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ABSTRACT
Rice is a staple food crop of India and is grown on 44 Mha (2011–12),
58.6% of which are irrigated. An inevitable phenomenon which looms
over all aspects of human life and affects rice production in India is
drought. Assessing drought damage using geospatial datasets avail-
able in the public domain, such as the Normalized Difference
Vegetation Index (NDVI) derived from the Moderate Resolution
Imaging Spectroradiometer (MODIS), can provide specific and local
ecoregion information for developing drought-resistant rice varieties.
Based on multi-temporal NDVI data and field observations in 2009, we
developed amethodology to identify andmap drought-affected areas
in India. A long-term (10-year) average of NDVI during the rainy (kharif)
season (June–October) was compared with NDVI from a known
drought year (2002–03) to identify changes in rice area. Rainfall data
from the Tropical Rainfall Monitoring Mission (TRMM) was used to
support the drought analysis. Spectral matching techniques were
used to categorise the drought-affected rice areas into three classes –
severe, moderate, andmild based on the intensity of damage assessed
through field sampling. Based on these ground survey samples, spec-
tral signatures were generated. It was found that the rice area was
about 16% less in the drought year (2002–03) than in a normal year
(2000–01). A comparison of the MODIS-derived rice area affected by
drought in 2002 for each state and district against the difference in the
kharif season harvested rice area between 2000 and 2002 (from official
statistics) revealed a substantial difference in harvested area in 2002
that was largely attributable to drought. An 84.7% correlation was
found between the MODIS-derived drought-affected area in 2002
and the reduction in harvested area from 2000–01 to 2002–03. Good
spatial correlation was found between the drought-affected rice areas
and reduction of rice harvested areas in different rice ecologies, indi-
cating the usefulness of such geospatial datasets in assessing abiotic
stress such as drought and its consequences.
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1. Introduction

Rice is grown on over 44 Mha in India, in almost every state. Meteorological drought can
affect any rice-growing region of India, with farm households in rainfed areas at
particular risk. Drought is the main cause of inter-annual changes in cultivated rice
area in India that leads to a reduction in expected rice harvest, but there is little spatial
information on which areas are affected, by how much and how often. Vegetation index
time-series derived from hyper-temporal, moderate resolution, optical remote sensing
imagery can be used to detect water stress in plant canopies across large areas. Here we
present a method to detect and characterise drought-affected rice-growing areas under
the assumption that there is a strong negative linear correlation between inter-annual
changes in rice area and the extent of meteorological drought.

Agriculture accounts for 17.8% (2011–2015) of the Gross Domestic Product (GDP) of the
Indian economy (WorldBank 2016). Two-thirds of the arable land (96 Mha) is under rainfed
farming and 44% of the total production comes from rainfed regions (Chandrasekar et al.
2010). The yield of rainfed crops is significantly influenced by weather, especially rainfall
distribution (Kumar et al. 2011). Droughts occur frequently in India, resulting in water
shortages and economic crises for rural people, eventually leading to food insecurity.
Population growth and increased wealth in India between 1980 and 2000, led to increased
demand for water and other natural resources which exacerbated the impact of droughts
(Thenkabail, Gamage, and Smakhtin 2004). More recently, the 2009–10 drought affected
more than 100 million people, with severe impacts felt in the states of Uttar Pradesh, Bihar,
and Andhra Pradesh, as well as in Pakistan’s Sind and Baluchistan provinces (DRMS 2010).

Based on the Köppen classification, India has several climates: monsoon with a short
dry season in the south; tropical savannah in the central region; semi-arid in the west;
monsoon with dry winters in the north, and; cold-humid in the north-east. The monsoon
and tropical savannah climates are most dominant in the rice growing areas of the
country and as such there are four seasons defined by the Indian Meteorological
Division (IMD), which are: winter in January and February; pre-monsoon from March to
May; south-west monsoon from June to September, and; post monsoon from October to
December. Over 75% of the annual rainfall is received during the south-west monsoon.
The average annual rainfall is 119 cm, but with high spatial and temporal variations over
the country. The Western Ghats, the Sub-Himalayan areas in the north-east and the
Meghalaya Hills receive over 250 cm annually, whereas the northern parts of Kashmir
and Western Rajasthan receive less than 40 cm (IMD 2015).

We define drought as a long period of extremely dry weather when there is insuffi-
cient rain to successfully grow crops or replenish water supplies (Thenkabail, Gamage,
and Smakhtin 2004). Drought assessment is useful for identifying problem areas in
which to disseminate new technologies and fund interventions to improve rural liveli-
hoods. As places with different rice environments respond to drought differently, the
spatial and temporal extent of drought needs to be assessed and characterised.

Satellite imagery can be used to monitor agricultural areas in order to identify
changes in land use dynamics, assess drought stress, and estimate physical proper-
ties related to productivity, such as the leaf area index (Potter et al. 1993; Running
et al. 1999; Chandrasekar et al. 2010; Gumma et al. 2011b, 2015b, 2015a; Behrenfeld
et al. 2001). The Normalized Difference Vegetation Index (NDVI), based on the visible
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and near-infrared light that is reflected by vegetation, is a good indicator of vegeta-
tion condition and particularly drought stress. Healthy vegetation absorbs most of
the red radiation (for photosynthesis and creation of chlorophyll) and reflects most
of the near-infrared radiation, whereas water stressed vegetation reflects slightly
more red radiation but absorbs much more near-infrared radiation (Kumar et al.
2002; Murthy et al. 2009; Zhang and Guo 2008; Daughtry et al. 1992). As a result,
NDVI has been commonly used to monitor major crops (Jensen 1996; De Bie et al.
2011), often using temporal NDVI information to assess vegetation condition
(Murthy et al. 2009).

Many studies on agricultural drought have been carried out at scales ranging from the
micro level to global level (Eriyagama, Smakhtin, and Gamage 2009; Peel, Pegram, and
McMahon 2004; Murthy et al. 2009). Several studies have used the National Oceanic &
Atmospheric Administration (NOAA), Advanced Very High Resolution Radiometer (AVHRR)
and MODIS data to monitor drought and estimate biomass (Goward, Tucker, and Dye 1985;
Teng 1990; Benedetti and Rossini 1993; Murthy et al. 2009; Pinjarla et al. 2017; Bhuiyan,
Singh, and Kogan 2006; Anderson et al. 2010; Justice et al. 1985; Justice and Hiernaux 1986).
Goward, Tucker, and Dye (1985) analysed annual and inter-annual variability of vegetation
using multi-temporal AVHRR data, and demonstrated the application of AVHRR based
vegetation monitoring at a global scale. Justice and Hiernaux (1986) monitored grassland
conditions from local to regional scales in the Sahelian zone of Niger and reiterated the
importance of analysing vegetation condition usingmaximum value composite (MVC) data.
MVC takes the highest or best value pixel as a representation of a consecutive time series of
pixels, to identify major changes in biomass during the growing season while removing
shorter duration variations and reducing the effect of cloud contamination and other causes
of data gaps. Teng (1990) monitored the effects of the 1988 drought on crops in the US Corn
Belt by using multi-temporal NDVI data from NOAA-AVHRR to provide an objective assess-
ment of the drought’s extent and severity. Bhuiyan, Singh, and Kogan (2006) monitored
drought dynamics in the Aravalli region of India using NOAA AVHRR data and derived
different vegetation drought indices, such as vegetation condition index (VCI), temperature
condition index (TCI) and vegetation health index (VHI) alongwith NDVI. Pinjarla et al. (2017)
assessed long-term agriculture drought using time series MODIS NDVI, meteorological and
irrigation datasets. Anderson et al. (2010) assessed the impact of drought during 2005 in the
Amazon forest using MODIS enhanced vegetation index (EVI) and normalized difference
water index (NDWI). Different vegetation indices expressed varied degree of response to
drought for grass land vegetation. Extended vegetation index (EVI) and NDVI lagged behind
Land surface water index (LSWI) in the sensitivity analysis of vegetation condition (Bajgain
et al. 2015; Chandrasekar et al. 2010). Changes in irrigated area resulting from water short-
age in command areas and large river basins have been mapped using MODIS eight-day
time series data (Biggs, Gangadhara Rao, and Bharati 2010; Gumma et al. 2011c; Gaur et al.
2008). Based on the above studies, agricultural drought due to insufficient soil moisture
during the crop growing season leads to vegetation water stress that can be observed by
spatial and temporal deviations between NDVI in a drought and non-drought year between
a drought year and average conditions (Chandrasekar et al. 2010).

Several studies have used Spectral Matching Techniques (SMTs) with multi-temporal,
moderate resolution optical remote sensing imagery for mapping and monitoring
vegetation. For example, Gumma et al. (2014 and 2016) used SMTs to map seasonal
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rice areas and rice ecosystems in South Asia using MODIS time series data and Gumma
et al. (2016) mapped rice-fallows in South Asia using SMTs. Thenkabail et al. (2007) used
SMTs to map irrigated areas for different time periods using AVHRR data for the year
1982 and 2000. The success of these studies in monitoring changes in rice area and
changes in water management in Asia suggest that SMTs would be an appropriate
technique for drought detection in rice-growing areas of India.

The objective of this study was to categorise drought in rice-growing areas of India by
means of MODIS time series data. When using the NDVI for this purpose, many
assumptions have to be made, but their validity can be assessed by collecting and
analysing additional information from the field. We used spectral matching techniques
to assign drought to one of three categories on the basis of field information. India was
chosen as the study area because it is one of the largest rice-growing countries, and
droughts occur periodically in several parts of the country. We focused on the 2002–03
drought, one of the worst recorded after the droughts of 1918 and 1972 (Bhat 2006;
Niranjan Kumar et al. 2013; Zampieri et al. 2018).

2. Study region

India lies in South Asia, extending between 6°34′1.1″N and 36°54′35″N and 68°11′10.5″E
and 97°47′23.6″E. Spanning about 345 Mha, the country includes 208 Mha of agricultural
land and 17 major river basins. It is the second largest populated country in the world.
Around 72.2% of the total population live in rural areas (Census 2012) and most of them
depend on agriculture for their livelihood. Agricultural and rural development are seen
as key interventions to eradicate poverty and create conditions for sustainable and
equitable economic growth.

The study area includes nine major river basins: Indus, Ganges, Brahmaputra, Narmada,
Tapti, Godavari, Krishna, Kaveri, and Mahanadi (Figure 1), which according to the Central
Board of Irrigation and Power (CBIP) cover a total irrigated area of 133 Mha (CBIP 2007).
According to national statistics, 44 Mha of rice were cultivated in 2000–01, which was
considered to be a normal year, compared with 39 Mha during 2002–03, which was classified
as a drought year (Niranjan Kumar et al. 2013). India has the largest rice area in theworld, it can
be grown in three seasons in India; kharif (June–October), rabi (November–February) and
summer (February–May) (Manjunath and Panigrahy 2009; Gumma et al. 2016).

3. Data

3.1. Satellite imagery

The MODIS Terra Surface Reflectance 8-day composite product (MOD09A1) uses the best
observations during an 8-day period (Vermote, El Saleous, and Justice 2002). The spatial
resolution of the data is approximately 500 m. Although the data have already undergone
atmospheric correction (Vermote and Vermeulen 1999) and cloud screening, each MODIS
8-day compositewas further processed and cloud contaminationwas removed as explained in
Gumma et al. (2014). We downloaded eight-day composites (fromwww.modis.land.gsfc.nasa.
gov) that overlappedwith the rainy season (or kharif season) between June and December for
each year from 2000 to 2009. In India, the kharif season runs from June to October, however
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some areasmay receive delayed rainfall, which leads to delayed sowing and hence our choice
of December as the end point of the time series. Our drought assessment used four of the
MODIS bands: 1, 2, 3, and 6 (Table 1).

Figure 1. Major rivers and river basins in India.
Note: River networks and basin catchments extracted from SRTM 90 m DEM, http://srtm.csi.cgiar.org/SELECTION/
inputCoord.asp. Also shown are the 584 locations from which field plot data were collected for this study.

Table 1. Characteristics of the satellite sensor data used in the study.
MOD09A1 Producta

Bands b Band width (nm 3) Band centre (nm 3) Name Application 4

3 459–479 470 Blue Soil/vegetation differences
4 545–565 555 Green Green vegetation
1 620–670 648 Red Absolute land cover transformation, Vegetation

chlorophyll
2 841–876 858 NIR1 Cloud cover, vegetation, land cover transformation
5 1230–1250 1240 NIR2 Leaf/canopy differences
6 1628–1652 1640 SWIR1 Snow/cloud differences
7 2105–2155 2130 SWIR2 Cloud properties, land properties

Of the 36 MODIS bands, the 7 bands reported here are specially processed for land studies.
b MODIS bands are re-arranged to follow the electromagnetic spectrum (e.g. blue band 3 followed by green band 4).

3 Nanometers (nm). 4 http://modis-land.gsfc.nasa.gov.
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3.2. Field plot data

Field plot data were collected from 584 farmer surveys linked to field plots during two
different ground survey missions to map land use and land cover. Major cropland areas
were chosen based on the knowledge of the district agricultural extension officers in
order to ensure that adequate samples of rice as well as of other crops are collected. The
farmers provided information on irrigation source, drought condition, crop calendar,
cropping intensity (the number of times a crop is grown in a plot of land), and canopy
cover (%) for these field plots. The interview included a question on three levels of
drought intensity: mild, moderate, and severe. Severe drought meant the total area had
either not been planted by the farmers or had been totally damaged after planting.
Moderate drought meant that either the farmers had planted only part of the area or
that 50–60% of the planted area had been damaged due to water shortage. Mild
drought meant that either part of the area had been sown by the farmer or that
0–10% of the area had been damaged due to water shortage.

The first set of field plots (341) was collected during 11–26 October 2003 to map
irrigated areas. Out of 341 plots, 143 that had detailed information were used for class
identification and labelling. The remaining 198 points were used for accuracy assessment
(Figure 1). The second set (243 field plots) was collected during August and
September 2011. Interviews with farmers and district agricultural officers were conducted
at each field plot location to determine drought intensity, crop types, and conditions during
the 2009 kharif season. Out of 243 field plots, 205 points that had detailed information were
used for class identification. Of these, 192 points were used for ideal spectra generation.

3.3. TRMM rainfall data

Monthly rainfall data for the 13-year period between 1998 and 2010 were downloaded
from the Tropical Rainfall Measuring Mission (TRMM) (TRMM 2016) website at a spatial
resolution of 0.25° ×0.25° (approximately 27 km × 27 km) (Kummerow et al. 1998).
Average monthly rainfall estimates for each month in the kharif season were extracted
for the selected 13 years, including for the 2002 drought year. In the absence of any
official data on drought-affected areas, differences in monthly TRMM data between
a drought year and average conditions were used as an accumulation of evidence of
the spatial and temporal patterns of drought occurrence.

3.4. Rice-growing areas, national rice statistics, and previous drought studies

The maximum possible extent of rice in 2002–03 was derived from a previously
published MODIS-derived rice extent map for 2000–01. The map includes 12 rice
classes with a classification accuracy of 80% and a 97% agreement with rice areas
from district statistics. The 2000–01 map is the most detailed publicly available map
of rice extent in India (Figure 2). Our hypothesis was that there would be a slight
change in the potential area that could be planted to rice between 2000–01 and
2002–03 and that most of the changes would be attributable to a deficit in available
water, due to drought conditions (Bhat 2006). Data on rice area per state for 2000–01
and 2002–03 was obtained from the Directorate of Economics and Statistics,

INTERNATIONAL JOURNAL OF REMOTE SENSING 8151



Government of India (http://dacnet.nic.in/rice/) (INDIASTAT 2015) to compare with
the MODIS-derived rice-growing area in the respective years. Finally, we compared
the drought areas from our analysis with those of previous studies (Biggs,
Gangadhara Rao, and Bharati 2010).

4. Methods

Figure 3 provides an overview of the methods used. The first dataset prepared for
a time series analysis was the Mega File Data Cube (MFDC), which is a stack of
MODIS 8–day reflectance composites for the entire study period 2000–09. A cloud-
removal algorithm was applied using a threshold to band 3 where all band values for
that pixel were set to null if band 3 was greater or equal to 18% (Gumma et al.
2011a). Using the same stack, another MFDC of NDVI layers was derived from the red
and near-infrared (NIR) bands. Monthly MVC of NDVI was then derived to provide
smooth representations of changes in vegetation condition during the kharif season,
while reducing noise due to shorter duration fluctuations and by filling gaps due to
cloud contamination (Gumma et al. 2014). The rice extent map for the 2000–01 kharif
season, was used as a mask to estimate the inter-annual change in drought-affected
rice area (Gumma et al. 2011a). A drought indicator was derived by comparing the
seasonal MODIS NDVI from the well-documented drought during the 2002–03 kharif

Figure 2. Rice extent map for a normal year: the final 12 rice classes for a good year 2000–2001,
from (Gumma et al. 2011a).
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season against the average seasonal MODIS NDVI over 10 years (2000–09) for the
same season. An unsupervised classification of rice areas in which in 2002–03 the
NDVI was lower than the average NDVI resulted in a large number of drought classes
that were then grouped and labelled as having no, mild, moderate or severe
drought, based on the similarity of their temporal signatures. TRMM monthly rainfall
data for the same period and information from previous studies were used as
independent sources of corroborative evidence for the validity of our resulting
drought map.

4.1. Vegetation indices, maximum value composite (MVC)

The maximum rice crop extent was derived from the 2000–01 rice map. The NDVI and
LSWI (Xiao et al. 2006) were derived for each eight-day composite in the 2000–09 time
series of images, using Equations (1) and (2).

Figure 3. An overview of the methodology used for mapping drought areas using MODIS data.
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NDVI ¼ ρNIR � ρRed
ρNIR þ ρRed

(1)

LSWI ¼ ρNIR � ρSWIR1

ρNIR þ ρSWIR1
(2)

The rationale for using NDVI to detect drought is that we would expect to see
a lower NDVI signature (i.e. the temporal profile of NDVI during the growing season)
for a given pixel in a drought year than in a normal year. However, flooding or crop
submergence, which is another common problem in India, can also result in a lower
than expected NDVI signal. Moreover, during the early parts of the season, the NDVI
response is low, largely because reflectance is from the soil background rather than
from the sparse crop cover. We used the LSWI, which is sensitive to soil water
content and to leaf water content, to address this. The LSWI is related to liquid
water in vegetation canopies, which interact with solar radiation (Gao 1996). We
compared this water-sensitive index with NDVI and classified a pixel as being sub-
merged if the LSWI exceeded the NDVI value for two or more consecutive 8-day
periods (Xiao et al. 2006). This ensured that potentially submerged areas, that may
be confused with drought in a purely NDVI based analysis, were excluded from the
drought classification.

4.2. Identification and mapping of drought areas

Monthly MVCs of NDVI were generated for each of the seven months of the kharif
season for each year in the time series using Equation (3):

NDVIMVCð Þi ¼ max½ðNDVIÞi1; ðNDVIÞi2; NDVIÞi3; NDVIð Þi4
� �

(3)

where (MVC)i is the MVC of the ith month (for example, if ‘i’ is January–December), i1, i2,
i3, i4 are the data on every 8-day in a given month. April and October use only three
8-day composites instead of four. A mean of the (NDVIMVC)i for each month was created
from the 10 years of NDVI data (NDVIMVC) m,n so that the monthly NDVI during the
kharif season of the drought year, 2002–03, could be compared to average monthly
conditions. The same process was performed to create a seasonal MVC across the kharif
season. Rice areas with drought were identified using a simple threshold on these
seasonal MVCs using ‘Equation (4)’:

NDVIMVCð Þsm10> NDVIMVCð Þsm;n (4)

where (NDVIMVC)sm10 is the seasonal mean NDVI MVC over 10 years and (NDVIMVC)smn

is the seasonal NDVI MVC of the nth year, where n is year 2002.
This threshold was derived from experience in using NDVI time series for rice crop

mapping in South Asia (Gumma et al. 2011b, 2015b, 2011a, 2016) and from
a comparison of the drought conditions in the field and corresponding NDVI signatures
for those locations. They represent the difference between NDVI in the observed kharif
season and the average NDVI in the kharif season. As such, they are specific to the rice
crop in South Asia and may not apply to other crops or geographies. However, some
studies on wheat and multiple vegetation types have shown good correlation between
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NDVI and biomass as well as photosynthetically active radiation (Wang et al. 2005;
Hansen and Schjoerring 2003). This threshold on the seasonal MVC NDVI data was
used purely to separate drought from non-drought areas. The method to further
distinguish the severity of drought using the monthly MVC NDVI data is explained
below.

4.3. Unsupervised classification for class spectra generation and drought
classification

Unsupervised classification using the Iterative Self-Organized class (ISOCLASS) cluster algo-
rithm (using Iterative Self-Organizing Data Analysis Technique Algorithm (ISODATA) in Earth
Resource Development Assessment System (ERDAS) Imagine 2010) followed by progressive
generalisation (Cihlar et al. 1998; Nguyen et al. 2012) was applied to the NDVI MVC of the
kharif season 2002–03. The classification was set at a maximum of 100 iterations and
a convergence threshold of 0.99. Initially, 15 classes were extracted from the unsupervised
classification. Class temporal profiles were generated using ISOCLASS k-means classification
of the MFDC. The signature files of the 15 classes were plotted and similar classes were
grouped. Classes were further grouped on the basis of decision tree algorithms and spectral
matching techniques (SMTs) to match and label the classes with the ideal spectral signa-
tures for drought as explained below (Gumma et al. 2011a, 2011c; Thenkabail et al. 2009).

4.4. Drought classification and characterisation

Drought areas were classified into four categories (severe, moderate, mild, and no
drought), based on the intensity of drought that occurred in the field plots as per
farmer’s response, as explained in Section 2.3. This information was collected from 205
fields out of the 584 field plots.

NDVI signatures were extracted from the NDVI stack for the year 2009 for field plots
surveyed in 2011. From the 205 field plots considered, we selected 192 on the basis of field
plot information and spectral similarity to the four categories. NDVI signatures from the
four categories based on farmers’ responses were used to identify ideal spectral signatures
for severe, moderate, mild, and no drought and no drought rice areas (Figure 4).

Drought characterisation normally involves the use of an index to describe drought
severity or its absence (Table 2). This study used drought categorisation based on the
difference between threshold values of maximum NDVI during the kharif season for the
selected 10 years and that of the kharif season of the drought year. The threshold values
obtained during 2009 were used for each year from 2001 to 2009 and categorised for
drought. The thresholds of NDVI signature help determine the onset of a cropping
season, its duration, severity, and end. Severe drought area signatures show continu-
ously low NDVI (<0.201) compared with the 10-year mean monthly NDVI–MVC values,
which may represent a fallow period due to lack of water. Moderate drought area
signatures show lower NDVI values (0.151–0.200) than the 10-year mean NDVI–MVC
value; this indicates crop damage due to drought. Figure 5 shows the different drought
categories between drought years and a normal year.
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4.5. Drought classification accuracy assessment and comparison against
secondary data

An accuracy assessment of the drought classification was performed using an error
matrix and kappa coefficient (κ) (Congalton 1991). The assessment was based on 198
independent field plot points as explained in Section 2.3 that were not used in the
drought classification and labelling process.

We compared the spatial distribution of drought-affected rice area to the difference
in TRMM rainfall between 2002–03 and the 1998–2010 average. We also compared the
mapped drought extent in 2002–03 to the reported change in harvested rice area
between 2000–01 and 2002–03 on the basis that if drought was the major cause of
rice area reduction across India in 2002–03 then we would observe a strong relationship
between the drought mapped area and the change in reported harvested rice area.
Finally, we compared our drought area estimates to those reported in previous studies,
though they covered limited geographic extents.

Figure 4. Ideal spectra illustration (with a number of samples in brackets) for severe drought,
moderate drought, and mild drought.

Table 2. Drought characterisation based on NDVI thresholds.
Drought class Drought characterisationa No. of field plots in sample

Mild 0.100–0.150 20
Moderate 0.151–0.200 23
Severe >0.201 11
No drought <0.100 138

achange in peak NDVI from normal to drought
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4.6. Sub-pixel area (SPA) calculations

We used MODIS 500 m spatial resolution data to mapping drought areas. Each pixel
covers approximately 25 ha, which is larger than many agricultural fields in India.
As a result, the full pixel area (FPA) is not a correct representation of the drought-
affected rice area observed in the field and so a sub-pixel area (King et al. 2003)
estimate of the drought-affected rice area was computed as follows. The field plot
data observations included a visual estimate of the proportion of different land
use (rice cropped area including other land use and land cover areas) within
a 500 m × 500 m area. The SPA fraction was applied to each drought class to
estimate the actual drought area for that drought class using Equation (5). We used
192 detailed field plot data observations for SPA estimation (the same points that
were used for ideal spectra generation).

SPAð Þn ¼ FPAð Þn � RAFð Þn (5)

where SPA = sub-pixel area; FPA = full-pixel area; RAF = rice area fraction

Figure 5. Spatial extent of drought categories derived fromMOD09A1 and signature: (a) Nagarjunasagar
command area; (b) Mahanadi command area; (c) NDVI-MVC time series data for severe drought in
Nagarjunasagar command area; (d) NDVI-MVC time series data for moderate drought in Mahanadi
command area; (e) TRMM rainfall for severe drought in Nagarjunasagar command area; and (f) TRMM
rainfall for moderate drought in Mahanadi command area.
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5. Results and discussion

5.1. Drought in rice-growing areas

Figure 5 shows the resulting drought map and the three categories of drought (mild,
moderate, and severe) as well as non-drought and submerged areas. Surface water
irrigated rice areas in major command areas such as the Nagarjunasagar command
area (Figure 5(a)), Mahanadi basins (Figure 5(b)) are also illustrated. The areas under
each drought category, including its sub-pixel and full pixel area, are provided in Table 3.
About 14% of rice-growing areas were affected during 2002–03 compared to 2000–01
rice area (Table 3).

5.2. NDVI change analysis

Figure 5(c,d) show NDVI variations over India for 2000–01 and 2002–03. Some of the major
irrigated command areas (Nagarjunasagar, Tungabhadra, Krishna/Godavari delta, and part of
the Indo–Gangetic plain) observed peak NDVI (0.9) during September in the kharif season
during 2000–01. However, the NDVI value never exceeded 0.85 in any month during the
2002–03 kharif season. In a good year, themeanNDVIwas 0.59 during the kharif season, but in
the drought year (2002) it was as low as 0.28 in severe drought areas. In moderate drought
areas, NDVI was found to be 0.41 in a drought year compared to 0.50 in a good year.

A state-level analysis of NDVI during a normal year revealed that it ranged between
0.60 and 0.70 under rainfed conditions and between 0.7 and 0.8 under irrigated condi-
tions. The state of Andhra Pradesh, where most of the rice is grown on irrigated land and
deltas, had a high NDVI value of 0.80, whereas the NDVI values for Odisha and Karnataka
states were lower: 0.75 and 0.8, respectively, during a normal year. During a drought year,
these important rice-growing states showed a drop in NDVI values, indicating water
deficit. Andhra Pradesh and Odisha showed a 0.40 NDVI value during a severe drought
and 0.50 during a moderate drought. In states, such as Bihar, Jharkhand, and Karnataka,
where large areas are rainfed, the NDVI values ranged between 0.30 and 0.40.

5.3. Comparison against TRMM 3B42 rainfall

In Figure 5(e,f), cumulative monthly rainfall extracted from TRMM grids for areas that
experienced severe and moderate drought during the kharif season of 2002 is plotted
together with the monthly rainfall for 2000. A total rainfall of 840 mm was recorded during
the drought year (2002) whereas 1207 mm was the normal rainfall in those areas. Figure 6
illustrates the TRMM rainfall for the kharif season during the 13-year period (1998–2010) and
for 2002 showing a large difference between the two. From the 13-year data series, the
average monthly rainfall during the kharif season (June–December) was derived and then

Table 3. Drought areas across India for 2002–03 as derived from MODIS data, using full and sub-
pixel areas, classified as mild, moderate, or severe.
Drought class Sample size Full pixel area (ha) Drought fraction (%) Sub pixel area (ha) Percentage (%)

Mild 20 14506875 25.6 3713760 10%
Moderate 23 2301376 52.3 1203620 3%
Severe 11 362919 100 362919 1%
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compared with the corresponding monthly means during 2002 in order to reveal rainfall
anomalies that could be associated with drought conditions (Figure 7). During the severe
drought, no rainfall was recorded during the peak of the kharif season (July). Though not
much variation was observed in moderate drought areas, during the peak season (in July)
196 mm was recorded in the drought year, compared with 281 mm for the 13-year July
mean. Yet in July 2002, some areas were affected by flood. A comparison of the rainfall in

Figure 6. Comparison of mean seasonal rainfall (mean of 13 years: 1998–2010) with a drought year
(2002), using TRMM 0.25° rainfall data.

Figure 7. Monthly rainfall during 2002 (blue bars) compared with the mean monthly rainfall for 13
years (1998–2010). Low rainfall during the kharif season (June–December) clearly indicates a deficit
during 2002.
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2002 and the normal rainfall during the peak season in July revealed that 123 mm was
recorded in 2002 compared with 255 mm in the 13-year mean of July (Figure 7).

5.4. Spatial dynamics of drought area in relation to rainfall pattern

The rainfall distribution and NDVI information from remotely sensed sources provide
a synoptic overview of the difference between drought and non-drought years. Here we
place the information into context with a description and discussion on rice-based
cropping systems in India and their water resources.

The above analysis of rainfall indicates a deficit during the drought year which can be
categorised into 3 classes: <50%, 51–75%, and >75% rainfall (Figure 8). A cross-tabulation
between drought classes and rainfall deficit classes reveals useful correlations in the rice
crop ecologies of India. The rice crop in Bihar and southern and eastern parts of Uttar
Pradesh experienced mild drought even with <50% rainfall, because the crop is mostly
irrigated. Similarly, in states such as Punjab and Haryana and along the coastal plains and
deltas which are highly irrigated, mild drought was experienced when rainfall was less than
51–75% of the mean. In most of Tamil Nadu, where the rice crop is mostly grown under
rainfed conditions and is supplemented with surface and groundwater, mild to severe
drought was observed when rainfall was 51–75% less than the mean. But in Kerala, except
for a couple of districts which are moderately and severely affected by drought, mild
drought occurred in most of the rice-growing areas when rainfall was <50% of the mean,

Figure 8. Spatial comparison of drought area in relation to rainfall pattern.
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because it is a high rainfall state. In Karnataka, where rice is mostly irrigated, 51–75% less
rainfall than the mean resulted in mild to moderate drought in areas supported by
irrigation projects but severe drought elsewhere. The state of Maharashtra exhibited
a uniform pattern of drought correlated with the amount of rainfall and its impact on
the rice crop. The western districts grow a mix of rainfed/irrigated rice, interspersed with
patches of 100% irrigated rice mixed with wetland rice. Due to the availability of ground-
water, these areas incurred mild to moderate drought even when rainfall was 51–75% less
than the mean. The areas with 100% irrigated rice mixed with wetland rice experienced
mild drought because of the low deficit (<50% rainfall). Thanks to surface water irrigation,
even with a rainfall deficit of <50% the eastern districts of Maharashtra, in which all rice is
irrigated, were not affected by mild to moderate drought. In Madhya Pradesh, different rice
ecologies are present in the eastern districts. Most of the rice irrigated solely by surface
water is surrounded by wetland rice. Elsewhere in the eastern districts, the rice is rainfed
and is mixed with irrigated rice receiving conjunctive irrigation from surface water or
groundwater. All these rice-growing areas experienced mild and moderate drought,
since the rainfall deficit was less (<50%). Most of Chhattisgarh is located in the Mahanadi
basin and Godavari basin in the south (Figure 2). The central non-forested land is arable
where rice is exclusively and extensively grown with 100% irrigation, interspersed with
extensive patches of rainfed and irrigated (with groundwater) rice. In the Godavari basin,
rice is irrigated with surface water and the second crop of rice is planted in the next season
(November). Thanks to the good groundwater resources in this state, when there was
a < 51–75% deficit in rainfall most of the rainfed rice-growing areas were affected by mild
and moderate drought (Figure 8).

5.5. Accuracy assessment and comparison with national statistics and other
studies

The accuracy varied from 67% to 93% across the four classes (severe, moderate, mild,
and no drought), with an overall accuracy of 83% (Table 4).

National rice area statistics data (Bhuvan-NRSC 2011) were compared with the rice
areas derived from MODIS data for 2002. According to national statistics, the reduction
in rice area was found to be about 5.48 Mha. MODIS-derived drought was estimated to
be 5.28 Mha. The positive correlation has been obtained between MODIS revised rice
areas and national statistics (r = 0.92). The significant reduction in 2002 is attributed to
reported drought conditions (INDIASTAT 2015) correlated with MODIS-derived drought
areas (R2 = 84.7%) (Figure 9). For details see Table 5. States with relatively small rice areas
or small changes in rice area (e.g. Himachal Pradesh) should be interpreted with care
due to the moderate spatial resolution of the MODIS data and the accuracy of the
method as summarised in Table 4.

The changes in rice-growing areas during 2000–01 and 2002–03 were compared with
the figures reported in other publications and with census data for four major rice-
growing districts in southern India (Table 6). The table shows that during 2000–01 the
area under rice was 1.43 Mha but shrank to 0.92 Mha in 2002–03. By comparison, the
MODIS-derived rice area was 1.41 Mha during 2000–01 and 0.88 Mha during 2002–03,
whereas Biggs et al. (Biggs, Gangadhara Rao, and Bharati 2010) reported the rice area
was 1.24 Mha during 2001–02 and 0.90 Mha during 2002–03.
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5.6. Identification of stress-prone areas

Given the relatively sound accuracy of the drought map for 2002–03, we applied the same
classification to every kharif season in the 10-yearMODIS time-series to identify drought prone
rice-growing areas. We assigned a drought frequency class to each pixel (Figure 10 and Table
7). This product cannot be validated based on available data, and there are no official drought
statistics to compare it against. However, it may serve as a first indication of which areas
should be investigated further for drought occurrence and eventual prioritisation for inter-
ventions to mitigate drought. From this purely exploratory extension of our method, we
estimated that 9,901,000 ha were affected by drought 1–2 times (mainly in crop years
2002–03 and 2009–10), while 3,684,800 ha were affected 3–5 times. A relatively small area
(1,611,000 ha) was affected five or more times.

5.7. Discussion on assumptions, methods, and data

We used SMTs, field plot data, MODIS time series imagery, and TRMM rainfall estimates to
map drought stress in rice-growing areas of India. Themethodmaps the estimated rice area
affected by drought for the main growing season and, based on a good validation for
a known drought year, it was applied to estimate the historical frequency and intensity of
drought to characterise the different drought-stresses in rice growing areas. Given the
accuracy of the map, the method should be explored further to map recent historical
frequency and intensity of drought in rice-growing areas, but it does not predict or map

Figure 9. Comparison of MODIS vs. National agriculture statistics estimates. The drought areas
derived using MODIS 500 m compared with state-wise agricultural statistics.

INTERNATIONAL JOURNAL OF REMOTE SENSING 8163



drought occurrence on a real or near-real-time basis. While the time series can be updated
every year, it is not a tool for in-season management or drought mitigation.

SMTs have been previously used to monitor crop lands for different purposes, such as
mapping and classifying irrigated areas, detecting land use/land cover changes, and detect-
ing different rice systems and rice crop intensities (Thenkabail et al. 2007; Gumma et al.
2015a, 2011a, 2014, 2016). We have demonstrated its ability to discriminate between levels
of drought stress. The matching of class spectra with ideal spectra leads to quick identifica-
tion and labelling of classes.

Table 5. A comparison between the state-wise rice area (×1000 ha) calculated using the MODIS
classification and the state-wise census data (NA = data not available).

State
MODIS rice area

(2000)
MODIS rice area

(2002)
Sub-national statistics

(2000)
Sub-national statistics

(2002)

Andhra Pradesh 3 764.4 3 119.4 3 956.3 3222.0
Arunachal
Pradesh

126.4 122.7 108.2 122.9

Assam 2 252.5 2 154.3 2 646.2 2541.0
Bihar 3 453.7 3 184.2 3 656.2 3584.9
Chhattisgarh 3 713.4 3 183.2 3 794.1 2983.5
Goa 56.7 53.0 68.0 56.2
Gujarat 722.1 566.4 634.6 580.0
Haryana 1 016.8 829.9 1 049.0 906.0
Himachal Pradesh 97.4 92.7 - NA – - NA –
Jammu and
Kashmir

280.1 258.2 244.1 92.2

Jharkhand 1 437.4 1 296.8 1 463.7 1383.2
Karnataka 1 298.5 1 134.9 1 481.4 1154.5
Kerala 360.6 351.7 346.6 314.1
Madhya Pradesh 1 705.4 1 312.0 1 699.0 1374.1
Maharashtra 1 463.7 1 237.3 1 511.5 1389.5
Manipur 192.4 185.6 212.4 170.0
Meghalaya 109.2 107.2 106.8 107.7
Mizoram 48.5 48.4 67.2 30.6
Nagaland 140.6 140.0 150.5 150.0
Orissa 4 062.0 3 537.3 4 437.3 3873.6
Puducherry 20.5 15.2 28.0 23.9
Punjab 2 688.1 2 379.3 2 611.0 2530.0
Rajasthan 163.5 124.0 166.1 83.6
Sikkim 0.4 0.4 – NA – 25.6
Tamil Nadu 2 231.6 1 821.2 2 113.3 1510.0
Tripura 105.3 102.5 241.2 255.3
Uttar Pradesh 5 830.0 4 977.5 5 817.5 4919.9
Uttaranchal 242.5 232.5 285.5 282.8
West Bengal 4 790.3 4 525.5 5 041.4 5081.6

Table 6. District-wise area cropped to rice (×1000 ha) calculated using the MODIS classification,
compared with district-wise census data and figures reported in other studies for Nagarjuna Sagar
command area.

District

District census Biggs, Gangadhara Rao, and Bharati 2010 MODIS estimates

2000–2001 2002–2003 2000–2001 2002–2003 2000–2001 2002–2003

Krishna 394 246 354 225 374 222
Guntur 306 206 329 204 301 216
Nalgonda 262 132 165 125 272 112
West-godavari 472 332 400 349 466 332
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SMTs require substantial field plot data to develop accurate sets of ideal spectral
signatures (Gumma et al. 2016). Uncertainties and/or inaccuracies in ground data will
result in class labelling errors leading to uncertainties in classes that are interpreted and
mapped. The field data were collected following a protocol which has been used in past
studies (Gumma et al. 2011a, 2014; Thenkabail et al. 2009) and were checked for
completeness and consistency. Photographs and interviews with local partners helped
ensure the quality of the field data.

Some studies have used 8-day and 16-day data to study drought using NDVI along
with LSWI, NDWI, LST (Gu et al. 2007; Wan, Wang, and Li 2004). However, it is also
possible to identify drought classes using monthly NDVI and LSWI, since there the
monthly maximum value composite results in less cloud contamination than shorter
composites. This is important in areas such as South Asia where cloud cover can be
pervasive. Given the longer duration of drought stress relative to other stresses such as
submergence, this lower temporal resolution was deemed appropriate to detect
drought stress in rice growing regions. Eight-day composites were however used during
class identification and ideal spectra generation.

Figure 10. Identification of drought stress-prone areas (severe and moderate drought) and number
of years in which stress occurred between 2000 to 2009 (LULC = land use/land cover).
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While NDVI is often used to indicate drought stress, it may not be sensitive enough to
detect the difference between a drought-stressed crop and a normal crop in the very
early stages of the growing season when vegetation cover is low and where there is
a stronger soil component in the signal. In such cases, a Soil Adjusted Vegetation Index
(SAVI) may be more sensitive (Huete 1988).

Our comparison of NDVI time series across years, where the deviation in any one year
against a mean is indicative of drought, implies that the seasonality is consistent
from year to year. However, it is possible that a different crop, or no crop is grown in
any given year. It is also possible that a farmer would delay crop establishment until
there has been sufficient rainfall. Those decisions may be management responses to
drought, and could lead to a difference in NDVI from the mean NDVI that could be
interpreted as a crop response to drought by this method. Thus, there is a risk that our
method overestimates the frequency and intensity of drought in rice growing areas. The
use of 500 m resolution MODIS data may mitigate this somewhat, since the NDVI signal
represents an average signal from many smaller fields, and such management decisions
would need to be taken coherently and consistently over a large area for them to have
a significant impact on the area estimated to be affected by drought. To reduce this risk
further, the method could be improved by analysing the NDVI curve for any temporal
shifts from year to year and their relationship with temporal shifts in accumulated

Table 7. Rice-growing areas prone to drought stress, per state, for three categories of drought
frequency during the 10 years (during 2000–2009), compared with total rice areas derived from
remote-sensing data for year 2000–2001.

State MODIS rice area (×1000 ha): year 2000

Drought frequency during 2000–2009 (×1000 ha)

1–2 Years 2–5 Years >5 Years

Andhra Pradesh 3764 1177 384 155
Arunachal Pradesh 126 13 8 6
Assam 2252 403 124 45
Bihar 3454 1265 492 127
Chhattisgarh 3713 627 272 131
Goa 57 5 2 1
Gujarat 722 199 95 39
Haryana 1017 197 88 33
Himachal Pradesh 97 11 4 2
Jammu and Kashmir 280 35 15 9
Jharkhand 1437 491 175 103
Karnataka 1299 328 144 62
Kerala 361 24 8 3
Madhya Pradesh 1705 424 213 86
Maharashtra 1464 263 100 43
Manipur 192 16 3 1
Meghalaya 109 9 3 1
Mizoram 48 0 0 0
Nagaland 141 1 0 0
Orissa 4062 891 303 159
Puducherry 21 5 2 1
Punjab 2688 240 83 32
Rajasthan 164 53 26 12
Sikkim 0 0 0 0
Tamil Nadu 2232 632 243 161
Tripura 105 11 2 1
Uttar Pradesh 5830 1277 545 276
Uttaranchal 243 29 8 2
West Bengal 4790 1274 342 121

8166 M. K. GUMMA ET AL.



rainfall, and by detecting any abrupt changes in the NDVI time series using methods
such as BFAST (Breaks for additive seasonal and trend) (Verbesselt et al. 2010).

TRMM rainfall estimates have been previously validated with station data for the study
region (Kneis, Chatterjee, and Singh 2014; Nair, Srinivasan, and Nemani 2009). Nair,
Srinivasan, and Nemani (2009) conducted a study in the western part of India for seven
monsoon seasons and concluded that there was some over- and under-estimation, but
the timing of rain events as estimated by satellite coincided very well with station
observations. Future improvements could include the use of other remotely sensed rain-
fall estimates with higher accuracies and higher spatial resolution than TRMM such as
Climate Hazards Group Infra-Red Precipitation with Station data (CHIRPS) (CHIRP 2016).

We observed a large difference between the rainfall in the 2002 kharif season and the
average kharif season rainfall for 1998–2010 and these were mapped to reveal rainfall
anomalies that could be associated with drought conditions (Figure 7). The lower rainfall
reported by TRMM during this time corresponded with official reports (Pandey and
Bhandari 2009). No rainfall was observed (July 2002) in the severe drought rice-
growing areas. Though not much variation was observed in moderate drought areas,
during the peak season (in July 2002) 196 mm was recorded in the drought year,
compared with 281 mm for the 13-year July mean. Yet in July 2002, some areas in the
coastal regions were affected by flood.

In addition to abiotic stresses, rice production in eastern India can be influenced by
increasing labour costs, declining rice subsidy programmes, and groundwater depletion
(Mohanty and Yamano 2017). However, drought remains an important factor which
needs to be monitored closely because of its unpredictability and potential impact on
rice production.

There have been several studies on drought within India (Murthy et al. 2009;
Chandrasekar et al. 2010; Singh, Roy, and Kogan 2003; Bhuiyan, Singh, and Kogan 2006;
Biggs, Gangadhara Rao, and Bharati 2010; Thenkabail, Gamage, and Smakhtin 2004). NDVI is
the most commonly used index for monitoring changes in vegetation growth (Anderson
et al. 2011; Steven et al. 2003). NDVI time series information is useful to create temporal
profiles and identify crop signatures in rice systems (Gumma et al. 2011b, 2011a). The main
advantage with VCI is that it is more sensitive during the wet season (November to January)
and TCI is more sensitive in the dry season or during months with high temperature. VHI is
an enhancement of TCI and VHI has a combination of VCI and TCI and it provides better
comprehension about drought occurrence (Amalo and Hidayat 2017; Bhuiyan, Singh, and
Kogan 2006). Since EVI is more sensitive to canopy variations, abiotic stresses and changes
related to drought (Anderson et al. 2010), it is very useful for monitoring vegetation. Murthy
et al. (Murthy et al. 2009) conducted a study in Haryana state using NDVI from NOAA AVHRR
data and rainfall data for the year 2002. Results were compared against a normal year 2004.
Their results correlate well with ours where a significant reduction in rice area during 2002
was observed (Table 5). Chandrasekhar et al. (Chandrasekar et al. 2010) also conducted
a study for the same year in the state of Andhra Pradesh using MODIS data. That study
derived LSWI characteristics and related them to a more conventional NDVI based drought
assessment. Biggs et al. (Biggs, Gangadhara Rao, and Bharati 2010) studied amajor irrigation
system and focused on the response to water supply shocks in irrigated areas. While there is
general agreement between the findings of these studies and ours, at least in cases where
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we were able to make a quantitative comparison, we believe that ours is the only one to
date to look at the drought-affected rice area on a national scale.

6. Conclusions

Drought wasmapped and characterised in themajor rice growing season of 2002–03 (amajor
drought year) in India, using seasonal andmonthlyMODIS derived NDVIMVCs, with an overall
accuracy of 83% and accuracy ranging from 67% to 93% across the drought classes. The
characterisation was rice and season specific andmay not apply to other crops or regions. The
observed spatial patterns in the drought-affected rice area corresponded with reported state-
level reductions in rice area between 2000–01 and 2002–03. They also correspondedwell with
the against a limited amount of previously published municipal level drought area estimates.
Furthermore, there was good correspondence between the drought-affected areas and
differences in TRMM rainfall between the year 2002 and the 1998–2010 average providing
further evidence that the approach is valid for estimating drought affected rice area across
India in the kharif season. On the basis of this, the method was applied to nine years of NDVI
data to map spatial and temporal patterns of drought occurrence (i.e. location and severity of
drought) in the kharif season, though this was not validated.

These results suggest that our methods can be applied for large-scale mapping of
drought in rice-growing areas of India. Further adaptation of the method may be
required for other crops and regions and also reducing the risk of misclassification
due to changes in crops or delays in crop establishment. Given the continuing avail-
ability of temporal remote sensing data, the method could be used to characterise the
frequency and intensity of drought to support the targeting of technologies to boost
productivity in drought-susceptible regions. However, care should be taken while work-
ing with dryland ecosystems where drought is a common phenomenon, as the thresh-
olds and limits set for rice may not hold true for rainfed crops. Further studies need to
be conducted in the drylands and arid regions to define drought in the appropriate
agro-ecological context.
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