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Drought (water deficits) and heat (high temperatures) stress are the prime abiotic
constraints, under the current and climate change scenario in future. Any further
increase in the occurrence, and extremity of these stresses, either individually or in
combination, would severely reduce the crop productivity and food security, globally.
Although, they obstruct productivity at all crop growth stages, the extent of damage at
reproductive phase of crop growth, mainly the seed filling phase, is critical and causes
considerable yield losses. Drought and heat stress substantially affect the seed yields
by reducing seed size and number, eventually affecting the commercial trait ‘100 seed
weight’ and seed quality. Seed filling is influenced by various metabolic processes
occurring in the leaves, especially production and translocation of photoassimilates,
importing precursors for biosynthesis of seed reserves, minerals and other functional
constituents. These processes are highly sensitive to drought and heat, due to
involvement of array of diverse enzymes and transporters, located in the leaves and
seeds. We highlight here the findings in various food crops showing how their seed
composition is drastically impacted at various cellular levels due to drought and heat
stresses, applied separately, or in combination. The combined stresses are extremely
detrimental for seed yield and its quality, and thus need more attention. Understanding
the precise target sites regulating seed filling events in leaves and seeds, and how they
are affected by abiotic stresses, is imperative to enhance the seed quality. It is vital to
know the physiological, biochemical and genetic mechanisms, which govern the various
seed filling events under stress environments, to devise strategies to improve stress
tolerance. Converging modern advances in physiology, biochemistry and biotechnology,
especially the “omics” technologies might provide a strong impetus to research on this
aspect. Such application, along with effective agronomic management system would
pave the way in developing crop genotypes/varieties with improved productivity under
drought and/or heat stresses.
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INTRODUCTION

Globally, abiotic stresses drastically affect crop productivity
leading to substantial yield losses. According to the IPCC (2014)
report, the decline in food productivity and quality, primarily
due to extreme temperatures and water deficit conditions,
poses a serious threat to agriculture (IPCC, 2014; Zandalinas
et al., 2018). Therefore, under the changing climate, minimizing
agricultural losses caused by these stresses have become a major
challenge and has created a global concern to assure food
security (Anjum et al., 2011a). The effects of climate change
are exacerbated by the continuous decline in availability and
productivity of agricultural land (Zandalinas et al., 2018). The
world is facing a gradual rise in heat wave frequency leading
to warm days and nights, which is projected to exceed 2◦C
by the end of the 21st century (IPCC, 2014). Abiotic stresses
markedly affect the reproductive development of various crops
and, ultimately reduce the final economic yields. The effects of
drought and high temperature stress on grain yield are complex
and include processes such as nutrient assimilation and their
mobilization to various reproductive organs, accumulation of
stem reserves, gametogenesis, fertilization, embryogenesis, and
endosperm as well as seed development. While the presence
of these stresses at any growth stage can affect crop yield,
the seed filling stage is crucial for determining average seed
weight, seed composition and, therefore, the final quantitative
and qualitative yield (Çakir, 2004; Otegui and Slafer, 2004; Prasad
et al., 2017).

Stresses disrupt germination, vegetative growth, tiller
production, dry matter partitioning, reproductive organ
development, reproductive processes (Boyer and Westgate,
2004; Prasad et al., 2011), grain filling (Sehgal et al., 2017),
and grain quality (Gooding et al., 2003; Britz et al., 2007).
Reproductive processes and grain filling are more sensitive to
both these stresses, and have optimum and ceiling temperatures
that are relatively lower than those for vegetative growth and
development phases. For instance, exposure of wheat to short
episodes (2–5 days) of heat stress (>24◦C) at reproductive
stage (at start of heading) resulted in substantial damage to
florets’ fertility, while mean daily temperature of 35◦ caused
total failures. Rising the duration of high temperature at
this stage decreased the grain weight linearly (Prasad and
Djanaguiraman, 2014). Similarly, pea (Mahoney, 1991), lentil
(Barghi et al., 2012) and chickpea (Wang et al., 2006) performed
best at temperatures of 15–25◦C at their reproductive stage,
and higher temperatures (>32◦C) have been found to cause
pollen sterility, as in chickpea (Kaushal et al., 2013) and
lentils (Bhandari et al., 2016). More sensitivity of reproductive
stage to heat stress, compared to vegetative stage, is mainly
attributed to damage to male components, which are severely
impacted as a result of disruption of developmental as well as
functional aspects, such as sucrose and starch accumulation
in pollen grains (Sita et al., 2017). The leaves show more
resilience at reproductive ceiling temperatures, probably due
to some effective thermotolerance mechanisms, the differential
sensitivity of two organ types, which need to be probed
further.

Though both the stresses often exist in combination (Barnabás
et al., 2008), yet their interactive effects on crop yield and
productivity have received a little attention (Barnabás et al.,
2008), apart from a few studies (Canci and Toker, 2009; Prasad
et al., 2011; Hamidou et al., 2013; Awasthi et al., 2014; Sehgal
et al., 2017). Not much work has been done exclusively on the
impacts of dual stress on seed filling and nutritional composition
(Awasthi et al., 2014; Sehgal et al., 2017). When combined, these
stresses affect various molecular, biochemical and physiological
functions, to more severely impair growth, quality, and yield,
compared with their individual effects (Rizhsky et al., 2004;
Mittler, 2006; Prasad et al., 2008a; Pradhan et al., 2012). Also, the
combined heat and drought stress have distinct effects on cellular
processes in plants, relative to their individual effects (Rizhsky
et al., 2002, 2004; Cairns et al., 2013; Hamidou et al., 2013;
Awasthi et al., 2014; Sehgal et al., 2017), suggesting stress-specific
responses.

Seed filling is a crucial growth stage for all crops, which
involves mobilization and transport processes required for
importing various constituents, and many biochemical processes
for the synthesis of proteins, carbohydrates and lipids in the
developing seeds (Barnabás et al., 2008; Prasad et al., 2008a;
Awasthi et al., 2014; Farooq et al., 2017a) (Figures 1, 2).
Seed filling processes and the accumulation of reserves in
the developing and maturing seeds are highly sensitive to
environmental changes, which influence the qualitative and
quantitative traits of the final yield (Yang and Zhang, 2006)
(Figures 3, 4). Heat and drought stress can hinder the
accumulation of various seed constituents, primarily starch and
proteins (Behboudian et al., 2001; Asthir et al., 2012; Farooq et al.,
2017a,b) (Figure 3) through inhibiting the enzymatic processes
of synthesis of starch (Ahmadi and Baker, 2001) and proteins
(Triboï et al., 2003) (Figure 2).

Here, we initially describe the process of seed filling, and
later, illustrate how drought and heat stress, either separately
and in combination, impact seed yield and quality, and also
attempt to explain the advancement in the ‘omics’ technology in
addressing these vital challenges. We believe, our efforts would
enable the researchers/breeders to evolve strategies to develop
stress-resilient, high yielding, and nutritionally superior crops for
the future.

SEED DEVELOPMENT AND
FILLING/MATURATION

In angiosperms, seed filling is the terminal stage of growth in
plants where fertilized ovaries form caryopses/inflorescences, and
involves several processes related to the import of constituents,
and biochemical processes associated with carbohydrate, protein
and lipids synthesis in seeds (Dante et al., 2014). The rate and
duration of seed filling affect the final seed weight (seed size),
a primary component of total seed yield. The seed originates
from a double fertilization event, leading to the formation of
a triploid endosperm and diploid zygote (Yang and Zhang,
2006). The seed develops from the ovule, and has embryo and
endosperm/cotyledon, surrounded by the maternally derived

Frontiers in Plant Science | www.frontiersin.org 2 November 2018 | Volume 9 | Article 1705

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01705 November 24, 2018 Time: 19:30 # 3

Sehgal et al. Seed Filling and Abiotic Stresses

FIGURE 1 | A generalized view of seed development depicting various growth stages of embryo (embryogenesis), commencing post fertilization, leading to
formation of a mature seed.

seed coat that develops from integuments of the ovule (Figure 1).
The primary function of the seed is to protect the embryo,
sensing favorable conditions for germination and nourishment
of the germinating seedling (Emes et al., 2003). The embryo
embodies the structures of the future adult plant (Locascio et al.,
2014), and encloses the essential elements and basic processes
for the development of a new plant (Locascio et al., 2014;
Paula et al., 2016). Seed expansion involves rapid and early cell
division of the zygote and triploid nucellus. The division of cells
is accompanied by intake of water, which further leads to cell
extension (Altenbach et al., 2003; Emes et al., 2003) (Figure 1).
Cell expansion and division starts with more uptake of water,
and when cell expansion is completed, cells are destined to
maturity (Figure 1). After 2–3 weeks of anthesis, cell division in
cotyledons/endosperm halts with net rise in moisture content per
seed/grain, which represents maximum seed size (Schnyder and
Baum, 1992). Moisture content is a key factor controlling seed
development, seed filling and metabolic activity of developing
seed. The processes related to synthesis and accumulation of
various seed reserves are largely influenced by the moisture status
of the storage cells, depletion of water at this stage disrupts the
seed filling (Ochatt, 2015). The duration of seed filling is inversely
proportional to moisture loss and biomass deposition (Gambín
et al., 2007). Seed development has been excellently described
recently, particularly in legumes (see Ochatt, 2015; for more
details).

PHOTOSYNTHATES ASSIMILATION
DURING SEED FILLING

The quantitative and qualitative characteristics of yield are
strongly affected by seed filling process and nutrient reserve
accumulation in both developing as well as maturing seeds,
and both are responsive to environmental conditions (Yang and
Zhang, 2006; Barnabás et al., 2008) (Figures 2, 3). Seed filling in
plants depends upon two sources, transfer of current assimilates
directly to seeds and its redistribution from vegetative reserve
pools, either pre- or post-anthesis stage (Yang and Zhang, 2006)
(Figures 2, 3). These reserve pools provide substrates essential to
maintain transport and supply of assimilates to seeds all through
the dark phase of the diurnal cycle, as well as, for duration of
the later seed-filling period, when photosynthetic apparatus is
becoming senescent, and dry matter accumulation rate of grains
exceed dry matter accumulation rate of whole plant (Schnyder,
1993). Under normal condition, assimilate reserves during pre-
anthesis in stems and sheaths of rice (Oryza sativa) and wheat
(Triticum aestivum) contribute around 10–40% to the final seed
weight (Gebbing and Schnyder, 1999). Remobilization of these
reserves to the seed becomes vital in determining seed size
on exposure of plants to unfavorable environment or if yield
potential is dependent on high biomass accumulation (Asseng
and van Herwaarden, 2003; Plaut et al., 2004; Yang and Zhang,
2006). The contribution of assimilates supply from stem reserves
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FIGURE 2 | Schematic representation of various processes during seed filling stage in both monocot (top left) as well as dicot (top right) plants. The import and
metabolism of sucrose is depicted in the figure. Sucrose enters the seed coat via the chalazal vein. During the pre-storage phase, sucrose is degraded through the
catalytic action of cell-wall bound invertase, when the invertase activity is high leading to high ratio of hexoses to sucrose promoting growth via cell division. During
storage phase of development, the invertase activity is low, so sucrose is taken up directly by the cotyledons. A low ratio of hexoses: sucrose promotes
differentiation and storage product synthesis. Sucrose metabolism in the cotyledons is catalyzed by a cycle of synthesis and breakdown via sucrose-phosphate
synthase and sucrose synthase. The figure also explains the translocation of sucrose and other nutrients from source (endosperm/cotyledon) to sink (embryo) during
developmental stages of seed. Carbon, nitrogen, phosphorus, and other minerals, produced from the hydrolysis of stored nutrients in endosperm/cotyledon are
transported to the embryo for its growth, and mobilized toward assimilate-transport pathway into developing seeds, and toward the starch and sucrose synthesis
pathway. C, Carbon; N, nitrogen; P, phosphorus; K, potassium; SUT, sucrose transporter; AAP, amino acids protein; PEPC, AK, PEP carboxylase and/or aspartate
kinase; AGP, ADP glucose pyro-phosphorylase; GPT, plastidic glucose-6-P translocator; pPGM, plastidic phospho-glucomutase; FAT, fatty acid transporter. Stresses
such as drought and heat may affect the seed filling by influencing any of these or multiple processes to accelerate (as in heat) or disrupt (as in heat, drought) the
seed filling.

may increase up to 40% during heat and drought stress situations
(Bidinger et al., 1977; Gebbing and Schnyder, 1999). Drought
reduces photosynthesis, hence source strength; moreover the
turgor in phloem cells is also reduced by water deficiency, thereby
increasing the viscosity of sucrose to inhibit its flow through
the conducting cells toward the sinks (seeds) (Sevanto, 2014).
Combined stresses may result in more dehydration to severely
slow down the phloem transport (McDowell et al., 2013). Sucrose
transporters (SUTs) have a vital role in the export of sucrose
from the leaves to the sinks, the expression of SUT genes is
altered by drought (mild–severe) in soybean, barley, wheat, and
maize (Xu et al., 2018); down-regulation of these transporters
has been reported in some cases (Xue et al., 2016). On the
other hand, the pattern of SUT expression in heat-stressed plants

differs from the drought-stressed plants. Arabidopsis AtSUT2 is
down-regulated under heat stress (about 15◦C increase), while
it is up-regulated under drought (Xu et al., 2018). In contrast,
PtaSUT4 (a symplastic loader poplar) is up-regulated under
heat stress (17◦C increase), while down-regulated under drought
stress, which correlates with reduced sucrose transport from the
leaves (Xue et al., 2016). Drought resulted in fivefold reduction
in cytosolic acid invertase activity in Lupin seeds, suggesting that
the amount of sucrose available is reduced in seeds (Kim et al.,
2000). Heat stress down-regulated OsSUT1 in rice stems, more
so in a sensitive cultivar, to reduce the grain quality (Miyazaki
et al., 2013; Phan et al., 2013). In barley too, several genes involved
in sucrose and starch biosynthesis were repressed by heat stress,
along with down-regulation of SUTs (HvSUT1 and HvSTP3)
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(Mangelsen et al., 2011). Thus, photo-assimilation is disrupted
because of down-regulation of SUTs in stressed plants. Similar
studies on plants subjected to combined drought and heat need
to be conducted to find out the types of transporters affected.

HORMONAL CONTROL DURING
PHOTOSYNTHATE PARTITIONING AND
SEED FILLING

Seed expansion and filling include all processes involved in
formation and structural development of mature seed (Locascio
et al., 2014). Seed-making process is highly coordinated and
complex, (Figures 1, 2) requiring hormonal regulation (Ochatt,
2011) (Figure 3), and a constant exchange of signals from-
and-to maternal tissues, and between cotyledon/endosperm
and embryo (Locascio et al., 2014). The continual interaction
among these three constituents of seed ensures synchronized
seed development (Locascio et al., 2014). Many reports
showed substantial changes in hormones content during seed
development and filling. Auxin is linked with maize grain
filling through controlling cell wall-associated invertase enzyme
activity. The increase in auxin during seed filling interval
accompanied with increased grain filling rate. The increased
auxin is known to enhance sink capacity through enlargement
of cell and increased nutrient assimilation (Kong et al., 2015).
Abscisic acid (ABA), auxin, and cytokinins (CKs) play major
role in grain filling through source photosynthate/nutrient re-
mobilization and grain development in cereals (Yu et al., 2015).
Notably, the source activity and sink strength are synchronized
and can be altered by hormones and external/environmental
stimulus. The grain filling is closely associated with senescence
and senescence-related hormone ABA, affecting the time for
nutrient mobilization and grain filling in barley, wheat, rice,
and sorghum (Yu et al., 2015). In barley, ABA can induce the
orchestration of gene expression of senescence-related genes
(Yang et al., 2003). Such activities are also in action during
drought stress to accelerate seed filling. In rice and wheat,
water stress at grain filling stage caused reduced photosynthetic
activity and induced accelerated leaf senescence, resulting in
shortened grain filling period due to enhanced ABA level and
remobilization of carbon (C)-pool from stem to leaves (Yang
et al., 2003; Yang and Zhang, 2006). Drought-tolerant plants
exhibit delayed leaf senescence, thus cultivars with stay-green
trait having advantage over terminal drought (Jordan et al., 2012),
which is beneficial to sustain seed filling. Early onset of leaf
senescence causes inadequate nutrient supply to grains during
grain filling, whereas, late initiation of nutrient mobilization
may not support rapid developing seed. This synchronized
developmental program is known to involve ABA-inducible
NAC-transcription factor (TF), which regulates the expression
of genes involved in mineral-nutrient remobilization from leaf
to grain, chlorophyll degradation and leaf senescence in rice
(Uauy et al., 2006). A reduced expression of this ABA-regulated
NAC – TF caused enhancement in yield in the transgenic rice,
plausibly due to prolonged supply of photosynthates/nutrients
into the developing grains through fine-tuned ABA biosynthesis

pathway. CK also play a key role in grain filling by initiating
rapid cell division of endosperm cells (Kong et al., 2015). The
increased level of CKs probably enhances sink strength by
up-regulating cell division related genes via sugar signaling,
which involves enhanced phloem unloading and sugar import
to endospermic cells through a cell wall-associated enzyme
invertase (Rijavec et al., 2009). Overproduction of CK delays early
senescence through reduced proteolytic activity and inhibition of
N-remobilization, which increases life span and confers drought
tolerance in crop plants (Gregersen et al., 2013). Thus, seed
filling is determined by diverse plant hormones having specific
functions, their interplay might be vital in regulating various
processes related to accumulation of seed reserves (Ochatt, 2015).

IMPACT OF ABIOTIC STRESSES ON
SEED FILLING

Drought stress during the initial stage of seed development
reduces ability of kernel/seed sink strength by decreasing the
number of endosperm cells and amyloplasts formed (Saini and
Westgate, 2000), thus reducing grain weight with a decline in
endosperm competence to gather starch, in terms of both rate
and duration (Nicolas et al., 1985). Likewise, heat stress can
significantly influence seed development and thus decreases seed
yield in several crops including cereals (Prasad et al., 2008a; Dias
and Lidon, 2009), legumes (Prasad et al., 2002; Awasthi et al.,
2014; Bhandari et al., 2016; Sharma L. et al., 2016; Sehgal et al.,
2017). Seed filling is closely related to the process of whole-plant
senescence (Yang and Zhang, 2006). Usually, drought and heat
stress during seed filling causes early senescence and reduces
seed-filling duration, and enhances assimilate remobilization
from the source to sink (Asseng and van Herwaarden, 2003;
Plaut et al., 2004), the combined effects are more severe (Awasthi
et al., 2014). The stress-induced reduction in assimilate supply
strongly influences grain development (Figure 2) (Sharkey, 2005;
Subramanyam et al., 2006; Farooq et al., 2009). Here, we describe
how drought or/and heat stresses impact the process of seed
filling and ultimately influence seed yield and its quality, citing
many definite examples from various crop species, through
findings at changes in physiology, biochemistry, proteins, and
genes.

DROUGHT AFFECTS OVERALL PLANT
GROWTH AND NUTRITIONAL STATUS
OF PLANT AFFECTING SEED FILLING

Drought stress limits vegetative growth by reducing leaf
water content in various cereals (Siddique et al., 2001;
Valentovic et al., 2006) and legumes (França et al., 2000),
which might be markedly influenced by inhibition of stomatal
conductance/transpiration (Anjum et al., 2011b). Reduced
stomatal conductance resulted in increase in leaf temperatures
(Sehgal et al., 2017), both of which induced leaf wilting (Farooq
et al., 2009, 2017a). Drought stress can cause membrane damage
(Jiang and Huang, 2001; Awasthi et al., 2014), chlorophyll
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FIGURE 3 | (A) Nutrient translocation from source to sink and a road map highlighting events associated with seed filling in monocot (cereals). (A) Plant takes up
essential nutrients from the soil including N (nitrogen), P (phosphorus), K (potassium), Fe (iron), Zn (zinc), etc., and assimilates carbohydrate (sucrose) through fixing
atmospheric CO2 via photosynthesis. During seed filling stage the matured leaves translocate assimilates to the developing seed (sink), whereas, nutrients especially
N and other minerals are remobilized from the senescing leaves to the sink organ (developing grain). The role of hormones and cross talk between source and sink
during seed filling; at seed filling stage, stress hormones serve as key factors, which control the autophagy and senescence, thus translocating the N-pool and the
minerals from the senescing leaves to the grain/seed. Auxins and cytokinins are important and regulate the seed cell numbers and size, this controlling the sink
strength. (B) In dicots, the seed development and filling is controlled through transcriptional regulation. Several transcription factors interact/overlap with each other
and also involve hormonal control during this event, as indicated in the figure. ABA, abscisic acid; GA, gibberellic acid; T-6-P, trehalose-6-phosphate; LEC1, leafy
cotyledon 1; ABI3, abscisic acid-insensitive 3; EEL, enhanced em level; fusca3, FUS3; SnRK1, SNF1-related protein kinase; SUS, sucrose synthase; SUTs, sucrose
transporters; IVT, invertase; RSR1, rice starch regulator 1; SSP, seed storage protein.

(Massacci et al., 2008; Rahbarian et al., 2011) and photosynthesis
(Samarah et al., 2009a; Anjum et al., 2011b), due to stomatal
or non-stomatal associated mechanisms. Drought stress impairs
mineral uptake (Samarah et al., 2004; Gunes et al., 2006)
and drastically reduces nitrogen fixation in legumes such as

in soybean (Serraj, 2003), and pea (Gonzalez et al., 2001).
Collectively, these adverse effects eventually decrease assimilate
production and mobilization to developing seeds in various
crops (Leport et al., 2006; Mafakheri et al., 2010; Zare et al.,
2012).
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FIGURE 4 | Schematic representation highlighting consequences of drought and/or heat stress on seed filling and ‘omics’ approach for crop improvement.

DROUGHT STRESS LIMITS
REPRODUCTIVE PHASE AND SEED
DEVELOPMENT AFFECTING SEED
YIELD

The reproductive stage of growth is more sensitive to drought
than the vegetative stage, resulting in fewer flowers, poor pod
or fruit set, which decreases seed numbers (Seghatoleslami
et al., 2008; Pushpavalli et al., 2014). Gametogenesis, fertilization,
embryogenesis are several impacted, to seriously limit seed
development thereby lowering crop yields (Farooq et al., 2009,
2014). Flowering and reproductive developmental stages are
among the most disrupted stages during drought stress (Samarah
et al., 2009a; Fang et al., 2010). Pollen sterility (Al-Ghzawi
et al., 2009) is a common symptom, which decreases pollen
germination, hinders pollen tube growth to impair fertilization
and reduce seed yield (Fang et al., 2010; Gusmao et al., 2012).
Stress because of limited water causes carbohydrate deprivation,
elevated endogenous ABA levels, and a reduced ability of
reproductive sinks to use sucrose and starch. The increase in
non-reducing sugars and failure to accumulate starch under
drought stress results in ovary abortion, leading to poor grain
set and grain yield (Andersen et al., 2002). A reduction in tissue
water potential decreases the activity of acid invertase (a vital
enzyme in seed development) in seeds, which inhibits sucrose
import (Farooq et al., 2015). Thus, scarce energy sources and
elevated ABA levels result in poor grain set under drought
stress (Liu et al., 2004). Seed yield was drastically reduced in
crops exposed to drought stress at the time of seed filling, for

example in several legume crops (Shrestha et al., 2006; Ghanbari
et al., 2013a; Awasthi et al., 2014). Moreover, drought stress
at the early phase of seed filling decreased the subsequent
germination percentage (approximately 9%) of the progeny
in soybean (Glycine max L.), as compared to control plants
(Smiciklas et al., 1992). Similarly, Dornbos and Mullen (1985)
reported a 5% decline in seed germination, 12% decline in
seedling vigor and 19% increase in electrical conductivity of
seed leachate in soybean seeds obtained from drought-stressed
plants. In peanut (Arachis hypogaea L.), drought stress during
seed development moderately reduced seed germination, without
any impact on seedling vigor (Ketring, 1991). In chickpea, the
medium-sized seeds produced under drought stress have lower
germination rates and reduced seed vigor as compared to the
control or non-irrigated seedlings (Samarah et al., 2009b). Thus,
drought stress at reproductive stage inhibits the production
of seeds because of disruption of gamete development and
function while at seed filling stage limits the seed size because
of inhibitory effects on carbohydrates involving phytohormones
ABA.

DROUGHT STRESS AFFECTS
ENRICHMENT OF CARBOHYDRATES
DURING SEED FILLING IMPACTING
SEED SIZE AND QUALITY

Drought stress during seed filling slows down the seed-
filling rate and reduces the filling duration to limit seed size
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(Fang et al., 2010; Moradi et al., 2013; Sehgal et al., 2017).
It inhibits cell division in endosperm cells and number
of starch granules in grains to reduce their (grains) size
(Nicolas et al., 1985). Water stress markedly affects grain
composition (Behboudian et al., 2001). For instance, starch
content of developing wheat grains declined markedly, when
plants were subjected to drought stress, which was attributed
to an insufficient supply of photoassimilates, or to direct
effects on starch synthesis machinery in grains, influenced
by sink dehydration (Ahmadi and Baker, 2001), reduction in
endosperm cell numbers, small size of starch grains (Nicolas
et al., 1985), and lower amylase contents in starch grains
(Singh et al., 2008). Starch accumulation involves several
complex enzymatic processes, with AGPase, soluble starch
synthase (SSS), and starch branching enzyme (SBE) having
vital roles (Morell et al., 2001). A gene expression study
in wheat showed that drought stress reduced the transcript
number for the SSS enzyme more than, other enzymes involved
in starch biosynthesis (Hurkman et al., 2003). In another
study in wheat plants, exposed to drought stress during
grain filling, glucose, fructose, and sucrose levels declined
significantly in grains of a drought-sensitive genotype, which
was accompanied by a sharp reduction in activities of cell
wall invertase and soluble invertase (Saeedipour, 2011). Higher
sucrose synthase activity in drought-tolerant variety enhances
supply of assimilates to grains to increase the seed size
(Saeedipour, 2011). Various enzymes involved in starch and
sucrose metabolism were inhibited to reduce seed starch in
chickpea (Awasthi et al., 2014). The enzymatic activities of
SSS, granule-bound starch synthase (GBSS), SBE and starch
de-branching enzymes (DBE) decreased to different extents in
sorghum grains, which inhibited starch accumulation (Bing
et al., 2014). Sugar metabolism was also inhibited in grains
of drought-stressed maize, as indicated by decreased soluble
and insoluble invertases activities (Zinselmeier et al., 1995,
1999). In general, because of water limitation, cell number in
endosperm or cotyledons decreases, which may occur due to
inhibited cell division, however, the finer mechanisms controlling
these events need to be probed. Carbohydrates’ accumulation is
hampered because of limitations in availability of sucrose from
leaves, as well as their synthesis in developing seeds, and/or
because of enzymatic inhibitions, to eventually decrease the seed
size.

DROUGHT STRESS AFFECTS LIPID
ENRICHMENT DURING SEED FILLING

Seeds store carbon for energy, particularly in form of lipids in
oil seeds, which are mainly required for germination. Drought
stress also affected oil content and quality, linoleic acid and
behenic fatty acid contents declined while stearic and oleic
fatty acid contents increased in drought-stressed plants of
peanuts (Dwivedi et al., 1996). There are contrasting reports
too, which are possibly due to variations in imposed stress
treatments. For instance, in maize, drought stress markedly
decreased seed oil content but enhanced linolenic acid and

oleic acid contents in oil (Ali et al., 2012). There was a
reduction in overall seed oil, total tocopherols, flavonoids,
and oil phenolics (Ali et al., 2010, 2012). Drought stress in
soybean, during seed filling, decreased oil content up to 12.4%,
along with a reduction in oleic acid content (Dornbos and
Mullen, 1992). The oil content is affected due to decrease
in concentration of digestible carbohydrates such as glucose,
fructose, and sucrose under drought conditions, which affects
the fatty acids composition due to reduced unloading of sugars
from stem to developing seeds (Bellaloui et al., 2013). More
research is needed to explore the target sites of drought stress
in pathways involved in lipids biosynthesis and how lipid
quality is regulated under drought stress also requires to be
investigated.

DROUGHT STRESS AFFECTS
NITROGEN ASSIMILATION TO RESULT
IN POOR QUALITY SEEDS

Drought stress impairs symbiotic nitrogen fixation through
rising oxygen diffusion resistance to root bacteroides resulting
in reduced activity of nitrogenase that decreases nitrogen
availability for biosynthesis of proteins, which is a primary
reserve in grain legumes, and reduces seed yield (Purcell and
King, 1996). While seed protein quality largely depends on
the genotype, it may be influenced by environmental stresses
(Triboï et al., 2003). Alterations in composition of protein
fraction due to drought and heat stress are primarily due
to changes in quantity of total nitrogen accumulated during
seed filling (Triboï et al., 2003). Some studies in legumes have
indicated reduction in accumulation of minerals in developing
seeds due to drought stress. For example, in common bean,
Fe, Zn, P, and N concentrations decreased under drought
stress, which correlated with reduction in total protein content
(Ghanbari et al., 2013b). In another study, in white, red
and ‘chitti’ bean cultivars, drought-stress during pod filling
resulted in decline in seed nitrogen and protein content,
substantially (Ghanbari et al., 2013a). A marked reduction in
starch, protein, and amino acid contents occurs in chickpea
seeds, drought-stressed during seed filling, more impact occurs
on ‘Kabuli’ than ‘Desi’ types (Nayyar et al., 2006). The free
amino acid pool increased but protein-amino acid fraction
decreases in cowpea seeds of drought-stressed plants, and
inhibition in incorporation of amino acids into protein chain
occurs (Labanauskas et al., 1981). Proteomic studies in wheat
grains, harvested from drought-stressed plants at grain filling
stage, indicated a marked change in quality of seed proteins.
While globulin and glutenin, remained unaffected, albumin and
gliadin concentrations increased significantly under drought
conditions (Zhang et al., 2014). In contrast, some other studies
reported increased concentrations of seed protein in response
to drought stress in various crop species, for example, in
cereals (Gooding et al., 2003), legumes (Behboudian et al., 2001;
Teixeira and Pereira, 2007) and oil seeds (Bouchereau et al.,
1996). These differences may be attributed to intensity and
duration of drought stress imposed on plants, and relative to
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seed dry weight. The increased protein content is linked to
altered C-partitioning, especially in cereals, which changes the
C/N ratio, to favor more N-assimilation. Thus, these studies
indicate crop-specific effects of drought stress on proteins
and minerals. Further work is required to investigate the
impacts of drought stress on various classes of proteins, amino
acid composition, especially in food legumes. Additional work
should focus in future on seed quality aspects, especially on
mineral transport mechanisms in seeds of drought stressed
crops.

DELETERIOUS EFFECTS OF HEAT
STRESS ON SEED FILLING

Heat stress affects almost all the stages of the plant beginning
from germination until maturity. Exposure to heat stress
during pod and seed filling stages results in a substantial
decrease in economic yield of crop plants by reduction in
seed weight. Decline in seed weight and seed number due
to high temperatures has been reported in several crops
including legumes (Prasad et al., 2000; Tsukaguchi et al., 2003;
Devasirvatham et al., 2010), cereals (Djanaguiraman et al., 2010)
and others (Rashid et al., 2017). Sustaining grain weight in
heat stress conditions during seed filling stage is considered
a part of heat stress tolerance mechanism (Tyagi et al., 2003;
Hasanuzzaman et al., 2013). The sensitivity of seed filling
to heat stress may differ according to different crop species
(Sung et al., 2003; Kaushal et al., 2016). Two traits mainly
seed filling rate and potential seed weight may be considered
as a selection criteria for heat stress tolerance (Dias and
Lidon, 2009). High-temperature stress may speed up the rate
of seed filling by reducing the duration of this stage and
therefore the yield potential (Prasad et al., 2011; Kaushal et al.,
2016). Increase in seed-filling rate resulted in smaller and
wrinkled seeds in chickpea (Kaushal et al., 2013) and lentil
(Sita et al., 2017), which mainly occurred due to reductions
in the remobilization and translocation of photosynthesis to
developing seeds (Farooq et al., 2017b). The time of seed
filling reduced in pea, soybean and white lupin, resulting
in smaller grains (Duthion and Pigeaire, 1991). Specifically,
in cowpea, increasing the temperature from 15.5 to 26.6◦C
decreased seed-filling duration from 21 to 14 days (Nielsen and
Hall, 1985) and in chickpea, a 1.7◦C increase in temperature
reduced seed-filling duration, and accelerated maturity, which
decreased seed yield (Chakrabarti et al., 2013). The reduction
in seed size was related to structural and functional reasons.
The cotyledon cell number and cell expansion decreased under
heat stress, which inhibits the rate of seed-filling and seed size
(Munier-Jolain and Ney, 1998). ABA levels were altered, which
correlated with adverse effects on seed filling rate in heat-stressed
chickpea (Munier-Jolain and Ney, 1998). Studies in future need
to focus on probing the role of various phytohormones in
altering the rate of seed filling as well as structural changes
in endosperm and cotyledons in seeds developing under heat
stress environment, involving tolerant and sensitive genotypes of
various crops.

ASSOCIATION OF SEED FILLING
DURATION WITH LEAF SENESCENCE
AND SOURCE–SINK FLUX DURING
HEAT STRESS

High temperatures during seed filling may stimulate leaf
senescence to reduce photosynthetic capacity, which impacts
seed development and reduces growth and yield traits in grain
legumes (Farooq et al., 2017b; Sita et al., 2017). Senescence occurs
due to disruption of cellular structure and organization, with a
substantial reduction in chlorophyll, which also terminates the
photosynthetic process (Ougham et al., 2008). Besides, causing
senescence, increased temperature accelerates scorching and
abscission of leaves (Ismail and Hall, 1999). Heat stress decreases
photosynthetic activity and induces premature senescence, which
decreases synthesis and distribution of assimilates to seeds
(McDonald and Paulsen, 1997). A rise in temperature (30–
35◦C) for a few days repressed photosynthesis and electron
flow, interrupted metabolic pathways, damaged seed set and
seed development, and ultimately reduced seed yield in
chickpea (Gaur et al., 2015). Rise in temperature inhibited
sucrose metabolism in leaves and impaired sucrose supply to
developing seeds, as in chickpea (Kaushal et al., 2013), mung
bean (Kaur et al., 2015), which might be a primary reason
of shriveled seeds under heat stress. Moreover, the rate of
chlorophyll decline from the leaf was strongly coordinated with
contents of non-structural carbohydrates and nitrogen as well
as their remobilization efficiencies (Tahir and Nakata, 2005;
Prasad et al., 2008a). Damage to membranes of leaves is a
common effect of heat stress, along with increase in ethylene
production (Djanaguiraman and Prasad, 2010), which may
accelerate the senescence. Heat stress increases leaf senescence
by disrupting chloroplasts and damaging chlorophyll due to
direct or indirect mechanisms such as photo-oxidation, which
severely inhibits photosynthetic ability to reduce biomass and
seed yield (Farooq et al., 2017b). Moreover, carbon fixation is
inhibited severely by heat stress due to reduction in activities
of PEP carboxylase and RuBP carboxylase in photosynthetic
organs during seed filling, as observed in wheat (Xu et al., 2004).
These studies collectively indicate that heat-stresses induces
leaf senescence, inhibits net photosynthetic rate, chlorophylls,
hastens seed filling, disrupts sucrose-starch conversion and
causes loss of sink activity to decrease the seed weight and
quality.

The seed filling rate in plants is mainly dependent on
two carbon resources (1) currently synthesized assimilates
from photosynthesis, and (2) carbohydrate (assimilates) reserves
translocated to the seed from vegetative tissue in leaves and
stem (Plaut et al., 2004; Yang and Zhang, 2006). Impairment
of photosynthesis during heat stress (Subramanyam et al.,
2006), reduces the currently available assimilates to the seed.
Thus, stem reserves’ mobilization play a crucial role (Blum
et al., 1994); hence, the stored carbohydrates become the
chief source of transported materials, contributing around
75–100% to grain yield during stress environment (Farooq
et al., 2017b). The mobilization of stored reserves from leaves
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and stem strongly correlates with carbohydrate metabolism,
involving synthesis of sucrose and its utilization (Prasad
et al., 2008b). More studies are needed to explore the
genotypes of various crops having ‘Stay-green’ ability in leaves
under heat stress to sustain seed filling (Abdelrahman et al.,
2017).

ALTERED LEVELS OF STARCH,
SUCROSE, AND OTHER SUGARS
LEVELS DURING SEED FILLING PHASE
IN RESPONSE TO HEAT STRESS

Over 65% of seed dry weight is accounted for by starch
(Barnabás et al., 2008), therefore, decrease in seed yield is
mainly caused by decline in starch accumulation. Heat stress
during grain filling markedly decreased starch accumulation
in wheat (Hurkman et al., 2003) and rice (Yamakawa and
Hakata, 2010) by altering the expression of starch-related genes,
which contributed toward reduction in seed size (DuPont
and Altenbach, 2003). Total non-structural carbohydrates also
decreased, which changed the proportion of soluble sugars to
starch (Thomas et al., 2003). Sugars such as fructose, sugar
nucleotides and hexose phosphate levels also declined due
to heat stress, as in wheat (Jenner, 1991). The decrease in
sugars in heat-stressed plants may be related to enhanced
assimilate utilization rather than production (Asthir et al., 2012).
In some cases, increase in sugar levels was reported, which
was related to up-regulation of starch hydrolyzing enzymes
such as α-amylase during seed filling (Yamakawa et al., 2007;
Tanamachi et al., 2016). Moreover, due to enhanced activity of
the α-amylase enzyme, rice produce chaffy grains under heat
stress environment. The transcripts of the β-glucosidase gene
decrease due to heat stress to impact the seed composition
in soybean (Thomas et al., 2003). Thus, heat stress adversely
affects the accumulation of carbohydrates by influencing their
metabolic pathways, the changes are crop-specific, and depend
upon exposure to heat stress. Comprehensive studies are needed
in the future involving SUTs and various genes related to
starch-sugar inter-conversions in seeds of heat-stressed plants
of various crops to know the accumulation patterns of various
carbohydrates.

MODULATION OF THE ENDOSPERM
MORPHOLOGY DURING SEED FILLING
PHASE UNDER HEAT STRESS PERIODS

The amount of starch and proteins, accumulating in each seed,
depends on total number of endosperm cells, determined early in
stage of seed filling, and the final size of cells, which is regulated
by the rate and duration of seed filling (Egli, 1998; Farooq et al.,
2017b). Heat stress during early seed development reduced the
endosperm cell number (Nicolas et al., 1985), however, at the
later stage, heat stress impaired starch synthesis either due to
limited supply of assimilates to seeds (Blum, 1998) or as a result

of the direct effects on biosynthesis processes in the seed (Yang
et al., 2004; Barnabás et al., 2008). Endosperm structures were
altered and storage products were degraded due to heat stress
(35◦C for 5 days) during the seed filling in barley (Wallwork
et al., 1998) and maize seeds while in rice seeds, heat stress
accelerated the growth rate of endosperm resulting in chalky
grains (Mitsui et al., 2016). In dicots like soybean, heat stress
negatively affected cotyledon cell number, cell expansion, and
hence seed filling rate, which reduced seed weight (Munier-
Jolain and Ney, 1998). Thus, heat stress limited the production of
storage cells in monocots and dicots, which further restricted the
accumulation of various seed reserves. The mechanisms affecting
the cell number in endosperm and cotyledons in seeds of heat-
stressed plants are not well understood, an elaborative study is in
need.

ALTERATIONS OF STORAGE PROTEINS
AND LIPIDS DURING SEED FILLING
PHASE UNDER HEAT STRESS
EPISODES

An enhanced rate of seed filling under heat stress may be due to
increased enzyme and metabolic processes, which accelerates and
compresses the overall process of seed development at elevated
temperatures. Increase in rate of seed dry matter accumulation
may be a compensation for the decline in its duration (DuPont
and Altenbach, 2003). Heat stress decreased the duration and
amount of protein accumulation, but the rate of accumulation
was unaffected, as in some studies (Stone et al., 1997). The
storage protein composition was also altered under heat stress
due to changes in the amount of total nitrogen accumulated
during seed filling in wheat (Triboï et al., 2003; Barnabás et al.,
2008). Protein quality deteriorated in heat-stressed plants, for
example, dough quality declined in wheat under heat stress,
because of reduction in aggregation properties, caused by a
decline in high molecular weight glutenins, and rise in gliadin
accumulation (Stone et al., 1997). Moreover, the ratio of gliadins
and glutenins increased while the ratio of large polymers
decreases in wheat grain flour (Panozzo and Eagles, 2000;
DuPont and Altenbach, 2003). Similarly, in pea, high temperature
denatured and aggregated the seed storage proteins (globulins,
legumin, and vicilin) in pea (Mession et al., 2013); which might
be due to loss of covalent and non-covalent interactions (Sun
and Arntfield, 2012). In the same way, heat stress denatured
β-conglycinin in soybean (Iwabuchi and Yamauchi, 1984) and
damaged globulin and phaseolin (Hernández-Unzón and Ortega-
Delgado, 1988). Seed protein fractions, especially albumins and
globulins were adversely impacted by heat stress in lentil seeds
(Sita et al., 2018), thus reducing the overall seed quality. The
damage to the structure and metabolism of proteins due to
heat stress also inhibited the activities of enzymes involved in
protein synthesis, as in Andean lupin (Lupinus mutabilis) (Zu,
2009).

Fatty acid composition and content are variably affected by
heat stress in a crop-specific response. For instance, different
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temperatures (10, 16, 21, 26.5◦C), imposed on plants of rapeseed
(Brassica napus), safflower (Carthamus tinctorius), flax (Linum
usitatissimum), sunflower (Helianthus annuus) and castor bean
(Ricinus communis) plants, during seed development, did not
affect the composition of fatty acid in the oil of safflower
and castor bean, but reduced the amounts of unsaturated
fatty acids (Canvin, 1965; Brunel-Muguet et al., 2015). The oil
composition changed because of the impact of heat stress on
fatty acid biosynthesis in sunflower (Harris et al., 1978) and
in soybean, heat stress (35◦C) during seed-filling decreased oil
content by 2.6%, compared with seeds from plants exposed
to 29◦C (Dornbos and Mullen, 1992). Considering that, heat
stress effects are likely to be more prominent in future,
it would be vital to understand the target sites of heat
stress in the biochemical pathways, related to accumulation
of proteins and lipids in developing seeds of various food
crops.

COMBINED EFFECT OF HEAT AND
DROUGHT STRESSES ON SEED FILLING

Both drought and heat stress, when applied jointly, reduce leaf
water content more severely, resulting in early leaf wilting, acute
chlorosis and membrane damage (Awasthi et al., 2014), drastic
inhibition of photosynthesis and production of assimilates in
leaves was recorded by various studies, for instance, in chickpea
(Awasthi et al., 2014); lentil (Sehgal et al., 2017; Sita et al., 2017)
and barley (Roohi et al., 2013). Though the impact of each of
this stress, when applied singly on plants may differ, depending
upon its intensity and duration, nevertheless, some common
symptoms appear as overall reduction in vegetative biomass,
reproductive growth and yield-traits. The effects of heat and
drought stresses may differ, when applied singly; for example,
heat stress during seed filling may accelerate or even suppress
the seed filling process, and reduce the duration of filling to
inhibit the accumulation of various reserves (Prasad et al., 2008b;
Chakrabarti et al., 2013). Drought stress slowed down the seed
filling process due to water limitations, but eventually resulted
in inhibitory effects on seed size and numbers (Pushpavalli
et al., 2014; Sehgal et al., 2017). While these two stresses affect
the seed filling differently, each one leads to reduced seed size
due to reduction in the cell number in endosperm/cotyledons,
inhibitions or acceleration of seed filling rate and various
biochemical processes, as in wheat (Nicolas et al., 1985) and
maize (Monjardino et al., 2005). Variations may also exist in the
relative composition of seed reserves in response to either of
these stresses, nevertheless, in general, seed quality was adversely
affected by both the stresses (Khan et al., 2004; Spiertz et al.,
2006; Thuzar et al., 2010; Krishnan et al., 2011; Rashid et al.,
2017).

The combined effects of heat and drought stress are an
excellent example of two different abiotic stresses occurring
in the field simultaneously (Shah and Paulsen, 2003; Barnabás
et al., 2008). Little is known about on the combined effects of
heat and drought stress on crops, with most studies reporting
very severe effects on crop growth and productivity (Cairns

et al., 2013; Hamidou et al., 2013; Awasthi et al., 2014; Sehgal
et al., 2017). The impact of the simultaneous occurrence
of two stresses is more pronounced during early part of
reproductive processes, especially micro-and mega-sporogenesis,
pollen and stigmatic function, anthesis, pollination, pollen tube
growth, fertilization, and early embryo development, compared
to individual drought or heat stress (Prasad et al., 2008b).
Failure in any of these processes will drastically decrease the
fertilization rate or leads to early embryo abortion, thus resulting
in lower seed or grain numbers and finally limiting the crop
yield (Prasad et al., 2008b). Substantial losses observed in crop
yields under combined stress environment have been attributed
to several reasons, such as metabolic changes, reductions in
the period of crop developmental stages (Reddy et al., 2004).
Subsequent decline in light perception, decreased phenology,
and perturbation of processes involved in carbon assimilation
such as transpiration, photosynthesis and respiration may
contribute to fewer, malformed and smaller seeds (Barnabás
et al., 2008; Awasthi et al., 2014, 2017), which are economically
futile.

Seed-filling duration declines more in combined stresses
than individual treatments, as evidenced in wheat (Shah and
Paulsen, 2003; Farooq et al., 2017a,b), chickpea (Awasthi et al.,
2014) and lentil (Sehgal et al., 2017). Both the stresses can
occur simultaneously after anthesis to limit seed-filling duration,
and result in poor-quality grains in wheat (Wardlaw, 2002;
Farooq et al., 2017a), due to the substantial reduction in seed
dry weight, seed numbers, and starch content (Balla et al.,
2011). The rate of transport of non-structural carbohydrates
in endosperm tissue decreases, as in wheat, in response to
dual heat and drought stress (Wardlaw, 2002; Plaut et al.,
2004). There is severe reduction in starch accumulation due
to combined stresses imposed during seed filling, which has
been attributed to more drastic inhibition of starch synthesizing
enzymes, compared to individual stress treatments, as in chickpea
(Awasthi et al., 2014) and lentil (Sehgal et al., 2017), consequently
seeds become shriveled. Combined heat and drought stress can
reduce nitrogen pool due to a decline in free amino acids
containing various transfer substances related to metabolism of
nitrogen and other osmotic compounds (Prasad et al., 2008b;
Awasthi et al., 2014). The response to dual stress situation
is crop specific, for example, in soybean plants, subjected to
dual stress, seeds showed higher protein contents, but lower
oil contents than controls/individual stresses, (Dornbos and
Mullen, 1992). In cereals such as barley and wheat, the combined
stress treatment reduced starch accumulation but increased
protein content, as compared to single stress treatment (Savin
and Nicolas, 1996). In Brassica species, exposed to combined
heat and drought stress, seed protein content increased while
seed weight decreased at higher temperature (35/18◦C), in
comparison to moderate temperature (28/18◦C) (Gan et al.,
2004). Considering that heat and drought stress are frequently
experienced together and would be a major risk for the
grain crops in future, more studies are needed to evaluate
the impacts of these two stresses on mechanisms at various
organizational levels affecting seed yield and quality in various
crops.
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INTEGRATIVE ‘OMIC’ APPROACHES
AND MOLECULAR MAPPING ON SEED
FILLING IN RESPONSE TO DROUGHT
AND HEAT STRESS

Though, seed filling stage is one of the most important phases
that determine yield, based on the available information
regarding the stress sensitivity of enzymatic processes involved
in accumulation of starch, the complete picture is missing.
The individual and combined effects of heat and drought
stress on crop production and yield is a complex phenomenon
that includes processes as diverse as assimilation and supply
of nutrients to various reproductive organs, accumulation of
stem reserves, gamete formation, fertilization and embryo
development, and endosperm and seed development.
Developmental studies, if integrated with “omic” studies
would determine the complex gene expression pattern during
seed filling and unravel the molecular basis of the impacts
of heat and drought stress on seed quality and composition
(Figures 2, 3). To deduce the extremely susceptible molecular
process underlying the seed filling phenomenon and the effect
of drought and heat stress episode(s) on seed filling, different
approaches involving genomics, transcriptomics, proteomics,
micromics and epigenomics are imperative to identify not
only the key responsible genes but also other regulatory
molecules/proteins influencing make them responsive to genetic
improvement.

TRANSCRIPTOMICS AND SEED FILLING

Using microarray technology in rice, ∼21,000 genes, which are
involved in the successive stages of grain filling, have been
identified, and a majority of them relate to the metabolic
pathways of carbohydrate and fatty acids (Zhu et al., 2003).
Cluster analysis and correlation studies reveal the association of
269 genes with grain filling (Zhu et al., 2003). The information
about the rice genome sequence has helped in the recognition
of promoter regions that control these genes, and has led to
the discovery of common cis-elements shared in the promoter
region in the grain filling genes. Using grain gene cluster-
analysis, it has been revealed that AACA element appears to be
dominant among 103 available promoters. These eventually led
to deciphering nine transcription factors that help in regulating
gene expression (Zhu et al., 2003). Study in the Barley caryopses
using Affymetrix 22K Barley1 Gene Chip (Close et al., 2004),
at 21 days post-anthesis stage (Mangelsen et al., 2011) reveal
that 2020 genes were differentially expressed under heat stress.
The genes with a role in biosynthesis of storage compounds
and cell growth are down-regulated indicating disruption of seed
development. Further, genes for production of sugars increased,
which provide evidence for high production of compatible
solutes as well as feed-back induced substrate accumulation for
biosynthesis of storage compounds (Mangelsen et al., 2011).
Metadata analysis in the same study reveals that embryo and
endosperm are the primary targets of heat stress response

(Mangelsen et al., 2011). The impact of high temperature on
grain filling during the milky stage of rice has been elucidated
by Yamakawa et al. (2007). The genes involved in starch
synthesis, GBSS and SBE show decreased expression while the
starch consuming α-amylase show increased expression. In rice
caryopses, exposed to high temperature, the transcription level
of genes encoding for an enzyme ADP-Glc pyrophosphorylase
(AGPase) declines, but not in the SSS isoforms levels. The
variations noticed in transcript levels were correlated to the
observed biochemical differences between the starch grains
formed both under normal and high temperatures, mainly, with
reduced amylose content, side chain elongation of amylopectin
and smaller grain size.

Similar observations have been reported when drought stress
is applied during the first few days after pollination, where
inhibition of endosperm division occurs which is related to
reduced kernel size at maturity, such as in maize (Ober
et al., 1991) and wheat (Nicolas et al., 1985). The endosperm
and placental/pedicel tissues of maize, drought-stressed for 5–
9 days after pollination, have been examined using cDNA
microarray (Yu and Setter, 2003). A marked difference occurs
in the response of both tissue types: in the pedicel, 89%
of the 79 transcripts affected show up-regulation whereas, in
the endosperm, 82% of the 56 transcriptionally altered genes
show down-regulation. In case of pedicel, transcription levels
of stress-related genes [e.g., heat shock proteins (HSPs) and
chaperone genes] are enhanced whereas, in the endosperm,
the genes involved in cell division, cell wall degradation and
growth are down-regulated. In another study, the expression
of starch and sucrose metabolism pathway genes like a-Amy3
gene encoding α-amylase, and an alpha-glucosidase (ONG2),
catalyzing the hydrolysis of the raw starch granules, in wheat
is altered during drought stress at grain filling stage (Ma et al.,
2017).

MICROMICS OF SEED FILLING

Beside the transcriptomics, micromics approach also provides
information about the post-transcriptional gene regulation of
the seed filling through identification of different microRNAs
(miRNAs). The role of miRNAs as master regulators in
controlling the gene expression has been studied in various
crop species (Jin et al., 2015). Different studies have identified
the crucial role of miRNAs and their regulation in seed filling
process through their target identification in different crop
species like rice, wheat and maize, etc. (Peng et al., 2013;
Yi et al., 2013; Jin et al., 2015). Members of miR156 family
show exclusive expression during grain filling process in rice
by targeting the squamosal promoter binding protein like (SPL)
family genes. SPL16 regulates the cell proliferation at the time
of grain filling in rice and the increased expression of SPL16
is directly proportional to the grain yield (Wang et al., 2012).
The role of SPLs in different yield related traits like grain size,
grain quality, yield, panicle branching, tillering and plant height
has been described in rice (Si et al., 2016). Overexpression
of miR397 shows its role in grain size by down-regulating its

Frontiers in Plant Science | www.frontiersin.org 12 November 2018 | Volume 9 | Article 1705

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01705 November 24, 2018 Time: 19:30 # 13

Sehgal et al. Seed Filling and Abiotic Stresses

target, lac that encodes laccase protein (Zhang et al., 2013).
Likewise, increased expression of miR156, miR164, miR166,
miR167, and miR1861 during grain development and grain
filling stages signifies their regulatory roles (Peng et al., 2013).
Studies about the influence of miRNAs during grain filling
under heat and drought stress periods are very limited. In
one such study in wheat, the expression of miRNAs- miR159a,
159b, miR160, and miR171a during heat stress at grain filling
stage decreases (Goswami et al., 2014). More studies are
needed to understand the finer role of micro RNAs involved
in regulation of seed filling under drought as well as heat
stress.

PROTEOMICS-BASED STUDIES ON
SEED FILLING

Proteomic reference maps are available for various crops
during grain filling and maturation stages, e.g., wheat (Vensel
et al., 2005) and maize (Méchin et al., 2004) endosperm and
barley grain (Finnie et al., 2002). Exploring the individual
as well as combined impacts of drought and heat stress on
protein composition can be useful for improving protein quality
in crops. Heat stress effects have been studied thoroughly
on hexaploid wheat grains at the protein levels (Majoul
et al., 2003, 2004) where various proteins involved in starch
metabolism decrease whereas HSPs increase (Majoul et al.,
2004). Subsequently, differentially 121 proteins are reported to
reveal considerable alterations in response to drought stress
in the proteome of wheat grain, (Hajheidari et al., 2007),
of which 57 have been identified. More than half of the
proteins identified are thioredoxin targets, unveiling the link
between drought and oxidative stress. Another study on wheat,
exposed to heat stress during grain filling stage (Wang et al.,
2015) show increase in expression of proteins involved in
signal transduction, photosynthesis, antioxidant enzyme, ATP
synthase, HSPs, and other nitrogen metabolism related proteins
in tolerant genotype, as compared to sensitive genotypes,
indicating their crucial role in tolerance (Wang et al., 2015).
Proteomics studies in the rice grain development show the
association and acquisition of different metabolic pathway
proteins including glycolysis, citric acid cycle, lipids and proteins
in the mature grains (Mitsui et al., 2013). Assessment of
seeds developing under drought or/and heat in contrasting
genotypes would reveal vital information about the type of
transcripts and proteins influenced by stresses, which would
be beneficial for their genetic manipulation to improve stress
tolerance.

QTLs ASSOCIATED WITH SEED FILLING

‘Stay green’ trait can be a convenient trait to use as an indicator
of sustainable supply of assimilates and utilization of stem
reserves, which can also be regarded as a mutually exclusive
strategy to promote seed filling under stressful conditions (Blum,
1998; Abdelrahman et al., 2017). Many QTLs (Xu et al., 2000;

Abdelkhalik et al., 2005; Harris et al., 2007) or candidate
genes (Lee et al., 2001; He et al., 2005; Gregersen and Holm,
2007) related to leaf senescence have been identified in cereals
and might prove crucial for genetic modifications in breeding.
Five QTLs in two bread wheat genotypes are identified on
chromosomes 1B, 2B, 3B, 5A, and 6B under high-temperature
stress during grain filling (Sharma D. et al., 2016). A QTL
for the heat susceptibility index for the grain filling period is
present in close association with QTL region for productive
tillers under late-sown conditions and grain filling duration
on chromosomes 1B and 5A, respectively. Similarly, a major
QTL, qDTY1.1 is present on chromosome 1 for grain yield
for terminal drought stress in rice. This shows the positive
effect on grain yield during drought stress conditions (Vikram
et al., 2011). Another major QTL on linkage group 2 (LG
2) for terminal drought tolerance, identified in pearl millet,
is also considered as a marker for grain yield improvement
across different terminal stress conditions. Thus, these QTLs
can be used for molecular wheat breeding programs for
conferring heat as well as drought tolerance (Sharma D. et al.,
2016).

CONCLUSION

Seed-filling processes are adversely affected by heat and drought
stress in all crop species, resulting in poor-quality seeds and
reduced seed yields. The frequency of these two stresses
occurring at the same time is increasing, for both for summer-
and cool-season crops, which is highly detrimental to the
qualitative and quantitative aspects of yield. Hence, future
research should focus on investigating the dual effects of
drought and heat, involving various physiological, biochemical
and molecular approaches. Future endeavors should also pay
attention on screening the existing germplasm of various
crops under combined stress environment to identify tolerant
genotypes and their subsequent incorporation into breeding
programs. It is vital to understand and dissect various
components influencing seed-filling processes under separate
and combined stress environments to unveil varying responses
of different crops to these two stresses. Identification of sensitive
sites (embryonic stages, hormonal changes and biochemical
pathways for seed reserves, signaling molecules, proteins and
genes) related to seed-filling processes in stressed plants,
especially under the combined stress, would provide useful
cues in developing strategies to improve seed quality. As
photosynthetic activity mainly determines crop productivity,
the breeding for ‘stay-green’ trait is essential to combat
drought as well as heat stress. ‘Omics’ studies are in progress
that will be useful for identifying the genes, proteins, and
metabolites in developing seeds that are, impacted by heat or
drought stress. Modeling the stages of development, growth,
grain productivity, grain quality and sink-source relations
will enable better insights on the physiological and genetic
nature of stress tolerance, ultimately resulting in enhanced
grain yields and quality in crops. Improved models can
enhance the likelihood of predicting crop performance in future
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challenging climates, which will largely help to identify traits
that can be exploited through breeding to produce sustainable
climate-resilient genotypes with acceptable yield under stressed
environments.
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