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9.1 INTRODUCTION

Geo-spatial information on the distribution of irrigated areas is limited to district-level
crop statistics published by state or national governments in different parts of the world. Al-
though data that has been collected by irrigation and agriculture departments are available,
there are often differences between sources in regard to the extent of the irrigated areas (Biggs
et al., 2006; Gumma, 2008). The World Summit on Sustainable Development (WSSD) orga-
nized by the United Nations and held at Johannesburg, South Africa, declared water as
the most critical resource in the 21st century, with increasing demands and decreasing sup-
plies. Much of the freshwater is consumed by irrigation and evapotranspiration from differ-
ent land use/land cover (LULC) classes, especially through transpiration from natural
vegetation. Of the different types of LULC classes, irrigation is known to consume about
60% of the world’s available freshwater resources. With ballooning global populations
projected to be 8.3 billion in 2030 compared to just over 6 billion at present and with food
and nutritional intake expected to increase from 2500cal to 3000cal per day per person
(FAO, 2003), the demand for water for irrigation will only grow. This is neither feasible
due to a shortage of resources nor desirable due to the, still to be fully understood, environ-
mental impacts of large, medium, and even small irrigation schemes on natural environments
203 # 2019 Elsevier Inc. All rights reserved.
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Given the importance of irrigation to theworld’s food bank, a calculation ofwater resources
that includes a detailed, accurate, and sophisticated LULC system is required. Land cover is
likely to be the single most important factor of change in all river basins. It is well established
thatLULCchangeshaveasignificant effect onmanyprocesses inbasins, includingsoil erosion,
global warming (Penner et al., 1994), and biodiversity impacts (Chapin et al., 2000), and such
changes are expected to have a greater influence on human habitability than climate change
will (Skole, 2004). Through the use of the AVHRR pathfinder data sets, several global LULC
maps have been produced (e.g., De Fries et al., 1998; Loveland et al., 2000).

Accurate information on the extent of river basin cropland is critical for food security as-
sessments, water allocation decisions, and yield estimations. This information will also help
decision makers monitor dynamic landscapes, such as agricultural lands, fallow croplands,
and land cover such as forests, water bodies, and wetlands. Ex-ante assessments on the effect
of changes in land use will facilitate sustainable land use planning, socially, economically,
and ecologically.Moreover, countries’ departments of agriculture and revenuewill need such
spatial information at the village-level in order to send advisories to farmers on timely inputs
and best practices for agricultural management.

Croplands in the Indo-Ganges River Basin are frequently affected by abiotic stresses such
as drought. Crop year 2015 was declared the hottest year on record by the world Meteorolog-
ical Organization (WMO). Very high temperatures over both land and ocean in 2015 were
accompanied by many extreme weather events, such as heatwaves, flooding, and severe
drought (WMO, 2015). Several studies have been conducted on land use mapping and
changes. However, themain purpose for analyzing changes in agricultural land use is tomon-
itor cropping patterns and cropland changes (Singh, 1989; Wan et al., 2004; Yaduvanshi et al.,
2015; Hao et al., 2016; Li et al., 2016; Olsson et al., 2016; Wang et al., 2016). These analyses
rely heavily on agricultural statistics (e.g., extent of area). Besides discrepancies at the
district, state, and provincial levels, there are discrepancies in the statistics reported by
agricultural agencies and irrigation agencies. Variations in land use on such a large scale
are not sufficient to fully clarify their effect on river basins. On the other hand, remote sensing
with satellite imagery can give detailed maps of land use and identify where significant
cropping pattern changes have occurred in response to variations in rainfall (Badhwar,
1984; Thiruvengadachari and Sakthivadivel, 1997). Remote sensing utilizing satellite
imagery has been used to quantify water use and productivity in irrigation systems
(Thiruvengadachari and Sakthivadivel, 1997), but is less frequently used to identify changes
in irrigated command areas in response to variations in rainfall and water supply. Normal-
ized Difference Vegetation Index (NDVI) time-series data have been used for mapping land
use changes (Gumma et al., 2011b) and irrigated areas (Biggs et al., 2006; Thenkabail et al.,
2009b). Time series data have also been used for detecting changes in irrigated areas in major
river basins (Bhutta and Van der Velde, 1992; Gaur et al., 2008).

The present study analyzed the spatial extent of major croplands alongwith other LULC in
the Indo-Ganges Basin.Water deficiency for rainfed cropswas assessed based on low rainfall,
which was reflected in the NDVI imagery from the 2013–14 period. The area under each type
of land use for each year and the changes between years were estimated.

The estimates of both land use and land cover changeswere comparedwith ground survey
data and secondary sources, such as published statistics on rice systems. The focus was on the
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areas where significant changes had occurred in the cropping pattern.
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In addition to the preceding assessments, the overarching goal of this studywas tomap the
spatial extent of the above-mentioned croplands. The study used MODIS 250m time-series
data to map major croplands using SMTs that were first advocated for cropland mapping
by Thenkabail et al. (2007) and later successfully applied in global and regional mapping
of croplands (Thenkabail et al., 2007a, 2009a, 2012; Biradar et al., 2009; Pittman et al., 2010;
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Gray et al., 2014; Gumma et al., 2015a; Salmon et al., 2015; See et al., 2015).
9.2 STUDY AREA

The study area (see nonhatched area in the basin boundary in Fig. 9.1) covers 63%
(133,071,400ha) of the Indo-Gangetic Plain (total area¼217,699,000ha.). Crop year 2013

was a normal year and 204 areas had significant rainfall deficit in terms of amount and

FIG. 9.1 Study area of Indo-Ganges River Basin.

III. WATER AND FOOD SECURITY OF INDUS RIVER BASIN



distribution (Fig. 9.2). The area of the Ganges and the Indus basins falling within the three
MODIS tiles (h24v06, h25v06, and h26v06; each tile is 1000 by 1000km) was chosen as the area
of study. The three tiles were mosaic tiles stacked into a single contiguous tile by running
batch scripts in ERDAS Imagine 8.6 (ERDAS, 2003) from which the areas in the Ganges
and Indus basins were delineated (Fig. 9.1). About 95% of the Ganges Basin (total area
95,111,154ha.) and 37% of the Indus Basin (116,113,290ha.) were covered by the three MODIS
tiles. The characteristics of the 7-band, 8-day intervalMODIS data of years 2001 and 2002 used
in this study are shown in Fig. 9.1 and Table 9.1.

The origin of the Ganges River Basin is a highly fertile glacier called Gangotri, which is
located in theHimalayans about 4267m above sea level. TheGanges River Basin encompasses
an area with a very high population density of about 530 persons per square kilometers, with
the river flowing through 29 cities with populations of more than 100,000, 23 cities with
populations between 50,000 and 100,000, and about 48 towns (Aitken, 1992; Ilich, 1996).

The source of the Indus River lies inWestern Tibet in theMount Kailas region at an altitude
of 5500ma.s.l. The Indus Basin comprises the Indus River, its five major left bank tributaries,
the Jhelum, Chenab, Ravi, Beas, and Sutlej Rivers, and one major right bank tributary,
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the Kabul (Khan, 1999). The catchments contain some of the largest glaciers in the world

FIG. 9.2 Spatial distribution of ground data in Indo-Ganges River Basin.
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TABLE 9.1 Total Geographical Area

Country

Total Geographical

Area (‘000ha)

Area Covered in Indo-

Ganges Region (‘000ha)

Percent of Indo-

Ganges Basin (%)

Bangladesh 14,804 4273 2.0

Bhutan 4365 1816 0.8

India 345,623 123,795 56.9

Nepal 16,210 14,762 6.8

Pakistan 89,167 53,916 24.8

Afghanistan 65,200 7270 3.3

China 9,596,960 11,868 5.5

Total 1,01,32,329 217,699

2079.3 DATA
outside the polar regions (Meadows, 1999). Only 37% of the total basin area is covered in this
study (Fig. 9.1), but much of this area covers the Punjab and Sindh regions, which are heavily

irrigated by the Indus River.
9.3 DATA

9.3.1 Satellite Data

The MODIS data we used for the Krishna River Basin is archived at the NASA-USGS
website (http://e4ftl01.cr.usgs.gov/MOLT/MOD13Q1.005). MODIS 2013–2014, recorded
every 16days (Table 9.2), and Terra sensor data were used for the present study. The format
has two specific bands (band 1, red; and band 2, near infrared) that are processed for land
applications as aMODIS vegetation index product (MOD13Q1).MOD13Q1 is computed from
MODIS level 5 bands 1–2 (centered at 648nm and 858nm).

MODIS imagery was used to map the spatial extent of land use/land cover for the years
2013–14 and 2015–16. The process began with rescaling 16-day NDVI images that were later
stacked into a single file data composite for each cropping year (Thenkabail et al., 2005;
Dheeravath et al., 2010; Gumma et al., 2011a, 2015b). MODIS 16-day composites were
converted into a NDVI monthly Maximum Value Composite (MVC) (NDVI MVC) using
Eq. (9.1) (Casanova et al., 1998), where MVCi is the monthly MVC of the ith month and i1
and i2 represent all the 16-day data in a month:

NDVIMVCi
¼ Max NDVIi1, , NDVIi2,ð Þ (9.1)
In the present study, monthly NDVI MVC images were used for classification and a NDVI
16-day data set was used for identifying and labeling land use/land cover classes, including
irrigated areas. The main reason for using MVC was to avoid noise (clouds) in some of the

areas (Gumma et al., 2014).
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TABLE 9.2 MODIS—250m Terra Vegetation Indexes 16-Day L5 Product Used in This Study

MODIS Data Sets Units

Band Width

nm/Range Potential Application

250m 16days NDVI NDVI �1 to +1 Vegetation conditions

250m 16days EVI EVI �1 to +1 Canopy structural variations

250m 16days red reflectance
(Band 1)

Reflectance 620–670 Absolute land cover transformation,
vegetation chlorophyll

250m 16days NIR reflectance
(Band 2)

Reflectance 841–876 Cloud amount, vegetation land cover
transformation

250m 16days blue reflectance
(Band 3)

Reflectance 459–479 Soil/vegetation differences

250m 16days MIR reflectance
(Band 7)

Reflectance 2105–2155 Cloud properties, land properties

208 9. INDO GANGES RIVER BASIN LAND USE LAND COVER
9.3.2 Ground Data

Ground data was collected in 2013 from September 13 to September 26 for 227 sample
points and in 2015 from September 21 through September 30 for 326 sample points covering
about 8000km of road travel in the Indo-Ganges Basin (Fig. 9.2). Ground data were collected
based on pre-classified output, Google Earth imagery, and trackingGPS attached to the image
processing software that captured ground survey information while in motion. Detailed in-
formation was collected for class identification and for labeling point locations. Point-specific
information was collected from 250m�250m plots and consisted of GPS locations, land use
categories, land cover percentages, cropping patterns during different seasons (through
farmer interviews), crop types, and watering methods (irrigated, rainfed). Samples were
obtained within large contiguous areas of a particular LULC. Landsat 8 products were used
as additional ground survey information in class identification. A stratified systematic sam-
ple design was adopted based on road network or footpath access. Where possible, a system-
atic location of sites was done every 5km or 10km along the road network by vehicle or by
foot (Thenkabail et al., 2004, 2005; Gumma et al., 2011e), which is detailed in a description of

the ground survey methodological approach.
9.3.3 Ideal Spectra Signatures

Ideal spectra signatures (Fig. 9.3) were generated using 16-day NDVI time-series compos-
ite and precise ground survey information that was also used for the class identification pro-
cess. Ideal spectral signatures were based on 204 unique, ideal samples available from field
data. This ground survey information was collected during 2013–14 that corresponded with
the 2013–14 MODIS data. Ninety-four other samples were of noncroplands. The 298 samples
were grouped according to their unique categories and groupedmajor rice systems as shown
in Fig. 9.3. The samples were chosen to generate ideal spectra signatures that refer to crop

intensity, crop type, and cropping systems. Each signature was generated with a group of
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similar samples. Take, for example, Fig. 9.3A, class 1: the “01. Irrigated-SC –rice in kharif –
fallow in rabi-fallow in summer (14)” signature defines irrigated croplands during the kharif
season followed by cropland fallows during the rabi season, and the cropland fallows during
the summer season. This signature was generated by 14 ground survey samples that were
smoothed. Overall, a total of 25 unique cropland classes that are either irrigated or rainfed
have differing cropping intensities (e.g., classes 1, 2, 6, 7, 8, and 10 are single crop; classes
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3, 4, and 9 are double crop; and class 5 is a triple crop), and distinct phenological cycles.
9.3.4 Mapping Land Use/Land Cover

An overview of the methods (Fig. 9.4) and details are described next. The process began
with mapping land use/land cover areas using MODIS 16-day time-series data with spectral

matching techniques and field-plot information.

FIG. 9.4 Flow chart describing the analysis process.
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MODIS 16-day time-series composite vegetation index images at 250m resolution were
obtained from June 1, 2013 to May 31, 2014 (MOD13Q1 data product). The MOD13Q1 data
set are available in the public domain and are pre-calibrated (http://modis-sr.1tdri.org/
html). The large scene size and daily overpass rate of MODIS make it attractive for mapping
large crop areas, and NDVI images derived fromMODIS have high fidelity with biophysical
parameters (Huete et al., 2002). The 16-day NDVI images were stacked into a 23-band file for
each crop year (two images per month). Monthly maximum value composites were created
using 16-day NDVI MODIS data to minimize cloud effects (Holben, 1986).

Unsupervised classification was used to generate initial classes. The unsupervised
ISOCLASS cluster algorithm (ISODATA in ERDAS Imagine 2016TM) that was run on the
NDVI-MVC generated an initial 100 classes, with a maximum of 100 iterations and a conver-
gence threshold of 0.99. Although ground survey data were available at the time of image
classification, unsupervised classification was used to capture the full range of NDVI over
a large area. Use of unsupervised techniques is recommended for large areas that cover a
wide and unknown range of vegetation types, and where landscape heterogeneity compli-
cates identification of homogeneous training sites (Cihlar, 2000; Biggs et al., 2006; Gumma
et al., 2011e). Identification of training sites is particularly problematic for small, heteroge-
neous irrigated areas.

Land use/land cover classes were identified based on NDVI temporal signatures along
with ground survey data. We observed crop growth stages and cropping patterns from tem-
poral signatures, such as (1) onset of cropping season (e.g., monsoon andwinter), (2) duration
of cropping season (e.g., monsoon and winter), (3) magnitude of crops during different sea-
sons and years (e.g., water-stressed and normal years), and (4) end of cropping season
(Gumma et al., 2011a,e).

The process of labeling class identification was done based on spectral matching tech-
niques (SMTs) (Thenkabail et al., 2007b; Gumma et al., 2016). Initially, 160 classes from the
unsupervised classification were grouped based on spectral similarity or closeness of class
signatures. Each group of classes was matched with ideal spectra signatures and ground sur-
vey data and assigned class names (Gumma et al., 2014, 2016). Classes with similar NDVI
time-series and land cover were merged into a single class, and classes showing significant
mixing, for example, continuous irrigated areas and forest, were masked and reclassified
using the same ISOCLASS algorithm. Some continuous irrigated areas mixed with forests
in the Western Ghats were separated using a 90m digital elevation model (DEM) from the
Shuttle Radar Topography Mission (SRTM) and an elevation threshold of 630m, Landsat im-
agery, and ground survey data through spatial modeling techniques such as overlay matrix,
recode, and proximity analysis (Tomlinson, 2003; Gumma et al., 2011d). This resulted in nine
classes of LULC. While class aggregation could have been performed statistically using a Eu-
clidean or other distance measure, we employed a user-intensive method that incorporates
both ground survey data and high-resolution imagery in order to avoid lumping classes that
might be spectrally similar but have distinct land cover. The NDVI of some classes differed in
only one or 2 months, which would cause the classes to be merged if an automated similarity
index were used.

Classification was done at 250m spatial resolution. In the present study area, average land
holding size is less than a pixel and there are different land use/land cover classes with

2119.3 DATA
250m�250m pixel (6.25ha). Full pixel areas are not an accurate representation of actual
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cropland areas. The cropland fraction was calculated using the methodology described in
(Thenkabail et al., 2007b; Gumma et al., 2011a,d, 2015a). Subpixel areas were important when
a particular pixel was named as cropland but also contained other land use/land cover clas-
ses (grasses, trees, shrubs, etc.).

Ground data points were used to assess the accuracy of the classification results, based on a
standard procedure ( Jensen, 1996; Congalton andGreen, 1999, 2008), to generate an error ma-
trix and accuracy measures for each land use/land cover map. Error matrices and Eq. (9.2)
(Farr and Kobrick, 2000) “Cohen’s kappa coefficient (κ)” are commonly used for accuracy as-
sessment. For example, these are useful when building models that predict discrete classes or
when classifying imagery. κ can be used as a measure of agreement between model predic-
tions and reality (Congalton, 1991a) or to determine if the values contained in an error matrix
represent a result significantly better than random ( Jensen, 1996). κ is computed as

κ¼
N
Xr

i¼1

xii�
Xr

i¼1

xi+� x+ið Þ

N2�
Xr

i¼1

xi+�x+ið Þ
(9.2)
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where N is the total number of sites in the matrix, r is the number of rows in the matrix, xii is
the number in row i and column i, x+ i is the total for row i, and xi+ is the total for column i

( Jensen, 1996).
9.3.5 Matching Class Spectra With Ideal Spectra to Group Classes Using Spectral
Matching Techniques (SMTs)

The initial 160 unsupervised classes (called class spectra) were arranged into a number of
groups based on quantitative spectral matching techniques (Homayouni and Roux, 2003;
Thenkabail et al., 2007a,b). Fig. 9.3 shows the grouping of some of these classes. This
homogeneous class was then matched with ideal spectra (see Fig. 9.3) for preliminary class
identification and labeling. Additional verification was conducted using ground data, and
high-resolution imagery fromGoogle Earth and GeoCover by overlayingminor (e.g., district)
administrative boundaries in the Google Earth application. Mixed classes remained because
of the large extent and diverse land use of small holdings. To resolve these mixed classes we
used various other sources, such as irrigation command area boundaries, rainfall, district-
level statistics, and high-resolution imagery using spatial modeling (Gumma et al., 2014).
Some classes did not resolve conclusively, even after using ground survey information
and other information previously mentioned. These classes were then subset, reclassified,
and reanalyzed following the preceding protocols (Thenkabail et al., 2007b; Gumma et al.,
2011a, 2014).

Fig. 9.5 illustrates the group of croplands in kharif-croplands in rabi-fallow in summer clas-
ses, which was matched with class 4 (see Fig. 9.2) in ideal spectra signatures. Initially classes
were grouped based on decision tree algorithms and spectral similarity. This group of classes

was then matched with ideal spectra (Fig. 9.5C) for preliminary class identification and
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labeling. Additional verification was conducted using ground survey information data, and
high-resolution imagery fromGoogle Earth and GeoCover by overlayingminor (e.g., district)
administrative boundaries in the Google Earth application. In Fig. 9.5 initially 14 classes were
grouped through decision tree algorithm, and finally 21 classes were closely correlation with

2139.3 DATA
ideal spectra class 4.
9.3.6 Subpixel Area Calculations

Full pixel areas (FPAs) are not correct representations of actual areas. For example, in each
cropland class there are often thousands or millions of pixels. The proportion of area cropped
in each of these thousands or millions of pixels varies significantly, even in a single cropland
class. This situation results, for example, if we map all pixels with 50% or more covered in
maize crops, because in a maize class, there will be pixels in which the maize proportion
varies between 50% and 100%. So to get actual areas, the FPAs need to be multiplied by
the cropland area fraction (CAF). The CAF will depend on the percentage of area in a pixel
that actually belongs to a class. In the case of the previously discussed maize crop class, the
CAF will vary between 0.5 and 1.0. Therefore the FPAs with CAFs of 0.5 will be multiplied by
0.5, FPAs with CAFs of 0.55 will be multiplied by 0.55, and so on. Overall, the actual areas are
equivalent to the subpixel areas (SPAs), as shown in previous well-established studies
(Thenkabailc et al., 2007). That is, each pixel in each class is assessed for its actual area as
follows:

SPAs or actual areas¼ FPAs∗CAFs
Extensive details of this methodology are explained in (Thenkabailc et al., 2007). SPAs or
actual area calculations gain greater significance as pixel sizes become coarser. In the present
study the MOD13Q1 pixel cover is 250m per side, and its area is 6.25ha. So for a pixel for an
area only 50% cropped, a FPA-based area calculation per pixel will be 6.25ha, whereas the
SPA or actual area will be 3.125ha (6.25ha * 0.5). Thus unless we calculate areas based on

SPA, there will be huge discrepancies in actual areas.
9.3.7 Accuracy Assessments

Accuracy assessment was based on a total of 346 independent ground samplings, as de-
scribed in Section 9.3.2. These data points were not used in class identification and labeling.
The accuracy of the classification results, based on ( Jensen, 2004), were used to generate an
error matrix and accuracy measures for final classification. The columns (x-axis) of an error
matrix contain the ground survey data points, and the rows (y-axis) represent the results of
the classified rice maps (Congalton, 1991b). The error matrix is a multidimensional table in
which the cells contain changes from one class to another. The statistical approach of accuracy
assessment consists of differentmultivariate statistical analyses. A frequently usedmeasure is
the Kappa measurement system, which is designed to compare results from different regions

or different classifications.
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9.4 RESULTS AND DISCUSSIONS

9.4.1 Spatial Distribution of Croplands in Indo-Ganges Basin

The objectives of this study and based on the methods described in above sections, distinct
cropland classes of Indo-Ganges basin.

• Identify crop type\dominance in different seasons with a focus on major croplands,
including source of irrigation.

• Establish the season in which croplands are cultivated and also establish the season in
which croplands are fallow.

Using the preceding focus, we identified and labeled cropland classes in the Indo-Ganges
Basin (see Fig. 9.4) based on the methods and approaches discussed throughout Section 9.2.
Fig. 9.5 shows the spatial distribution of all the cropland areas in the Indo-Ganges Basin with
19 distinct cropland classes and two other land cover\land use (LCLU); their statistics are
provided in Table 9.3.

A total of 21 LULC classes (Fig. 9.6 and Table 9.3) were mapped, showing clear spectral
separateability on one or more single dates, and/or one or more multiple dates, and/or over
a near-continuous time interval (Thenkabail et al., 2005). The total study area in the Ganges
and Indus basins was 216Mha (Table 9.3), of which there was a high degree of irrigation (see
classes 1 through 9 in Fig. 9.6 and Table 9.3).

The LULC name or label was based on the predominance of a particular land cover. For
example, the name for class 01 is “Irrigated-SW/GW-DC-rice-wheat.” The land cover
(Thenkabailc et al.) of this class was dominated by rice-wheat (rice during the kharif season
andwheat during the rabi season), and the total area of the classwas 18.8Mha,with 90% of the
area covered by croplands, 4% by other LULC, 3% by grasses, and 1% by shrubs. The rice area
was predominant in Punjab and Haryana during kharif, and wheat was a winter crop. Class
10 was labeled “Rainfed-DC-rice-fallows-jute/rice/mixed crops” since this was an intensely
cropped area class that is heavily dependent on rain. At the time of this ground data, 94% of
class 10 had cropland that grew rice during the kharif and rabi seasons, with the rest as fol-
lows: 3% comprising trees, 1% comprising shrubs, 1% comprising grasses, and 1% comprising
water bodies. Since we had several different types of ground data (e.g., cover percentages,
digital photos, observations marked on maps and images), we were able to label classes with
as close a match with reality as possible, leading to a final set of 21 LULC classes (Fig. 9.6 and
Table 9.3).

The FPA of croplands in the Indo-Ganges Basin was 210,482,000ha, with 175,670,700 (or
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90%) being SPAs during kharif.
9.4.2 Spatial Distribution of Irrigated and Rainfed Croplands in the
Indo-Ganges Basin

A total area of 114 Mha (FPA) was estimated in the Indus Basin, including all three major
classes (i.e., irrigated croplands, rainfed croplands and other LULCs); and a total area of 102
Mha (FPA) was estimated in the Ganges Basin, including trees, shrubs, grass, water bodies,

and other LULC classes (Table 9.4). After excluding the area covered by trees, shrubs, grass,
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FIG. 9.6 Spatial distribution of croplands and their characteristics in the Indo-Ganges River Basin. The 21 classes
show cropland classes that have single or double or triple cropping andwhere rice or other crops dominate. The clas-
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water bodies, and other LULC classes, in all three major classes, a total area of 28.4 Mha was
estimated (i.e., all the area covered by croplands in the Indus Basin and 56.6 Mha in the
Ganges Basin).

A total area of 19.9 Mha (FPA) in the Indus Basin and a total area of 48.5 Mha (FPA) in the
Ganges Basin was estimated with 310 samples, in which trees comprised 2%, shrubs com-
prised 1%, grass comprised 2%, water bodies comprised 0%, other LULC classes comprised
2%, and cropland comprised 93%. Excluding tree, shrubs, grass, water bodies, and other
LULC classes, the exact area of irrigated croplands was 18.4 Mha in the Indus Basin and
44.7 Mha in the Ganges Basin (Table 9.4).

A total area of 11.7 Mha (FPA) in the Indus Basin and a total area of 13.4 Mha (FPA) in the

ses also show seasonality of cropping and when croplands are left fallow.
Ganges Basin was estimated with 406 samples, in which trees comprised 2%, shrubs
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comprised 6%, grass comprised 3%, water bodies comprised 1%, other LULC classes com-
prised 2%, and cropland comprised 86%. Excluding trees, shrubs, grass, water bodies, and
other LULC classes, the exact area of rainfed croplands in the Indus Basin was 9.98 Mha
and 11.9 Mha in the Ganges Basin.

A total area of 82.5 Mha (FPA) in the Indus Basin and a total area of 40.2Mha (FPA) in the
Ganges Basin was estimated with 129 samples, in which trees comprised 27%, shrubs com-
prised 20%, grass comprised 19%, water bodies comprised 5%, other LULC classes comprise
d16%, and cropland comprised 13%. Excluding tree, shrubs, grass, water bodies, and other
LULC classes, the exact area of croplands occurring in other LULC classes was 10.6 Mha
in the Indus Basin and 5.2 Mha in the Ganges Basin.

An accuracy assessment was done for the final LULCmap in the Indo-Ganges River Basin,
and three classes were classified using ground points. A total of 209 samples, comprising 101
and 36 columns, were classed as irrigated croplands, rainfed croplands, and noncroplands
(other LULCs). Based on 346 reference totals and 346 classified totals, a total of 317 correct
pixels occurred in classification, with an overall classification accuracy of 91.62%; thus an
overall kappa Statistics assessment was done with 0.84 accuracy.

A total of 218 pixels were classified for the irrigated croplands class, in which 200 pixels
were classified as irrigated croplands, 13 pixels were classified as rainfed croplands, and 5
pixels were classified as noncroplands (other LULCs), with an overall reference total of
209 pixels. A total of 200 pixels were correctly classified for irrigated croplands, with a pro-
ducer’s accuracy of 95% and a user’s accuracy of 92% and an overall kappa coefficient of 79%.

A total of 93 pixels were classified for the rainfed croplands class, in which 7 pixels were
classified as irrigated croplands, 86 pixels as rainfed croplands, and zero pixels as
noncroplands (other LULCs), with an overall reference total of 101 pixels. A total of 86 pixels
were correctly classified for rain-fed croplands, with 85% producer’s accuracy and 92% user’s
accuracy and an overall kappa coefficient of 89%.

A total of 36 pixels were classified for the noncroplands (other LULCs) class, in which 2
pixels were classified as irrigated croplands, 2 pixels as rainfed croplands, and 31 pixels as
noncroplands (other LULCs), with an overall reference total of 36 pixels. A total of 31 pixels
were correctly classified for noncroplands (other LULCs), with 86% producer’s accuracy and

220 9. INDO GANGES RIVER BASIN LAND USE LAND COVER
89% user’s accuracy and an overall kappa coefficient of 87%.
9.4.3 Class Signatures and Onset-Peak-Senescence-Duration of Crops

The class signatures of NDVI (CS-NDVI) are unique spectral properties of a class that can
be mapped using NDVI time-series data of a class (see Fig. 9.5A). It is not possible to have
spectral signatures when single-date images or images with a few dates are used, as is often
the case with LULC studies. Since near-continuous MODIS data were used in this study, a
unique set of LULC class signatures were possible (see Fig. 9.3) for classes mapped in Fig. 9.6.

The threshold NDVIs and NDVI signatures over time help us determine (see Table 9.3 and
Figs. 9.6 and 9.7) (1) onset of a cropping seasons (e.g., kharif and rabi), (2) duration of the
cropping seasons (e.g., for kharif and rabi), (3) magnitude of the crops during different seasons
and years (e.g., drought versus normal years), and (4) end of cropping season (senescence).

In order to illustrate these possibilities, the MODIS CS-NDVI signatures are presented and
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FIG. 9.7 Spatial distribution of irrigated and rainfed croplands in Indo-Ganges River Basin.

2219.4 RESULTS AND DISCUSSIONS
discussed for a set of distinct classes (Fig. 9.3) and thematically similar classes (see Fig. 9.5A).
The NDVI of irrigated classes never falls below 0.7 on the peak growth stage during the kharif

season (see Fig. 5A).
9.4.4 Accuracies and Errors

Accuracy assessmentwas performed on two independent classification products as shown
in Figs. 9.6 and 9.7. Accuracies of the classes were established based on 346 ground sample
data (see Tables 9.5 and 9.6), which provided an overall accuracy of 71% with a kappa coef-
ficient of 0.73. The user’s and producer’s accuracies of most classes were above 80%. Even

when they were somewhat lower, the class mix was mainly among cropland classes.
9.4.5 Comparison With District Wise Cropland Statistics

Fig. 9.6 illustrates the spatial extent of rice-wheat growing areas (see also Table 9.6) derived
from MOD13Q1 time-series data with spectral matching techniques. To assess how well the
spatial extent of rice-wheat (rice during kharif, wheat during rabi) were estimated, we corre-
lated district wise statistics of rice areas obtained from national statistics, resulting in a R2

value of 0.84.
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9.4.6 Discussion of Methods

Mapping cropland areas is useful for understanding and determining options for produc-
ing more food, which is critical for ensuring global food security. Greater food production for
a growing population requires more land. Since cropland expansion is not feasible and has
costly environmental and ecological impacts (Tilman, 1999; Tilman et al., 2002; Thenkabail
et al., 2012; Kuemmerle et al., 2013), cropland intensification by cultivating existing fallow
croplands is a possible option. This study investigated the Indo-Ganges Basin extensively
using MODIS 250m NDVI time-series data to arrive at cropland classes (see Fig. 9.6) from
which two cropland classes (irrigated croplands and rainfed croplands) (see Fig. 9.7) were
identified, with a total cropland area of about 84 Mha (see Table 9.2 and Fig. 9.6) as fallow
cropland during the rabi season.

The present research used MOD13Q1.5 temporal data to identify major croplands and ir-
rigated areas across the Indo-Ganges Basin. MODIS captures imagery on a daily basis. The
16-day composites from the daily acquisitions combine to make a time-series data set over
a crop year or a calendar year. This type of data set provides temporal profiles of crop-
growing locations to identify the start of a season, the peak growth stage, and the harvest date
during each season. The value of NDVI as a function of time also helps in identifying the type
of crop in an eco-region based on certain peak thresholds for that crop. This study applied a
spectral matching technique that is found to be ideal in mapping irrigated areas (Thenkabail
et al., 2007a) and mapping rice areas (Gumma et al., 2011a). Mapping the spatial distribution
of rice fallows using a MODIS 250m 16-day time-series and ground survey information with
spectral matching techniques represents a significant, new advancement in the use of this
technology. The advantage of using a spectral matching technique in this study is that we
were able to selectively use the ideal spectral profiles of rice during the rainy season. The
rainfed rice spectral class varies from 0.25 to 0.70 for purely rainfed rice and 0.25 to 0.85
for irrigated rice during the rainy season. The qualitative (shape) difference between ideal
spectra and class spectra is narrow and represents the fallow lands accurately.

Some discrepancies were also found during the comparison between national statistics and
MODIS-derived cropland areas. The mismatch occurred in the eastern part of India, where
there was misclassification with irrigated areas due to similar growing conditions during
the cropping season.Most of these areas were corrected using rainfall data and spatial model-
ing techniques.

Cropped area fractions (the proportion of an irrigated/rice area in a pixel) were assigned
based on land use proportions in each class to better calibrate theMODIS pixel area to the real
irrigated/rice area. Also, this method relies on ground survey information that is a truly rep-
resentative sample of the fragmented rice systems. Higher resolution imagery could be used
to provide a more accurate estimate of pure classes, but wall-to-wall coverage, repeat cover-
age during a crop’s growing period, costs, andmassive processing are all major issues that are
hard to surmount for areas as large as the Indo-Ganges Basin. Results clearly show that pre-
sent methods and MODIS time-series data have many advantages, such as capturing a large-
scale cropping pattern. But to minimize errors, additional research will be needed using
multi-sensor images with advanced fusion techniques (Gumma et al., 2011c).

The areas of the Indo-GangesBasinwhere ricepredominates are usually located in zones that
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Following the rice season, enough soil moisture may remain to facilitate the growth of short-
duration crops. While an important reason for fallowing these lands is the scarcity of water
during the rabi season, short-season crops and especially legumes, which can biologically fix
N, have a higher chance of success. Accurate up-to-date spatial distribution of rice fallows
andstatisticsare important toguidebreeders,agronomists, andpolicymakers towardpromoting
short-duration crops in this region. Research is required to provide information on systems’
aspects, such as the amount of water available for soil, the incidence of unseasonal rainfall,
and other agronomic factors.

Cropping systems were mapped in the Indo-Ganges Basin for the years 2013–14, account-
ing for a total area of 85Mha. The source of water and the crop intensity were also considered
in the classification of the land cover. The net irrigated cropland area derived from MODIS
was 63 Mha (18.3 Mha in the Indus River Basin and 44.7 Mha in the Ganges River Basin), and
the rainfed cropland area was 21.9Mha (10Mha in the Indus River Basin and 11.9 Mha in the
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Ganges River Basin).
9.5 CONCLUSIONS

This study espoused a vegetation phenological approach using MODIS 250m time-series
data tomap agriculture croplands in the Indo-Ganges River Basin. Annual averageNDVI and
timing of onset of greenness allowed separation of groundwater from surface water. The spe-
cific land use categories separated were as follows. The time-series NDVI phenological sig-
natures were distinctly different in the Indo-Ganges Basin in terms of (1) spatial distribution
of major croplands, (2) use of surface water for irrigation of continuous crops, and (3) use of
groundwater to irrigate crops. Overall, 19 cropland classes, rice fallows 2.3Mha (see Fig. 9.6
and Table 9.2) of subpixel areas (SPAs) or actual areas during kharif. The overall accuracy of
cropland mapping was 73% with a kappa coefficient of 0.71%. The irrigated versus rainfed
croplands (with rice as kharif crop) showed producer’s accuracies between 96% and 85%

and a user’s accuracy of 92%.
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