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ABSTRACT
The available forecasting models for growth pattern in fish are based on either classical approach or a particular growth 
model. In the present study, reparamerisation methodologies  were attempted for forecasting growth of fish cultured in 
cemented ponds of plain areas. Forecasting methodology is not readily available for any other types of ponds  for uplands of 
India. So, other appropriate growth curves (Logistic, Gompertz and von-Bertalanffy) were considered while developing the 
most suitable model for forecasting fish (common carp Cyprinus carpio var communis and silver carp Hypophthalmichthys 
molitrix) production from cemented ponds. Gompertz-1 and Logistic-1 models gave the best fit  as well as  fish yield 
forecasting, two months ahead from various ponds.
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Aquaculture encourages conserving the water, 
indigenous biodiversity of aquatic plants and animals. 
It also generates employment and serves as an alternate 
source of income generation especially in hilly region. 
Moreover, fish is the cheapest source of animal protein 
available today and people are more aware of the presence 
of omega-3 fatty acids which helps in prevention of 
cardiac diseases. In fact, fish and fishery related activity 
has increased many fold in the recent past as the demand 
on fish biomass has risen significantly. A good number of 
aquaculture practices and packages  have been developed 
by many researchers which normally offer benefits to 
the fish farmers. However, forecasting of fish growth/
production in culture systems has not been taken seriously 
so far.

This important task has not been seriously taken into 
consideration in the uplands although a little work has been 
done for plains of India. The available methodology for 
forecasting fish production from ponds is based on either 
the classical assumptions or a particular growth model. 
While developing such types of forecasting models, the 
importance of close-to-linear behaviour of parameters 
and the high correlation among the estimated parameters 
were never highlighted. The above circumstances are 
encountered in most of the practical situations with a 
variety of consequences. The well-known solution to 
above issue is the reparameterisation of those parameters 
of the model. Reparameterisation by expected-value 
parameters is most widely used. However, the concept of 

reparameterisation is rarely employed in forecasting fish 
production. Sigmoid curves (Logistic, Gompertz and von-
Bertalanffy) are frequently used in biology, agriculture and 
economy to describe growth. Such curves begin at certain 
point and increase their rate of growth in monotonic form 
until reaching an inflexion point, after which the growth 
rate decreases and the function approaches an asymptotic 
value. 

The growth data of a sample of size of 30 per each 
pond type comprising of 10 fish from fish group (common 
carp Cyprinus carpio var communis and silver carp 
Hypophthalmichthys molitrix) was randomly selected and 
data in terms of length and weight of fish was regularly 
observed for every month during March 2009 to February 
2010. The average weight of each fish species recorded 
(10 individuals per each type of pond), at monthly intervals 
was utilised for the present study and thus there were 12 
average data points. The first ten data points were used for 
developing the model and the rest two points were kept 
for model validation purposes. The SAS 9.3 version was 
extensively used for all analyses.

Following nonlinear growth models will provide 
a reasonable representation of average fish size (say, 
weight), Wt at time t whose model function is of the form 
Wt = f(t,β)+ɛt:

Logistic model:

							     
		                                                      (1)Wt = 

β1

1+β2 exp(-β3t)
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Gompertz model:

Wt = β1 exp[-β2 exp(- β3t)]                             (2)

Von-Bertalanffy model:

				                        (3)

where β1 , β2 and β3  are the parameters to be estimated. 
The parameter β1 represents the limiting growth value or 
asymptotic size, β2 the scaling parameter and β3 the rate 
of maturity. For the above growth models, expected-value 
parameters cannot be obtained for the Gompertz model 
as parameters β2 and β3  cannot be eliminated, while β3 
cannot be eliminated from Logistic model. 

β2 is likely to be an offensive parameter say, in 
equation (1), it can be partially reparameterised by 
expected-value parameter. The parameter which shows 
nonlinear behaviour or likely responsible for high 
correlation among the estimated parameters is known 
as ‘offensive parameter’. To obtain an expected-value 
parameter from above equation (1), we need to choose 
value t2 of the regressor variable t, within the observed 
range of t. Then, the expected value can be estimated from 
equation (1) as follows:

	

	

Solving this equation for the parameter ‘β2’, we get,

				  

Substituting back into the original equation (1), we get,

						    
	

                                                                               (4)

The above model is expected to eliminate both the 
nonlinear behaviour of parameters and high correlation 
among the estimated parameters. Here, the likely offensive 
parameter ‘β2’ is reparameterised by expected-value 
parameter while the other parameters are not changed. The 
form of the partial reparameterisation of the logistic model 
given by equation (4) is referred to as ‘logistic-I’ in the 
subsequent discussions.

Similarly, β1 is likely to be an offensive parameter 
say, in equation (2), it can be partially reparameterised by 
expected-value parameter. As β1  represents the asymptotic 
size, which is more important parameter as compared 
to the scale parameter β2, which is not a naturally stable 
parameter. To obtain an expected-value parameter from 
above equation (2), we need to choose value t1 of the 

regressor variable  t , within the observed range of t. Then, 
we get the expected value from equation (2) as follows: 
Wt = β1 exp[-β2 exp(- β3t)] 

Solving this equation for the parameter ‘β1’, we get,

					   

Substituting back into the original equation (2), we get

							     
                                                                             (5)

The above model (5) is proposed to mitigate 
both the nonlinear behaviour of parameters and high 
correlation among the estimated parameters. The form 
of the partial reparameterisation of the Gompertz model 
given by equation (5) is referred to as ‘Gompertz-1’ in the 
subsequent discussions.

As we are dealing with time-series data, it is, 
therefore, required to check for the validity of the above 
model by examining the independency assumption of 
error term. The Durbin-Watson test has been employed for 
the said purpose and is based on the assumption that the 
errors (ɛt’s) follow autoregressive of order one. To handle 
a situation when there is an evidence for the presence of 
autocorrelation, an autoregressive (AR) error term ɛt of 
order one may be added to the right hand side of above 
equations: ɛt = Φɛt-1 +ut; |Φ|<1,		            

where ut  are independently and normally distributed 
with zero mean and constant variance and  Φ denotes the 
autoregressive parameter. Incorporating an AR(1) additive 
error structure, the above ‘logistic-I’ model will become:

				  

                                                                          (6)

The above equation (6) will be referred as ‘logistic-II’ 
in the subsequent discussions.

When the form of the heteroscedasticity is 
unknown, we can apply the White test. Most tests for 
heteroscedasticity specify some functional form relating 
the error term to a set of explanatory variables in a 
particular way. The first step is to estimate the regression 
model using ordinary least square (OLS) method. 
Secondly, we obtain the residuals from the OLS regression 
model. We then obtain the statistic n x R2 from an auxiliary 
regression of the residuals on the Z-variables (i.e., the 
subset of the X-variables are involved), the squares, and 
the cross-products. The White test is implicitly based on 
a comparison of the sample variance of the least square 
estimators under homoscedasticity and heteroscedasticity. 
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3
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The Durbin-Watson test is based on the assumption 
that the errors follow AR(1) and the test statistic ‘d’ is 
defined as:

		   			 

The statistic ‘d’ value ranges between 0 and 4. 
Value of ‘d’ near 2 indicates little autocorrelation; a value 
towards 0 indicates positive autocorrelation, while a value 
towards 4 indicates negative autocorrelation.

To examine model performance, a measure of how 
the predicted and observed variables cover in time is 
needed. Thus, the coefficient of determination, R2 is 
generally used. 			 

                                 

Further, it is desirable to use some other summary 
statistics like root mean square error (RMSE) and mean 
absolute error (MAE):

                                   and                                          

where, Wt = predicted fish weight of tth observation; 
W = average fish weight; 	  n = number of observations 
and t = 1,2,...,n. The better model will have the least 
values of RMSE and MAE while larger value of R2 
is expected for the same. It is, further, recommended 
for residual analysis to check the model assumptions 
such as independence or the randomness assumption of 
the residuals and the normality assumption. To test the 
independence assumption of residuals, run test procedure 
has been used. However, the normality assumption is not 
so stringent for selecting nonlinear models because their 
residuals may not follow normal distribution.

Bates and Watts (1980,1988) proposed measures to 
assess the adequacy of the linear Taylor approximation of 
the regression function using two measures of nonlinearity, 
the maximum intrinsic curvature (IN) and the maximum 
parameter-effects curvature (PE).

We can use Hougaard’s measure of skewness, gt, to 
assess whether a parameter is close to linear or whether it 
contains considerable nonlinearity. Hougaard’s measure is 
computed as follows:

E  βt - E(βt)  = - (MSE)2      Lij Ljk Lil (Wjkl + Wkjl + Wlkj)

Moreover, the bias of Box reveals which parameters 
are responsible for the nonlinear behaviour. The bias of 
Box is calculated in multivariate form as given by Cook 
et al. (1986):

Bias = (D2T D2)-1 (D2T H2)

where D2 is the nxp first derivative matrix; 
H2 = -1σ2trac{(D2TD2)-1 F2i}, the expected difference 
between the quadratic and linear components of the Taylor 
approximation and F2x, t = 1,2,...,n are pxp faces of the 
second derivative matrix. 

          
ˆHere, β is the estimated parameter. Ratkowsky (1983, 

1990) suggested using an absolute value of greater than 
1% as an indicator of nonlinear behaviour.	

Validation of the forecast models, developed through 
above approaches was done on the basis of RMSE and 
MAE.

The average growth data in terms of weight (kg) of 
common carp and silver carp obtained from cemented 
ponds were analysed and the basic statistics of the datasets 
are presented in Table 1. Nonlinear models were fitted to 
the above growth datasets. von-Bertalanffy model failed to 
give optimum solution irrespective of the fish species. The 
summary statistics for fitting of other models for common 
carp and silver carp are presented in Table 2a and b, Mutual 
correlations among the estimated parameters for common 
carp from cemented ponds are also presented in Table 3a 
and b respectively. Gompertz model is found to be the 
best fitted model based on the above criteria for common 
carp, however, Logistic model was found appropriate for 
silver carp. The best models identified above are retained 
for detailed analysis as explained above. The residual 
analyses showed that the randomness assumption and 
normality assumption are fulfilled. Further, White’s test 
p-value lies between 0.27-0.29 which  indicated that 
the assumption of homoscedastic error structure is not 
violated. Durbin-Watson test statistics for common carp 
is 2.84. But, Breusch-Godfrey’s serial correlation test 
p-values of 0.11 and 0.28 for order one respectively for 
common carp showed that the presence of autocorrelation 
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R2 = 1- 

n

t=1
Σ (Wt - Wt)

2

n

t=1
Σ (Wt - Wt)

2

RMSE =
n

t=1
Σ (Wt - Wt)

2 /n
1/2

MAE =
n

t=1
Σ |(Wt - Wt)|

 /n

ˆ ˆ
np

jkl
Σ

ˆ% Bias =            x 100  Bias
  β

Table 1.	Basic information of the datasets obtained from 
cemented ponds

Variable n Minimum Maximum Mean Standard 
deviation

Common carp
Weight  (g) 12 19.40 135.10 93.89 39.36

Silver carp
Weight  (g) 12 3.50 162.90 77.68 64.10
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Table  2a.	Summary statistics of fitted models for common carp from cemented ponds
Logistic Gompertz Gompertz-I

A) Parameter estimation

β1 (or, W1) 134.20 (4.17) 144.20 (5.36) 125.40 (1.65)
β2 4.27 (0.42) 1.85 (0.08) 1.85 (0.08)
β3 0.51 (0.04) 0.32 (0.03) 0.32 (0.03)

B) Hougaard’s Skewness & Box’s % Bias

β1 (or, W1) 0.41 & 0.25 0.49 & 0.32 0.032 & 0.051
β2 0.46 & 1.17 0.25 & 0.39 0.25 & 0.39
β3 0.15 & 0.35 0.09 & 0.22 0.09 & 0.22

C) Curvature effects
RMS IN Curvature 0.05 0.03 0.03
RMS PE Curvature 0.36 0.51 0.16
Critical Value 0.48 0.48 0.48
D) Goodness of fit 
RMSE 3.69 3.02 3.02
MAE 2.64 1.94 1.94
E) Residual analysis
Run test �|Z| value 0.041 1.01 1.01
Shapiro-Wilk’s test p-value 0.81 0.78 0.78
1D-W test statistic - 2.84 2.84
2B-G test p-value - 0.11 0.11
White’s test p-value - 0.27 0.27
1Durbin-Watson test statistic value, 2Breusch-Godfrey’s serial correlation test p-value for order one

Table 2b. Summary statistics of fitted models for silver carp from cemented ponds
Logistic Logistic-I Logistic-II Gompertz

A) Parameter estimation
β1 174.20 (4.23) 174.20 (4.23) 169.70 (4.77) 198.20 (16.08)
β2 (or, W2) 64.94 (13.48) 133.70 (2.11) 134.80 (2.14) 7.38 (1.68)
β3 0.67 (0.04) 0.67 (0.58) 0.72 (0.05) 0.36 (0.05)
□ - - 0.65 (0.47) -
B) Hougaard’s skewness & Box’s % bias
β1 0.24 & 0.11 0.24 & 0.11 0.23 & 0.13 0.84 & 1.07
β2 (or, W2) 0.86 & 3.32 0.01 & 0.053 0.025 & 0.022 1.24 & 5.21
β3 0.19 & 0.28 0.19 & 0.28 0.35 & 0.52 0.32 & 1.21
□ - - 0.07 & 0.50 -
C) Curvature effects
RMS IN Curvature 0.05 0.05 0.06 0.12
RMS PE Curvature 0.72 0.25 0.40 0.99
Critical value 0.48 0.48 0.49 0.48
D) Goodness of Fit 
RMSE 3.87 3.87 3.67 7.25
MAE 2.99 2.99 2.81 5.79
E) Residual analysis
Run test |Z|  Value 0.84 0.84 0.21 1.27
Shapiro-Wilk’s Test p-value 0.18 0.18 0.53 0.09
1D-W Test Statistic 1.23 1.23 1.99 -
2B-G Test p-value 0.03 0.03 0.83 -
White’s Test p-value 0.29 0.29 0.36 -
1Durbin-Watson test statistic value, 2Breusch-Godfrey’s serial correlation test p-value for order one
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is not significant. However, Durbin-Watson test statistic 
and the Breusch-Godfrey’s serial correlation test p-value 
for order one  are respectively 1.23 and 0.03 for silver 
carp, which indicates the presence of autocorrelation.

As Hougaard’s skewness values are less than unity 
and we can say that parameters do not show any extreme 
nonlinear behaviour for common carp and silver carp. 
However, RMS PE curvature of Bates and Watts (1980) is 
greater than the corresponding critical value irrespective 
of the fish species and it may not be acceptable. Moreover, 
the correlations among the estimated parameters are also 
extremely high in some cases. To rectify the above problems 
of high correlation among the estimated parameters 
and nonlinear behaviour of the parameters, partially 
reparameterised versions were attempted. The Gompertz 
model was considered for common carp in which the 
parameter β1 was taken as an offensive parameter, given in 
equation (5) and it is referred as ‘Gompertz-I’. Similarly, 
logistic model was considered for silver carp and the 
parameter β2 was taken as an offensive parameter, given 

in equation (4) and it is referred as ‘logistic-I’. Further, the 
presence of autocorrelation was detected in case of silver 
carp data and thus the model ‘logistic-I’ was modified 
by incorporating the AR(1) error structure provided by 
equation (6) and it is referred to as ‘logistic-II’.

A value of t1=8 was chosen and the corresponding 
value of W1=124.8 for common carp was taken as  
initial values for computation of the final estimate of the 
parameter W1, which provided the best result in terms of 
least correlation coefficient. However, a value of t2=8 
and the corresponding value of W2=134.7 for silver carp 
was chosen in the similar fashion. The reparameterised 
model was refitted to the datasets and the results are again 
presented. Further improvements in Hougaard’s skewness 
and Box’s % bias are also seen in these refitted models. 
Moreover, the high correlations among the estimated 
parameters are almost eliminated except with β2 in 
some cases. As the scale parameter β2 is not a naturally 
stable parameter, we do not expect to eliminate this 
correlation. In case of silver carp data, the presence of 
positive autocorrelation was suspected as Durbin-Watson 
statistic was 1.23. Thus, logistic-II model was refitted and 
the summary statistics are presented in Table 2b. Also, 
residual analyses showed that the randomness assumption 
and normality assumption are fulfilled. Durbin-Watson 
test statistic (1.99) which is nearly close to 2 and we can 
say that presence of autocorrelation is negligible. Further, 
this is supported by the results of Breusch-Godfrey’s 
serial correlation test p-value 0.83 for order one. Further, 
White’s test p-value 0.36 showed that the assumption 
of homoscedastic error structure is not violated. Further 
improvements in other statistics like RMSE, MAE, 
Hougaard’s skewness and Box’s % bias are also seen. 
The correlations among the estimated parameters are not 
showing any extreme. The graphs of fitted model along 
with observed fish weight are also depicted in Figs. 1 
and 2 which show the appropriateness of the proposed 
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Fig. 1. Actual and predicted weights of common carp (g) from 
cemented ponds provided by different models

Fig. 2.	Actual and predicted weights of silver carp (g) from 
cemented ponds provided by different models
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Table 3a. Mutual correlations among the estimated parameters 
for common carp from cemented ponds

Correlation coefficient Logistic Gompertz Gompertz-I

rβ12(or, rW1β2) -0.19 -0.19 0.22
rβ13(or, rW1β2) -0.80 -0.91 -0.40
rβ23 0.65 0.50 0.50

Table 3b. Mutual correlations among the estimated parameters 
for silver carp from cemented ponds

Correlation 
coefficient

Logistic Logistic-I Logistic-II Gompertz

rβ12(or, rβ2 W2) -0.56 -0.26 -0.37 -0.77

rβ13  -0.74 -0.74 -0.83 -0.91
rβ23 (or,  rW2 β3) 0.95 0.67 0.71 0.95

 rβφ1=-0.65; rϕW2 = 0.37 and rβφ3 = 0.64.  
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models. If there is no fish mortality during the rearing 
period, the common carp yield in the 11th and 12th months 
are forecasted by the proposed Gompertz-I model as 11.78 
and 11.89 kg respectively (Table 4a). Assuming 20 and 
30% fish mortality in each pond upto the end of the 10th 
month, the forecasting of common carp yield for the 11th 
and 12th month are given in Table 4b and c respectively. 
Similarly, silver carp yield forecasted by appropriate 
models are provided in Table 5a, b and c.

months ahead forecasting of fish yield from various ponds 
were also demonstrated.
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The present study discusses the concept of partial 
reparameterisation by expected-value parameter to 
tackle the issue of high correlation among the estimated 
parameters as well as nonlinear behaviour of estimated 
parameters. Consequently, explicit form of the partially 
reparameterised versions of Gompertz model was 
developed which were illustrated with average growth 
datasets of fish species viz., common carp obtained from 
polypond environments. Suitability of the models for two 
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Table 4a.	 Actual and forecast of common carp yield (weight in 
kg) from cemented ponds (if there is no fish mortality 
upto the end of the 10th month)

Month Observed Logistic Gompertz Gompertz-I
11th 12.15 11.78 (0.37) 12.06 (0.09) 12.06 (0.09)
12th 12.07 11.89 (0.18) 12.31 (0.24) 12.31 (0.24)

Table 4b. Actual and forecast of common carp yield (weight 
in kg) from cemented ponds (if there is 20% fish 
mortality per pond upto the end of 10th month)

Month Observed Logistic Gompertz Gompertz-I
11th 9.72 9.42 (0.30) 9.65 (0.07) 9.65 (0.07)
12th 9.65 9.52 (0.13) 9.85 (0.20) 9.85 (0.20)

Table 4c. Actual and forecast of common carp yield (weight 
in kg) from cemented ponds (if there is 30% fish 
mortality per pond upto the end of 10th month)

Month Observed Logistic Gompertz Gompertz-I

11th 8.51 8.24 (0.27) 8.44 (0.07) 8.44 (0.07)
12th 8.45 8.33 (0.12) 8.62 (0.17) 8.62 (0.17)

Values in parenthesis correspond to forecasting errors

Table 5a.	 Actual and forecast of silver carp yield (weight in kg) 
from cemented ponds (if there is no fish mortality upto 
the end of the 10th month)

Month Observed Logistic Logistic-I Logistic-II Gompertz
11th 14.56 14.53 (0.03) 14.53 (0.03) 14.66 (0.10) 14.49 (0.07)
12th 14.66 15.10 (0.44) 15.10 (0.44) 14.85 (0.19) 15.42 (0.76)

Table 5b.	 Actual and forecast of silver carp yield (weight in kg) 
from cemented ponds (if there is 20% fish mortality 
per pond upto the end of 10th month)

Month Observed Logistic Logistic-I Logistic-II Gompertz
11th 11.65 11.62 (0.03) 11.62 (0.03) 11.73 (0.08) 11.59 (0.06)
12th 11.73 12.05 (0.32) 12.05 (0.32) 11.88 (0.15) 12.34 (0.61)

Table 5c.	 Actual and forecast of silver carp yield (weight in kg) 
from cemented ponds (if there is 30% fish mortality 
per pond upto the end of 10th month)

Month Observed Logistic Logistic-I Logistic-II Gompertz
11th 10.19 10.17 (0.02) 10.17 (0.02) 10.26 (0.07) 10.14 (0.05)
12th 10.27 10.55 (0.28) 10.55 (0.28) 10.40 (0.13) 10.80 (0.53)

Values in parenthesis correspond to forecasting errors


