,42]. The proportion and
dominant crops were determined using intensive field-plot information acquired during field surveys.
This was assigned to the corresponding land cover type, as explained in [42,43]. Mixed pixels were
resolved by masking them and putting them through the loop of unsupervised classification and SMT
again. The misclassified pixels were reclassified by integrating elevation and rainfall data using GIS
techniques [21]. The final map was verified with ground survey data and very high resolution images
(Google Earth), and cropland area was calculated.

Classes were named based on a standardized hierarchical classification scheme [44], so that an
aggregated class could be tracked to determine which disaggregated classes were combined to form it
or vice versa. The LULC area fractions from coarse-resolution imagery were estimated at the sub-pixel
level by multiplying full-pixel area by cropped area fraction as discussed in [21,42]. Furthermore,
the accuracy assessment of crop areas was based on the standard method of Kappa coefficient employed
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by [21,43,45]. Kappa coefficient represents the degree of agreement between users and producers
ground data. It was designed to compare results between classifications and different regions [46–48].

Accurate area estimation of various LULC types was conducted by multiplying the full-pixel area
of the class by the crop fraction ratio of the class, for which the results are reported in the results section.

3.2. Assessing Cropland Changes

After class identification and labeling, the final LULC maps were validated with ground survey
data and used to detect changes in the LULC map from 2010 to 2016. The ERDAS modeler was used to
quantify changes from 2010–2011 to 2016–2017. These two periods were validated using ground survey
data and Google Earth high-resolution satellite imagery of the corresponding years. Equation (2) was
used to assess changes from 2010–2011 to 2016–2017. Changes were assessed class-wise. For example,
“other” LULC classes and cropland based on the 2010 map were converted to pigeonpea land as:

CDi j = (LULCi × 10) + LULC j (2)

where CDi j is the change detected, LULCi is LULC for the ith year and LULC j is LULC for the jth year.
A comparison was made between the maximum extent of cropland area during 2010–2011 and

2016–2017 and that of yearly cropland area. The change in cropland area was identified when the
cropland class changed to non-cropland in the second time period [21,42].The change was identified
by taking into consideration the duration and peak of the NDVI curve. A longer NDVI signature (peak
of NDVI observed during December to June) was noticed during the growing season of the second
time period compared to the first time period (2010–2011). In Malawi, the highest value of maximum
mean NDVI was 0.75 during the growing season.

3.3. Calculation of Sub-Pixel Area for Agricultural and Cropland Areas

Full pixel areas (FPAs) are not a correct representation of the actual agricultural area due to the
coarser resolution of the satellite imagery used (250 m × 250 m). Sub-pixel areas (SPAs) or actual area
calculation is of greater significance as pixel sizes become coarser. In this study, MOD13Q1 pixel covers
250 m each side and its area is 6.25 ha. Thus, for a pixel with only 50% agriculture, an FPA-based area
calculation per pixel will be 6.25 ha, whereas the SPA or actual area will be 3.125 ha (6.25 ha × 0.5).
Therefore, areas must be calculated based on SPA to avoid discrepancies in estimates of cropped area.

Within each cropland class there are often thousands or millions of pixels and the proportion
of area cropped within each of these classes varies significantly. This is because a particular class
is defined as cropland when, say, ≥50% of the pixel area is cropped. That would mean that a pixel,
whether it has 50% area cropped or 100% area cropped, is still mapped as cropland. However, in
reality there are pixels with 50% to 100% area cropped. The proportion of these can vary widely.
Hence, in order to obtain actual areas, FPAs need to be multiplied by cropland area fraction (CAF) [44].
Overall, the actual areas are equivalent to SPAs as well established in earlier studies [38,42,44,45]. That
is, each pixel in each class is assessed for its actual area as follows:

SPAs or actual areas = FPAs × CAFs (3)

3.4. Comparison with National Data

The SPAs were calculated at the national and district levels and compared with national statistics at
the district level from the Ministry of Agriculture, Irrigation and Water Development [40]. The statistics
for Malawi were obtained from the website of the Directorate of Agriculture Development of the
Ministry of Agriculture, Irrigation and Water Development. Based on the data available from the
national institutes, cropland area statistics were compared with our estimates derived using MODIS
data gathered at the district level (26 administrative units). Similarly, pigeonpea and groundnut



Remote Sens. 2019, 11, 1475 9 of 23

cropland estimates derived from present study were compared with those at the administrative
boundaries (district level).

4. Results and Discussion

4.1. Spatial Distribution of Land Use/Land Cover

Spatial information on cropping pattern and practices in the rainfed areas is necessary to provide
location specific support by extension agencies for seed and fertilizer. This study did an assessment of
the cropping pattern using multi-temporal MODIS satellite data to produce spatially accurate maps of
rainfed areas and determine changes in agricultural land use. Many land use mapping studies have
used EVI time series data instead of NDVI time series data because of atmospheric correction capability
of EVI [1]. In this study, we were able to surpass the atmospheric aberrations by using NDVI monthly
MVCs [2]. The monthly MVC of NDVI time series classification successfully delineated cropping
pattern in Malawi, as well as other land cover. Twelve classes have been identified from MODIS 250 m
time series data (Figure 4) using SMTs. Almost 5.1 Mha of cropland was labelled as containing some
portion of cultivation based on FPAs. However, when cropland area fractions were used, the actual
(sub-pixel) area was 3.5 M ha for 2016–2017 (Tables 2 and 3). The final class name was given based on
the predominance of a specific land use (e.g., 02. Rainfed-SC-maize/groundnut) (Figure 4). Each class
has several LULC types (see Tables 3 and 4). For example, class 01 was described as Rainfed-SC-maize.
Within this class, there were various other LULC, such as 1% trees, 2% grass, 4% shrubs and 2% other
LULC (weeds, rocks, and built-up lands) and cultivable area (92%). In these cultivable areas, maize
was the predominant crop, whereas groundnut was the next most dominant crop (Table 5).
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Table 2. Cropland area for each class, providing an understanding of sub-pixel fractions for the 12 final classes in Malawi for the crop year 2016-2017.

LULC Fraction Categories Full Pixel Areas
(FPA) in ha

LULC Fraction (%)
Cropped Area

Cropland Trees Grasses Shrubs Water Other LULC

01. Rainfed-SC-maize 745,836 84 1 2 13 0 1 623,661
02. Rainfed-SC-maize/groundnut 874,807 75 1 0 20 0 4 654,311
03. Rainfed-SC-millet/sorghum/maize 98,302 63 0 3 33 0 1 62,258
04. Rainfed-SC-maize/sorghum/pigeonpea 103,757 95 2 0 2 0 1 98,829
05. Rainfed-SC-pigeonpea/groundnut/sorghum 472,419 85 2 0 11 0 2 402,029
06. Rainfed-SC-maize/shrub lands mix 786,944 69 1 0 29 1 1 542,429
07. Irrigated-SC-sugarcane/banana/rice 207,942 45 1 0 53 0 1 93,574
08. Irrigated-continuous-tea/other plantations 153,146 99 1 0 0 0 0 151,615
09. Rainfed-SC-maize/other crops 1,713,859 52 1 0 29 0 1 891,207
10. Scrublands/forests 4,044,605 NA NA NA NA NA NA
11. Built-up area 335,354 NA NA NA NA NA NA
12. Water bodies 2,300,270 NA NA NA NA NA NA
Total cropped area 3,519,911

Table 3. Cropland area for each class, providing an understanding of sub-pixel fractions for the five important crops in Malawi for the crop year 2010–2011.

LULC#
Ground Data
Sample Size

Cropped Area
[49] (000ha)

Crop Fractions (%) Crop Area (‘000 ha)

Maize Groundnut Pigeonpea Sorghum Millet Maize Groundnut Pigeonpea Sorghum Millet

01. Rainfed-SC-maize 19 301 0.8 0.2 0.0 0.0 0.0 253 32 0 0 0
02. Rainfed-SC-maize/groundnut 14 338 1.0 0.5 0.1 0.2 0.0 338 169 34 68 0
03. Rainfed-SC-millet/sorghum/maize 7 207 0.3 0.0 0.0 0.5 0.3 69 0 0 103 69
04. Rainfed-SC-maize/sorghum/pigeonpea 5 52 1.0 0.0 0.0 0.4 0.0 52 0 0 21 0
05. Rainfed-SC-pigeonpea/groundnut/sorghum 7 310 0.1 0.6 0.9 0.1 0.0 44 133 266 44 0
06. Rainfed-SC-maize/shrub lands mix 7 416 1.0 0.0 0.0 0.0 0.0 416 0 0 0 0
07. Irrigated-SC-sugarcane/banana/rice 2 202 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0
08. Irrigated-continuous-tea/others plantations 7 112 0.8 0.0 0.0 0.0 0.0 0 0 0 0 0
09. Other crops 28 1138 0.4 0.0 0.0 0.0 0.0 566 0 0 0 0
Total area (ha) 1740 334 300 236 69
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Table 4. Cropland area for each class, providing an understanding of sub-pixel fractions for the 12 final classes in Malawi for the crop year 2010–2011.

LULC Fraction Categories FPA (ha)
LULC Fraction (%)

Cropped Area
Cropland Trees Grasses Shrubs Water Other LULC

01. Rainfed-SC-maize 328,462 92 1 2 4 0 2 300,975
02. Rainfed-SC-maize/groundnut 493,539 69 1 0 29 1 1 338,427
03. Rainfed-SC-millet/sorghum/maize 245,723 84 2 0 13 0 1 206,758
04. Rainfed-SC-maize/sorghum/pigeonpea 679,22 77 1 2 19 0 0 524,36
05. Rainfed-SC-pigeonpea/groundnut/sorghum 365,132 85 2 0 1 0 12 310,362
06. Rainfed-SC-maize/shrub lands mix 483,984 86 1 0 13 0 0 416,226
07. Irrigated-SC-sugarcane/banana/rice 213,631 95 5 0 0 0 1 201,881
08. Irrigated-continuous-tea/other plantations 165,671 68 2 0 30 0 0 112,183
09. Rainfed-SC-maize/other crops 1,423,119 80 1 0 26 0 4 1,138,495
10. Scrublands/forests 5,414,178 NA NA NA NA NA NA
11. Built-up area 330,464 NA NA NA NA NA NA
12. Water bodies 2,304,482 NA NA NA NA NA NA
Total cropped area 3,077,744

Table 5. Cropland area for each class, providing an understanding of sub-pixel fractions for the five important crops in Malawi for the crop year 2016–2017.

LULC#
Ground Data
Sample Size

Cropped Area
[49] (000ha)

Crop Fractions (%) Crop Area (‘000 ha)

Maize Groundnut Pigeonpea Sorghum Millet Maize Groundnut Pigeonpea Sorghum Millet

01. Rainfed-SC-maize 21 624 0.7 0.1 0.0 0.0 0.0 445 89 0 0 0
02. Rainfed-SC-maize/groundnut 40 654 0.7 0.1 0.1 0.0 0.0 458 65 33 0 0
03. Rainfed-SC-millet/sorghum/maize 3 62 0.3 0.0 0.0 0.3 0.3 21 0 0 21 21
04. Rainfed-SC-maize/sorghum/pigeonpea 4 99 0.8 0.0 0.3 0.1 0.0 74 0 25 12 0
05. Rainfed-SC-pigeonpea/groundnut or sorghum 6 402 0.6 0.3 0.7 0.1 0.0 223 134 268 45 0
06. Rainfed-SC-maize/shrub lands mix (30%) 14 542 0.4 0.0 0.0 0.0 0.1 232 0 0 0 39
07. Irrigated-SC-sugarcane/banana/rice 2 94 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0
08. Irrigated-continuous-tea/other plantations 25 152 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0
09. Other crops 18 891 0.6 0.1 0.1 0.1 0.0 545 99 50 50 0
Total area (ha) 1999 388 375 127 59
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Using the same approach, total cropland area was estimated to be 3,519,911 ha, which included
irrigation by lake (245,188 ha). In Figure 4b, it was observed that maize was predominantly grown
throughout Malawi (Figure 4b). Pigeonpea and sorghum were grown in the southern regions (Mualanje,
Mwanza, Zomba and Chikwawa). Sorghum and millet are grown in southern Malawi, in the dry land
areas of Nsanje, and Plantations (class 08) were located in Thyolo and Chickwawa.

4.2. Spatio-Temporal Changes in Pigeonpea and Groundnut

The areas planted with maize, pigeonpea, groundnut, and sorghum/millet for each district in
Malawi for 2010–2011 and 2016–2017 are presented in Figure 5 and Table 6. Maize was the major
crop grown across Malawi (Figure 5) with an increased area in 2016–2017 compared to 2010–2011,
mainly in the southern districts and a slight increase in other districts. Pigeonpea was mainly grown in
districts like Mzimba, Salima, Balaka, Mwanza, Zomba, Phalmobe, Mulanje, Machinga, Blantyre, and
Chikwawa. There was a high increase in pigeonpea area during 2016–2017 mainly in Mwanza and
Mzimba compared to the 2010–2011. Table 6 shows the district-wise cropped areas for the crop years
2010–2011 and 2016–2017. Groundnut was mainly grown in almost all the districts. There was a high
increase mainly in Mzimba, Kasungu, Mchinji, Liongwe, and Mwanze and a less increase in some
parts of other districts in 2016-2017 compared to 2010-2011. Sorghum/millet was grown in districts
like Mzimba, Kasungu, and Mchinji and sparsely in other parts. A decrease in sorghum/millet area
during 2016–2017 was observed mainly in Kasungu, Mchinji, and Lilongwe compared to 2010–2011.
Majority of sorghum/millet was replaced by maize/groundnut. In some parts of Mzimba district,
maize/sorghum/pigeonpea was replaced with pigeonpea/groundnut. Considering the distribution of
cropland area under each class, a total of about 442,167 ha was added to cropped area in 2016–2017.

Table 6. District-wise cropped areas (ha) extracted from MODIS-derived areas for 2010–2011
and 2016–2017.

District
Maize (ha) Groundnut (ha) Pigeonpea (ha) Sorghum (ha) Millet (ha)

2010–2011 2016–2017 2010–2011 2016–2017 2010–2011 2016–2017 2010–2011 2016–2017 2010–2011 2016–2017

Balaka 36,147 62,176 8920 14,657 14,749 16,302 3206 6188 86 194
Blantyre 26,334 51,536 9001 11,517 14,287 14,760 3177 4706 30 859

Chikwawa 51,086 72,726 10,793 16,758 20,253 19,778 9429 7395 3917 2911
Chiradzulu 15,780 23,975 4053 7697 7045 11,975 1496 2851 71 307

Chitipa 33,383 35,558 7981 5011 3420 3415 3217 1552 164 1685
Dedza 92,478 93,772 23,639 16,983 12,629 11,752 10,570 3579 1458 1627
Dowa 64,815 119,662 12,240 21,507 4280 7033 7656 2727 2482 1716

Karonga 19,081 21,943 4162 3550 4567 4167 3252 2036 1165 1979
Kasungu 201,318 225,790 25,034 35,524 11,517 17,554 31,075 6373 15,105 6639
Lilongwe 222,150 202,463 41,563 34,505 6826 7877 24,822 4989 7781 2778
Machinga 55,968 72,463 12,218 16,166 19,376 19,383 9951 8682 3818 3770
Mangochi 81,277 106,251 20,156 22,121 24,298 24,791 10,093 8527 2075 2271

Mchinji 113,386 103,420 12,033 16,605 4280 7269 20,919 3973 11,824 3095
Mulanje 28,637 53,331 13,851 20,835 19,486 35,606 5575 6774 444 173
Mwanza 16,801 53,294 5099 23,806 8718 43,926 1766 8254 8 4
Mzimba 259,727 261,862 21,671 26,538 4695 24,010 40,789 14,731 8678 15,333

Nkhata Bay 5829 7373 41 676 40 350 151 375 90 664
Nkhotakota 38,780 44,573 1920 4518 1772 3052 3106 2790 1610 4428

Nsanje 16,684 24,096 3286 5043 6413 6324 5351 3553 2848 2189
Ntcheu 44,782 80,605 13,015 16,538 17,692 19,891 4754 6757 96 728
Ntchisi 48,079 54,827 8114 9477 4065 3775 3677 1200 530 1247

Phalombe 30,102 45,433 14,545 13,290 21,196 17,713 6232 3959 748 408
Rumphi 26,961 24,657 6382 4245 3125 2646 1990 1048 135 972
Salima 39,693 49,111 10,143 11,687 14,215 12,883 3869 3733 186 835
Thyolo 8888 28,562 5346 6633 10,603 9550 1788 2619 2 1328
Zomba 47,404 74,148 18,883 20696 31722 28035 7483 7603 665 1157
Total 1,625,569 1,993,605 314,088 386,582 291,268 373,819 225,391 126,973 66014 59295

A close look at the distribution of agricultural area from 2010–2011 to 2016–2017
(Figure 5) shows that the LULC fraction (%) increased mainly in the following classes:
Rainfed—SC-maize/sorghum/pigeonpea from 77% to 95 percent, Rainfed-SC-maize/groundnut from
69% to 75%, and Irrigated-continuous-tea/others plantations from 68% to 99%. It decreased mainly
in classes like Rainfed-SC-maize from 92% to 84%, Rainfed-SC-millet/sorghum/maize from 84%
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to 63%, Rainfed-SC-maize/shrub lands mix from 86% to 69%, Irrigated-SC-sugarcane/banana/rice
from 95% to 45%, and Rainfed-SC-maize/other crops from 80% to 52%. However, there was an
increase in cropped area [49] mainly in classes like Rainfed-SC-maize from 300,975 ha to 623,661 ha,
Rainfed-SC-maize/groundnut from 338,427 ha to 654,311 ha, Rainfed-SC-maize/sorghum/pigeonpea
from 52,436 ha to 98,829 ha, Rainfed-SC-pigeonpea/groundnut/sorghum from 310,362 ha to 402,029 ha,
Rainfed-SC-maize/shrub lands mix from 416,226 ha to 542,429 ha, and Irrigated-continuous-tea/others
plantations from 112,183 ha to 151,615 ha. There was a decrease in cropped area mainly in classes like
Rainfed-SC-millet/sorghum/maize from 206,758 ha to 62,258 ha, Irrigated-SC-sugarcane/banana/rice
from 201,881 ha to 92,574 ha, and Rainfed-SC-maize/other crops from 1,138,495 ha to 891,207 ha. Spatial
variations are shown in Figure 5.

Remote Sens. 2017, 9, x FOR PEER REVIEW  11 of 22 

 

in the southern districts and a slight increase in other districts. Pigeonpea was mainly grown in 
districts like Mzimba, Salima, Balaka, Mwanza, Zomba, Phalmobe, Mulanje, Machinga, Blantyre, and 
Chikwawa. There was a high increase in pigeonpea area during 2016–2017 mainly in Mwanza and 
Mzimba compared to the 2010–2011. Table 7 shows the district-wise cropped areas for the crop years 
2010–2011 and 2016–2017. Groundnut was mainly grown in almost all the districts. There was a high 
increase mainly in Mzimba, Kasungu, Mchinji, Liongwe, and Mwanze and a less increase in some 
parts of other districts in 2016-2017 compared to 2010-2011. Sorghum/millet was grown in districts 
like Mzimba, Kasungu, and Mchinji and sparsely in other parts. A decrease in sorghum/millet area 
during 2016–2017 was observed mainly in Kasungu, Mchinji, and Lilongwe compared to 2010–2011. 
Majority of sorghum/millet was replaced by maize/groundnut. In some parts of Mzimba district, 
maize/sorghum/pigeonpea was replaced with pigeonpea/groundnut. Considering the distribution of 
cropland area under each class, a total of about 442,167 ha was added to cropped area in 2016–2017. 

 
Figure 5. Spatial distribution of major cropping pattern for (a) crop year 2010–2011 and (b) crop year 
2016–2017. 

A close look at the distribution of agricultural area from 2010–2011 to 2016–2017 (Figure 5) shows 
that the LULC fraction (%) increased mainly in the following classes: Rainfed - SC-
maize/sorghum/pigeonpea from 77% to 95 percent, Rainfed-SC-maize/groundnut from 69% to 75%, 

Figure 5. Spatial distribution of major cropping pattern for both crop year 2010–2011 and crop
year 2016–2017.

Considering the crop fractions (%) in LULC from 2010–2011 to 2016–2017 (Tables 3 and 5), there was
an increase of pigeonpea in Rainfed-SC-maize/sorghum/pigeonpea from 0.0% to 0.3%, and other crops
from 0.0% to 0.1%. For maize, there was a slight decrease in crop fractions, i.e., Rainfed-SC-maize from
0.8% to 0.7%, Rainfed-SC-maize/groundnut from 1.0% to 0.7%, Rainfed-SC-maize/sorghum/pigeonpea
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from 1.0% to 0.8%, and Rainfed-SC-maize/shrub lands mix from 1.0% to 0.4%. For groundnut, there was
also a decrease in crop fractions i.e., Rainfed-SC-maize from 0.2% to 0.1%, Rainfed-SC-maize/groundnut
from 0.5% to 0.1%, and Rainfed-SC-pigeonpea/groundnut/sorghum from 0.6% to 0.3%. For sorghum,
there was a decrease in crop fractions, i.e., Rainfed-SC-maize/groundnut from 0.2% to 0.0%,
Rainfed-SC-millet/sorghum/maize from 0.5% to 0.3%, and Rainfed-SC-maize/sorghum/pigeonpea from
0.4% to 0.1%. There were no changes in the crop fractions for pearl millet.

The changes in five major crops from 2010–2011 to 2016–2017 revealed that there was an increase
in crop area under maize from 1,740,000 ha to 1,999,000 ha, Groundnut area increased from 334,000 ha
to 388,000 ha, pigeonpea from 300,000 ha to 375,000 ha, a considerable decrease in sorghum area from
236,000 ha to 127,000 ha, and millet area from 69,000 ha to 59,000 ha. The area increase in pigeonpea
was attributed to the rising demand for export to South Asia driven by the increasing population and
income in South Asia. Mwaiwathu alimi (ICEAP 00557) is a climate-resilient medium-duration variety
released in Malawi. This variety also has a trait preferred by traders, i.e., the plum cream-colored
grain. This variety has therefore provided an opportunity to expand pigeonpea area into the
livestock-dominant central region and short growing season in northern Malawi. During the same
period, several donors supported legumes research and development efforts, including seed systems,
which gave a fillip to the expansion of both of the legumes. Furthermore, improved versions of
Mwaiathu alimi were recently registered, namely, Chitedze Pigeonpea 1 (ICEAP 01514/15) and Chitedze
Pigeonpea 2 (ICEAP 01485/3), which are expected to contribute to further expansion of pigeonpea
in Malawi.

4.3. Accuracy Assessment

Accuracy assessment was carried out using 614 ground samples (Figure 2). An error matrix
(Table 7) showing the agreement (and disagreement) between the classified map and the ground points
was prepared. Two measures of accuracy—Overall accuracy and Kappa coefficient—were computed.
Though overall accuracy gives an estimate of the overall correctness of the map as a whole, it cannot
provide a measure for the accuracy of individual LULC classes. Since the classes occupy different
extents on the map, the overall accuracy is high when the class occupying a large area is correctly
classified, in spite of the other classes being wrongly interpreted. This is corrected by the Kappa
coefficient, which takes into account the user’s and producer’s accuracies of each class. It is calculated
using Equation (4).

κ =
N
∑r

i=1 xii −
∑r

i=1(xi+ × x+i )

N2 −
∑r

i=1(xi+ × x+i )
(4)

where N is the total number of sites in the error matrix, r is the number of rows in the error matrix,
xii is the number in row i and column i, x+i is the total for row i, and xi+ is the total for column i [50].
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Table 7. Accuracy assessment using ground survey data using error matrix method for the year 2016-2017.

Classified
Data

Reference Data (Ground Survey Data) Classified
Totals

Number
Correct

Producer
Accuracy (%)

Users
Accuracy (%)

Kappa
CL_1 CL_2 CL_3 CL_4 CL_5 CL_6 CL_7 CL_8 CL_9 CL_10 CL_11 CL_12

CL_1 96 0 1 7 1 0 0 0 0 4 0 0 109 96 75 88 0.8
CL_2 18 99 1 3 0 0 0 0 2 12 0 0 135 99 97 73 0.7
CL_3 1 0 5 0 0 0 0 0 0 0 0 0 6 5 63 83 0.8
CL_4 0 0 0 8 0 0 0 0 0 4 0 0 12 8 40 67 0.7
CL_5 5 1 0 1 34 0 0 0 6 2 1 0 50 34 56 68 0.6
CL_6 4 1 0 0 0 48 0 0 0 8 0 0 61 48 100 79 0.8
CL_7 0 1 0 0 2 0 16 3 0 1 0 0 23 16 100 70 0.7
CL_8 1 0 0 0 0 0 0 10 0 0 0 0 11 10 77 91 0.9
CL_9 3 0 1 1 24 0 0 0 86 4 0 0 119 86 91 72 0.7

CL_10 0 0 0 0 0 0 0 0 0 70 0 0 70 70 67 100 1.0
CL_11 0 0 0 0 0 0 0 0 0 0 15 0 15 15 94 100 1.0
CL_12 0 0 0 0 0 0 0 0 0 0 0 3 3 3 100 100 1.0

Column Total 128 102 8 20 61 48 16 13 94 105 16 3 614 614

Overall Classification Accuracy = 79.80%; Overall Kappa Statistics = 0.7648.
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The overall classification accuracy for the map of the year 2016–2017 was 79.8% and the overall
Kappa coefficient was 0.76. Majority classes showed producer’s accuracy and user’s accuracy of more
than 70%. Some classes with mixed crops, class 4 for example, had low accuracy level, 40% producer’s
accuracy and 67% user’s accuracy because there was a mix of pigeonpea, maize and sorghum. Ground
data collected did not coincide with the assigned class (average land holding size is 1.2 ha) as the
imagery used was of coarse resolution. Classes with low accuracies can be improved by taking the
following measures: (a) collecting extensive ground sample data; (b) undertaking regional analysis;
(c) taking land related information like soils, slope and elevation into consideration in the analysis;
(d) taking care while collecting mixed crop ground sample data; (e) resolving mixed classes; and
(f) using higher resolution time series data like Landsat 30 m. Spectral matching techniques have
limitations where there are few ideal spectra signatures. This occurs when particular classes have very
few ground survey points because the areas are located in interior areas with no road access [29,30].
Another limitation is collecting ground survey data, which is time consuming and expensive. Time
can be saved and data can be less error-prone when ground data is captured using mobile applications
(crops, global croplands, etc.). Ground survey data were also used to address the problem of coarse
resolution (MODIS) when the coarser resolution is used to map and characterize ground sample that
are smaller than pixel areas where multiple crops are present in the same pixel [29,30]. It is important
to note that lower accuracy is also due to coarse spatial resolution of MODIS (each pixel is 250 m on
each side and larger than many agricultural fields in the study area). Many pixels can have multiple
land use/land cover types because of small holdings. High resolution imagery such as sentinel-2 with
5-day intervals in the same geometry and, multiband synthetic aperture radar (SAR) with 12-day
interval data offers new possibilities for accurate mapping and avoiding these gaps [51].

4.4. Comparison with Sub-National Statistics

Pigeonpea is one of the major crops in Malawi and its net sown area is increasing rapidly.
The district-wise areas derived from our study (MODIS) for the year 2016 were plotted with national
agricultural statistics (NAS) [40], and Pearson’s coefficient of correlation was computed. There was a
significant and positive linear correlation with an R2 value of 0.870 and the slope coefficient of 1.08
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The areas of cultivation of Malawi’s five important crops (maize, pigeonpea, groundnut, sorghum,
and millet) taken from the NAS were plotted against the data obtained from the MODIS imagery,
and a significant and positive correlation was seen with R2 values of 0.98 and 0.99 for the crop years
2010–2011 and 2016–2017, respectively (Figure 7). For 2010–2011, there was a major difference in
maize, pigeonpea, and sorghum due to mixed cropping and a slight difference among other crops.
For 2016–2017, there were major differences in the maize and pigeonpea because with the growth in
agricultural area in Malawi (Figure 8), the cultivation of mixed crops had been increasing along with
the maize area.
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A comparison of cultivated areas in 2010–2011 and 2016–2017 showed that for 2016–2017, there
was an appreciable increase in pigeonpea cultivation in many districts of Malawi along with some
other crops (Table 6). Data from some districts showed large difference due to intermixing of various
classes. The coarse resolution of the image data may have caused the mixing of classes.
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4.5. Impact of ICRISAT Technologies on the Extensification and Productivity Enhancement of Groundnut and
Pigeonpea

Groundnut and pigeonpea are two important dryland legumes that earn large export revenue
and provide high returns to smallholder farmers of Malawi. The adoption of new technologies in
crops developed by DARS under the auspices of ICRISAT was initially slow due to low awareness, the
absence of organized seed systems and a biased government extension towards maize, the staple cereal
crop. ICRISAT’s groundnut breeding hub not only provided improved groundnut varieties during its
three-decade presence in Malawi but also introduced its improved pigeonpea technologies as a strategy
to improve the nutritional security by adding plant protein to the food basket. The ICRISAT-led
Tropical Legumes II project, which ended in 2015 was a major contributor to development and delivery
of the improved groundnut and pigeonpea varieties. After the government realized the importance of
farmer participatory varietal selection and breeding in the late 90′s, farmers were enabled to select
desirable traits suited to local production systems and market demand, leading to the adoption of the
new varieties (Table 8) [52].

Table 8. Pigeonpea varieties released in Malawi and their characteristics.

Variety Pedigree Year Special Varietal
Attributes

Recommended Agro
Ecologies Yield (kg/ha)

Sauma ICP 9145 1987 Long duration, fusarium
wilt resistant High altitude area 1500

Kachangu ICEAP 00040 2000 Long duration, large
seeded High altitude area 2000

ICPL 87105 ICPL 87105 2003 Short duration, multiple
cropping

Low to medium
altitude areas 2000

ICPL 93027 ICPL 93,027 2003 Short duration, multiple
cropping

Low to medium
altitude areas 2000

Mwaiwathualimi ICEAP 00557 2009 Medium duration Low to medium
altitude areas 2500

Chitedze
Pigeonpea 1

ICEAP
01514/15 2011 Medium duration, high

yielding
Low to medium

altitude areas 2500

Chitedze
Pigeonpea 2 ICEAP 01485/3 2014 Medium duration, high

yielding
Low to medium

altitude areas 2500

Source: Tropical Legumes II project report [52].

The major areas growing of pigeonpea are Mwanza and Mulanje in the southern region. This region
accounts for 92% of the total pigeonpea area contributing up to about 20% of farmers’ incomes.
Intercropping with maize is a widely adopted practice. In the northern districts of Karonga and Chitipa
and in the central districts of Slima, Kasungu, Lilongwe and Mchingji, there is great potential for
medium duration varieties. ICRISAT’s contribution of medium duration pigeopnpea to these new
areas has not only helped fulfil pigeonpea demand in Malawi but has also contributed to the economic
recovery program of its government [52].

4.6. Economic Factors

Since 2010–2011, pigeonpea productivity and production of pigeonpea have been increasing with
the release and adoption of ICRISAT-bred medium-duration varieties, farmers’ access to quality seed
through a revolving seed scheme, and the government’s support to inputs, including seeds. During
the study period, it recorded positive trends in both productivity (34.6% increase) and production
(68.7%). About 35% of the produce is sold through formal markets, with most sales going to the
export market [53]. It is exported either as whole grain or as processed grain, i.e., split decorticated
grain known in India as dhal. Whole grain is exported to India, whereas the dhal is mainly exported
to the South Asian people in Europe (mainly the UK) and the USA. About 10% of the dhal stays in
Malawi for domestic consumption [54]. Malawi is the fourth largest exporter of pigeonpea to India,
contributing to about 35% of the country’s requirement. While pigeonpea prices in India peak in
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November–December, its harvesting between July and September in Malawi and export coincide with
India’s period of relative shortage and high prices [53].

Producer prices of pigeonpea in Malawi show a positive trend with year-to-year variations
(Figure 9). A poor harvest in India increases the demand for imports, resulting in high prices that
encourage Malawian growers to increase the area planted with the crop. While there are remarkable
variations depending on weather conditions in India, there is generally an increasing trend due to
rising population and income levels among consumers in India, which has been driving the expansion
of pigeonpea area in Malawi.Remote Sens. 2017, 9, x FOR PEER REVIEW  18 of 22 
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Malawi’s pigeonpea export is handicapped by its landlocked location, resulting in high
transportation costs. Freight charges from Malawi are USD 130 per ton, compared to USD 50
per ton for Mozambique, for instance [9]. Nonetheless, Malawian producers have managed to compete
in the world market for three reasons, the government subsidizes exports by giving a 25% rebate on
freight charges from taxable profits; its pigeonpea is considered to be of good quality and a recognizable
brand and exporters can earn a premium price for white pigeonpea grain, while red/speckled grain
reduces the price by 5–10%. There is a price difference of USD 150 per ton between the price of Burmese
lemon pigeonpea and Malawian white pigeonpea [9].

4.7. Income, Livelihood Security and Profitability of Grain Legume Cultivation in Malawi

A number of studies have been conducted in Malawi to assess measures adopted by smallholder
farmers to enhance incomes and livelihood security at the household level [55,56]. These measures
include both on-farm and off-farm activities. On-farm activities are these that bring income to
the household through the production of crops and keeping livestock on one’s own farm or garden.
Off-farm activities are done outside one’s farm, e.g., obtaining income from temporary employment and
operating a small business enterprise to supplement income from on-farm activities. Most smallholder
farmers in Malawi largely depend on tobacco, cereal and legume cultivation for sustenance, incomes
and livelihood security at the household level. The government has also been encouraging farmers to
diversify crop production in order to avert the adverse impacts of climate variability and climate change
as well as to tackle malnutrition arising from maize-dominant diets. Thus, in addition to growing
maize, farmers are encouraged to grow drought-tolerant and nutritious crops such as potato, cassava,
sorghum, millet and legumes. Although production of sorghum and millet has declined, production
of legume crops has dramatically increased (e.g., Table 6) owing to the market opportunities.
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Grain legumes continue to play an important role in human nutrition as a source of protein,
vitamins and minerals [57,58]. Legumes improve soil fertility by fixing nitrogen in the atmosphere
there by playing a dual role. The discourse in this section focuses on profitability of grain legumes
cultivation in Malawi with regard to their respective gross margins.

Farmers in Malawi are interested in growing legume crops for consumption as well as for sale in
the market. The produce is not only marketable for profit, but there is also an awareness about the need
for demand-driven technologies. This has led to many transformations in society, including gender
equity. The area, yield and production of common bean, groundnut and soybean fluctuated between
1990 and 2012, showing an upward trend [59]. The implementation of government subsidies, market
access, demand for local consumption, availability of suitable traits in improved seeds and finally the
attractive price have all contributed to increasing the area and production of these legumes in Malawi.

5. Conclusions

Pigeonpea and groundnut crops have made inroads into the cereal dominated farming systems
of Malawi, improving soil fertility, human nutrition, productivity and income earning opportunities.
This study provided a comprehensive assessment of cropping patterns and major cropland changes
in Malawi at national and sub-national levels using remotely sensed data. Spatio-temporal cropland
changes are useful for monitoring, supporting diffusion and value addition of cash crops like pigeonpea.
For crop breeders, tracking the spread of released varieties and genetic gain are key metrics. Results
show that the area planted with pigeonpea increased by 75,000 ha from 2010–2011 to 2016–2017, maize
by 259,000 ha and groundnut by 54,000 ha. On the other hand, sorghum and millet areas decreased
by 109,000 ha and 10,000 ha, respectively, during the same period. By mapping information on the
cropping patterns of major crops using satellite imagery at the national and sub-national level, suitable
locations can be identified to demonstrate and scale up best-bet management practices, and to promote
better varieties of crops.
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