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A B S T R A C T

Sorghum is a major staple globally and biofortifying sorghum with increased grain iron and zinc complements
ongoing efforts to combat micronutrient malnutrition. Limited information available on the nature and mag-
nitude of gene effects for grain iron and zinc. So generation mean analysis was done using four crosses, ICSB
52× IS 13211, ICSB 52× SPV 1359, IS 20843× IS 2248 and IS 2248× IS 20843. Six generations, P1, P2, F1, F2,
B1 and B2, were generated for each of these crosses which were evaluated during the postrainy season 2012–13.
The mean sum of squares due to generations were significant for days to flowering, plant height, grain yield/
plant, 100-grain weight, and grain Fe and Zn. Generation mean studies revealed the presence of both additive
and dominant gene interactions in inheritance of agronomic traits. Duplicative epistasis was observed for days to
flowering, plant height, grain yield/plant, 100-grain weight, and grain Zn with a predominance of dominant
gene action in inheritance of these traits. Panicle length, panicle width, and grain Fe showed both additive and
dominance gene effects, with higher magnitude of dominance. This information can be utilized in developing
sorghum lines with high grain Fe and Zn.

1. Introduction

Sorghum [Sorghum bicolor (L.) Moench], also called great millet, is
the fifth most important cereal crop grown in the world and a major
staple for millions of poor people living in the semi-arid regions. It is
tolerant to drought and heat and is well adapted to semi-arid regions
(Bavei et al., 2011). It is a nutri-rich grain cereal that finds uses as food,
feed, fodder, fuel, and fiber. About 90% of the world's sorghum area lies
in developing countries, mainly in Africa and Asia, with 7.8m ha of it
grown in India (FAO stat 2016). It is one of the cheapest sources of
energy (63.4–72.5% starch) and micronutrients, fulfilling the supply of
essential mineral micronutrients to the poor in the semi-arid regions
(Parthasarathy Rao et al., 2006; Ashok Kumar et al., 2011). Micro-
nutrient malnutrition is a major global challenge which affects more
than half the world's population, particularly adult females and pre-
school children in developing and underdeveloped countries (Nestel
et al., 2006; Nahla et al., 2017). Mineral nutrients play a pivotal role in
human growth and development. Deficiencies in iron (Fe) and zinc (Zn)
are two of the most common and widespread micronutrient deficiencies

(Bailey et al., 2015; Phuke et al., 2017). This comes at a cost to society
as the consequences include poor health, increased mortality, low work
productivity, learning disabilities in children and poor economic de-
velopment at the country level (Arzani and Ashraf, 2017). The main
sources of iron and zinc are cereals, fruits and vegetables and meat.
Plant foods contain almost all the mineral and organic nutrients con-
sidered essential for human nutrition (Arzani et al., 2007) but balancing
them in the food basket is key. It is estimated that about 60–80% of the
world's population is Fe deficient, and>30% are Zn deficient (White
and Broadley, 2006; Ma et al., 2008). All these have implications for the
health and well-being of people and their economic development.

Efforts are underway to address micronutrient malnutrition or
hidden hunger by various means. Biofortification is a sustainable option
to combat micronutrient malnutrition and complements well the
dietary diversification, food fortification, and supplementation that are
currently employed to address micronutrient deficiency in human diets.
Biofortification aims to combat malnutrition in communities in devel-
oping countries that do not mainly consume manufactured food pro-
ducts (Bouis and Welch, 2010). It involves increasing the density and
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bioavailability of key essential nutrients, especially micronutrients in
grains, by genetic means (White and Broadley, 2006; Zhao and
Mcgrath, 2009; Arzani and Ashraf, 2017). Widespread interest is being
shown in biofortification of sorghum by increasing mineral micro-
nutrients (especially Fe and Zn) in grains (Pfeiffer and McClafferty,
2007; Ashok Kumar et al., 2009). Preliminary studies indicated limited
variability for grain Fe and Zn concentrations in sorghum hybrid par-
ents, advanced breeding lines and germplasm accessions (Reddy et al.,
2005). Upon studying larger sets of materials, large genetic variability
for grain Fe (8–192mg kg−1) and Zn (14–91mg kg−1) concentrations
were reported in sorghum landrace accessions, hybrid parents and
commercial hybrids (Ashok Kumar et al., 2009, 2012). The variability
in the landraces can be effectively utilized in developing sorghum
varieties, parents and hybrids with high grain Fe and Zn concentration.

Knowledge of trait inheritance is critical to exploit the large varia-
bility identified in sorghum (Ashok Kumar et al., 2013). Generation
mean analysis provides information on the relative importance of
average effects of the genes (additive effects), dominance deviations,
and effects due to non-allelic genic interactions, in determining geno-
typic values of the individuals and, consequently, mean genotypic va-
lues of families and generations. Therefore, the present study was car-
ried out to determine the inheritance pattern of Fe and Zn and
agronomic traits using the generation mean analysis, trait heritability
and type of gene action prevailing in sorghum.

2. Materials and methods

2.1. Experimental material

The material for this study comprised of six basic generations, i.e.,
P1, P2, F1, F2, B1, and B2 developed involving five selected diverse
parents during rainy and postrainy seasons of 2011 and rainy season of
2012. A total of four crosses, ICSB 52× IS13211, ICSB 52×SPV 1359,
IS20843× IS2248, and IS2248× IS20843 were made using five par-
ents with diverse grain Fe and Zn concentrations. All the generations
were evaluated during the postrainy season 2012–13 at ICRISAT,
Patancheru located at an altitude of 545m above mean sea level be-
tween latitude 17.53° N and longitude 78.27° E. It took two seasons
(2010 and 2011 postrainy seasons) to develop the F1s from the selected
parents and make the B1 and B2 by crossing the F1s with both the
parents. The F1s were advanced to F2. Since development of generations
involve crossing and backcrossing in four different cross combinations,
the seeds were not sufficient to evaluate in multiples seasons/year.
Therefore, only one season evaluation was done in postrainy season
2012–13.

To assess the generation, a trial was conducted in a randomized
complete block design (RCBD), with two rows of parents and F1, four
rows of B1 and B2, and eight rows of F2 generations. The length of each
row was 2m with spacing of 0.75m between the rows. Plant to plant
spacing of 10 cm was maintained in the rows, with a plant population of
20 per row. The seeds were sown at a depth of 2 inches using a seed
planter. The field was irrigated during the trials in the postrainy season.
The seedlings were thinned to one plant per hill at 7 days after seedling
emergence (DAE). Hand weeding was carried out whenever necessary.
The test material was protected from pests and diseases by spraying
pesticides. Data were recorded on days to flowering, plant height, pa-
nicle length and width, grain yield, 100-seed weight and also grain Fe
and Zn concentrations. The grain Fe and Zn analyses were carried out in
the Charles Renard Analytical Laboratory (CRAL) at ICRISAT,
Patancheru, India. The Fe and Zn concentrations in the samples were
estimated using a prodigy high dispersion Inductively Coupled Plasma
Optical Emission Spectrometer (ICP-OES) (Wheal et al., 2011). The soil
sample were collected and analyzed for Fe and Zn (3.2mg kg−1 for Fe;
and 1.4 mg kg−1 for Zn). These Fe and Zn contents in the soil were in
the sufficient range for normal plant requirements (2.6–4.5 mg kg−1 for
Fe; 0.6–1.0 mg kg−1 for Zn).

3. Statistical analysis

The data obtained on agronomic and grain Fe and Zn traits were
subjected to analysis of variance (ANOVA) using Windostat Indostat 8.5
software (2004). The significance of the test genotypes was assessed
using the F probabilities at P≤ 0.05. The generation mean analysis of
the six populations (P1, P2, F1, F2, B1, and B2) and associated scaling
tests (Mather, 1949; Cavalli, 1952) were performed based on the as-
sumption that populations have non-homogeneous variances (Mather
and Jinks, 1971). The adequacy of the additive (d) dominance (h)
model was tested by the scaling test (Mather, 1949). The validity of this
model for the scaling tests and non-allelic interactions was examined
using Indostat 8.5 software.

4. Results

The analysis of mean sum of squares due to generations were sig-
nificant (P≤ 0.05) for days to flowering, plant height, grain yield/
plant, 100-grain weight and grain Fe and Zn concentrations in all the
crosses (Table 1), which revealed the existence of genetic variability for
these traits. The mean sum of squares due to generations were non-
significant for panicle length and panicle width in the cross ICSB
52× SPV 1359, for panicle width in the cross IS 20843× IS 2248 and
for grain Fe concentration in the cross IS 2248× IS 20843. The data
pertaining to the traits that exhibited non-significant deviation were not
subjected to generation mean analysis.

4.1. Mean performance of crosses

There were significant differences between agronomic and mor-
phological traits in all the crosses, with a few exceptions (Table 2).
Genotype ICSB 52, IS 20843, and IS 2248 have high grain Fe
(40mg kg−1) concentration. F1, B1 and B2 progenies of the crosses ICSB
52× IS 13211 and ICSB 52× SPV 1359 exhibited higher Fe con-
centration (> 40mg kg−1).

4.2. Scaling test and estimation of genetic components of variation

The agronomic and morphological traits showing significant prob-
abilities were subjected to generation mean analysis to test the fitness of
the additive-dominance model, and Hayman's six parameter model, to
find the significant inter-allelic interactions. The generation means of
different traits are explained below.

4.2.1. Days to flowering
All scales of the crosses ICSB 52× IS 13211, ICSB 52× SPV 1359,

and IS 20843× IS 2248 and B, C, D scales of the cross IS 20843× IS

Table 1
Mean sum of squares of four different crosses of sorghum during the postrainy
season, ICRISAT, Patancheru, 2012–13.

Trait/cross ICSB 52× IS
13211

ICSB
52×SPV
1359

IS 20843× IS
2248

IS 2248× IS
20843

Days to
flowering

42.31** 52.35** 78.21** 17.50**

Plant height 1755.49** 3723.80** 226.35** 128.73*
Panicle length 4.27* 3.03 12.42** 1.95**
Panicle width 1.95* 1.96 1.04 0.72**
Grain yield/

plant
112.59** 434.07** 1306.08** 160.92**

100-grain
weight

0.40** 0.11* 0.45** 0.28**

Grain Fe 121.18** 171.36** 22.76** 7.17
Grain Zn 10.97** 45.50** 33.23** 256.61*

*, **P value significant at ≤ 0.05 and 0.01, respectively.
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2248 were significant for days to flowering, indicating the inadequacy
of the additive-dominance model in explaining the inheritance of this
trait (Tables 3 and 4). Partitioning the generation means showed sig-
nificant means (m) and additive (d), dominance (h), additive× ad-
ditive (i), and dominance×dominance (l) components. The dominance
and dominance×dominance components were in opposite directions
indicating the presence of duplicative epistasis in inheritance of this
trait. The dominance degree was>1.00 for ICSB 52× IS 13211, ICSB
52×SPV 1359, and IS 20843× IS 2248 (Table 5) with slightly high
dominance variance indicating the predominance of dominant gene

action in the inheritance of this trait.

4.2.2. Plant height
Crosses ICSB 52× IS 13211 and ICSB 52×SPV 1359 exhibited

significance for all scales, whereas A and C scales for the cross IS
20843× IS 2248 and A scale for the cross IS 2248× IS 20843 were
significant, indicating the presence of non-allelic interactions (Tables 3
and 4). Partitioning of generation means showed significant means (m)
and dominance (h), additive× additive (i) and dominance×dom-
inance (l) components. The dominance and dominance×dominance

Table 2
Mean performance of four crosses with respect to various agronomic and morphological traits of sorghum during postrainy season, ICRISAT, Patancheru, 2012–13.

Pedigree Generation Days to
flowering

Plant height
(cm)

Panicle
length (cm)

Panicle
width (cm)

Grain yield/
plant (g)

100-grain
weight (g)

Grain Fe (mg
kg-1)

Grain Zn (mg
kg−1)

ICSB 52 × IS 13211
ICSB 52 P1 59.40 145.80 25.60 9.40 50.94 3.80 40.64 26.90
IS 13211 P2 57.60 196.80 24.90 10.10 36.86 2.70 29.05 31.31
ICSB 52× IS 13211 F1 56.50 202.40 24.10 9.40 31.19 3.30 45.60 28.00
ICSB 52× IS 13211 F2 56.20 199.90 24.80 10.10 42.60 3.60 39.70 25.60
(ICSB 52× IS

13211)× ICSB 52
B1 55.80 207.10 27.20 11.60 39.00 3.40 46.90 27.60

(ICSB 52× IS 13211)× IS
13211

B2 65.70 220.00 26.60 10.30 33.40 3.20 42.00 28.10

Mean 58.36 205.24 25.52 10.30 36.61 3.24 40.65 28.12
CV% 1.87 1.89 4.01 6.82 9.97 6.73 2.61 6.73
SE± 0.60 2.10 0.50 0.40 2.00 0.10 0.60 1.00
Vr 13.69** 580.65** 1.07* 0.488* 32.21** 0.115** 40.01** 2.40
CD (P ≤ 0.05) 2.00 6.60 1.80 1.20 7.20 0.40 1.90 NS

ICSB 52 × SPV 1359
ICSB 52 P1 64.00 134.90 23.40 10.80 60.20 4.40 40.70 28.70
IS 13211 P2 55.00 163.90 23.00 10.90 75.50 4.10 28.10 21.00
ICSB 52× SPV 1359 F1 62.50 207.80 24.70 10.50 48.20 3.90 49.50 30.70
ICSB 52× SPV 1359 F2 59.50 208.80 22.50 10.10 40.50 4.00 39.70 28.90
(ICSB 52×SPV

1359)× ICSB 52
B1 66.90 204.80 25.10 11.90 60.70 4.30 47.10 30.50

(ICSB 52×SPV
1359)× SPV 1359

B2 64.00 230.20 24.10 12.10 60.30 4.30 38.10 32.10

Mean 61.58 203.10 23.88 11.10 57.04 4.12 40.50 28.64
CV% 2.65 3.26 4.77 8.45 5.07 3.45 6.73 4.92
SE± 0.90 3.60 0.60 0.50 1.60 - 1.50 0.80
Vr 16.54** 1228.15** 0.57 0.36 141.84** 0.03* 54.62** 14.5**
CD (P ≤ 0.05) 2.90 11.40 NS NS 5.30 0.26 4.90 2.50

IS 20843 × IS 2248
IS 20843 P1 65.20 226.20 19.20 7.90 57.40 3.80 40.60 37.80
IS 2248 P2 54.50 218.20 19.80 8.10 27.50 2.80 41.80 42.00
IS 20843× IS 2248 F1 53.50 218.30 23.40 9.40 56.00 3.70 38.40 33.20
IS 20843× IS 2248 F2 53.40 200.10 18.80 8.30 29.50 3.20 43.70 34.00
(IS, 20843× IS 2248)× IS

20843
B1 62.80 217.80 17.30 7.80 84.00 3.70 43.90 36.00

(IS, 20843× IS 2248)× IS
2248

B2 56.50 218.90 20.10 8.30 47.70 3.50 46.20 39.30

Mean 56.14 214.66 19.88 8.38 48.94 3.38 42.80 36.90
CV% 1.01 2.57 5.09 8.16 1.61 4.89 3.66 4.48
SE± 0.60 2.10 0.50 0.40 2.00 0.10 0.60 1.00
Vr 25.95** 65.17** 3.8** 0.19 435.14** 0.14** 6.78** 10.15**
CD (P ≤ 0.05) 2.00 6.60 1.80 NS 7.20 0.40 1.90 NS

IS 2248 × IS 20843
IS 2248 P1 56.30 204.20 22.00 10.10 24.10 3.00 43.60 38.60
IS 20843 P2 58.00 214.80 21.30 9.80 40.60 3.10 42.60 34.30
IS 2248× IS 20843 F1 52.00 220.60 20.80 10.30 37.30 3.10 40.50 34.60
IS 2248× IS 20843 F2 53.60 216.10 21.30 9.00 32.50 3.30 43.50 36.70
(IS 2248× IS, 20843)× IS

2248
B1 54.00 222.70 21.40 9.60 34.00 3.20 44.90 41.40

(IS 2248× IS, 20843)× IS
20843

B2 57.60 218.20 23.10 10.30 45.40 3.80 41.70 33.83

Mean 55.04 218.48 21.58 9.80 37.96 3.30 42.64 36.17
CV% 2.47 2.74 3.61 2.60 7.22 2.89 4.22 6.64
SE± 0.90 3.60 0.60 0.50 1.60 - 1.50 0.80
Vr 5.21** 31.16* 0.44 0.21** 51.42** 0.08** 1.29 6.89*
CD (P ≤ 0.05) 2.90 11.40 NS - 5.30 0.26 NS 2.50

*, **P value significant at ≤0.05 and 0.01, respectively.
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components were in the opposite direction indicating the presence of
duplicative epistasis in inheritance of this trait. Crosses ICSB 52× IS
13211 and IS 2248× IS 20843 exhibited high additive variance and
dominance degree of> 1.00, indicating both the additive and dom-
inance genes were involved in the inheritance of this trait (Table 5).

4.2.3. Panicle length
The F value for panicle length in the crosses ICSB 52×SPV 1359

and IS 2248× IS 20843 was not significant. Hence, these crosses were
not subjected to generation mean analysis. The significance of A, B, D
scales for ICSB 52× IS 13211and A and C scales for IS 20843× IS 2248
indicated the presence of non-allelic interactions in the inheritance of
this trait (Tables 3 and 4). Partitioning into genetic components re-
vealed significant means and dominance, additive× additive and
dominance× dominance components for ICSB 52× IS 13211 and ad-
ditive, dominance× dominance interactions for IS 20843× IS 2248.
The dominance variance for ICSB 52× IS 13211 and IS 20843× IS
2248 was greater than the additive variance (Table 5) and dominance
degree of> 1.00 was recorded in ICSB 52× IS 13211.

4.2.4. Panicle width
Panicle width for the crosses ICSB 52× SPV 1359 and IS

20843× IS 2248 showed non-significant F value; so these crosses were
not involved in generation mean studies. Scaling test of remaining
crosses exhibited significant A and C scales for ICSB 52× IS 13211 and
C and D scales for IS 2248× IS 20843, indicating inadequacy of the
additive-dominance model, and the presence of epistatic interactions in
inheritance of this trait (Tables 3 and 4). Partitioning of generation
means showed significant mean. The genetic component revealed sig-
nificant mean and additive× additive components for ICSB 52× IS
13211 and dominance, additive× additive components for IS

2248× IS 20843, indicating both dominance and additive interactions
were involved in the inheritance of this trait. The variance due to the
dominant genes was higher than the additive variance for the crosses
ICSB 52× IS 13211 and IS 2248× IS 20843, indicating the pre-
dominance of dominant gene action in the inheritance of this trait
(Table 5).

4.2.5. Grain yield/plant
Scale D for ICSB 52× IS 13211; C and D for ICSB 52×SPV 1359;

and all the four scales for IS 20843× IS 2248 and IS 2248× IS 20843
were significant, indicating the presence of non-allelic interactions in
the inheritance of this trait (Tables 3 and 4). To identify the type of
interaction, generation means were partitioned into six components.
Crosses ICSB 52× IS 13211 and IS 2248× IS 20843 showed significant
dominance and additive× additive interactions, whereas crosses ICSB
52× SPV 1359 and IS 20843× IS 2248 exhibited significant dom-
inance, additive× additive, and dominance× dominance interactions.
The dominance and dominance×dominance interactions were in op-
posite directions, which is a sign of the involvement of duplicate epi-
static interactions in the inheritance of this trait. The dominance degree
for the cross IS 20843× IS 2248 was> 1.00 (Table 5). All the four
crosses exhibited high phenotypic variance. Crosses ICSB 52× IS
13211 and IS 20843× IS 2248 exhibited higher dominance variance
than additive variance.

4.2.6. Hundred grain weight
The scaling test on all the four crosses exhibited significant scales

indicating the inadequacy of the additive-dominance model in ex-
plaining the inheritance of this trait (Tables 3 and 4). Hence, the gen-
eration means were partitioned into six genetic components. The
dominance and additive× additive interactions were significant for

Table 3
Scaling test and genetic components for various morphological, agronomic and nutritional traits of ICSB 52× IS 13211 and ICSB 52× SPV 1359 in sorghum during
postrainy season, ICRISAT, Patancheru, 2012–13.

Days to flowering Plant height (cm) Panicle length (cm) Panicle width (cm) Grain yield/plant (g) 100-grain weight (g) Grain Fe (mg kg−1)

ICSB 52 × IS 13211

Scaling test
A −3.87 ± 0.89** 65.76 ± 5.88** 4.36 ± 2.17* 4.29 ± 1.38** −12.55 ± 10.61 −0.17 ± 0.31 7.46 ± 2.70**
B 17.13 ± 1.11** 25.19 ± 7.33** 4.23 ± 1.58** 1.3 ± 1.09 −6.96 ± 6.44 0.37 ± 0.36 8.90 ± 3.66*
C −5.35 ± 1.15** 52.30 ± 7.85** 0.09 ± 1.88 2.4 ± 1.20* 8.32 ± 7.33 1.27 ± 0.38** −2.65 ± 3.38
D −9.30 ± 0.67** −19.32 ± 4.53** −4.25 ± 1.37** −1.62 ± 0.89 13.92 ± 6.66* 0.53 ± 2.22* −9.51 ± 2.15**
Genetic components
m 56.22 ± 0.15** 199.81 ± 1.07** 24.86 ± 0.31** 10.11 ± 0.19** 42.58 ± 1.46** 3.64 ± 0.05** 39.81 ± 0.48**
d −9.75 ± 0.60** −4.79 ± 3.98 0.48 ± 1.22 1.22 ± 0.80 4.27 ± 5.97 0.24 ± 0.19 5.32 ± 1.92*
h 16.65 ± 1.44** 69.01 ± 9.64** 7.49 ± 0.2.83** 2.74 ± 1.84 −34.70 ± 13.35** −1.0 ± 0.47* 30.28 ± 4.53**
i 18.61 ± 1.35** 38.65 ± 9.07** 8.50 ± 2.74** 3.25 ± 0.07** −27.85 ± 13.32* −1.07 ± 0.44* 19.02 ± 4.31**
j −10.50 ± 0.64 20.28 ± 4.19 0.06 ± 1.28 1.46 ± 0.84 −2.79 ± 6.0 −0.27 ± 0.22 −0.72 ± 2.17
l −31.86 ± 2.68** −129.61 ± 17.78** −17.11 ± 5.23** −8.93 ± 1.78 47.37 ± 25 0.87 ± 0.87 −35.38 ± 8.4**

ICSB 52 X SPV 1359

Days to flowering Plant height (cm) Grain yield/plant (g) 100-grain weight (g) Grain Fe (mg kg−1) Grain Zn (mg kg−1)

Scaling test
A 6.78 ± 1.63** 62.21 ± 9.09** 7.13 ± 4.17 0.16 ± 0.30 3.13 ± 2.28 0.79 ± 2.28
B 10.90 ± 1.97** 86.88 ± 8.22** −4.46 ± 5.32 0.61 ± 0.29* −72.43 ± 4.82 1.69 ± 6.26
C −4.15 ± 1.72* 117.19 ± 8.64** −74.44 ± 6.37** −0.11 ± 0.37 −8.97 ± 3.61* −5.81 ± 4.63
D −10.92 ± 1.39** −15.95 ± 6.71* −38.55 ± 2.96** −0.44 ± 0.19* −4.83 ± 2.82 −4.14 ± 3.49
Genetic components
m 59.96 ± 0.34** 208.78 ± 1.71** 40.10 ± 0.74** 4.08 ± 0.05** 39.77 ± 0.68** 39.77 ± 0.68**
d 2.48 ± 1.20* −26.84 ± 5.77** −1.82 ± 2.56 −0.06 ± 0.17 9.04 ± 2.47** 9.04 ± 2.47**
h 24.76 ± 2.82** 92.02 ± 13.68** 58.67 ± 6.55** 0.63 ± 0.42 19.91 ± 5.79** 24.94 ± 5.77**
i 21.85 ± 2.78** 31.90 ± 13.43 77.11 ± 5.92** 0.89 ± 0.39* 9.67 ± 5.64 9.67 ± 5.64
j −2.06 ± 1.25 −12.33 ± 5.91 −5.79 ± 2.90 −0.22 ± 0.18 9.36 ± 2.62 2.78 ± 2.61
l −39.54 ± 5.11** −180.99 ± 24.65** −79.78 ± 12.06** −1.66 ± 0.77* −13.40 ± 10.57 −10.37 ± 10.52

m=mean; d= additive gene action; h= dominant gene action; l = dominance× dominance gene interaction; i= additive× additive gene interaction; and
j= additive×dominant gene interaction.
*, **t-test significant at P≤ 0.05 and 0.01, respectively.
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ICSB 52× IS 13211, whereas additive× additive and dom-
inance× dominance interactions were seen governing the trait con-
cerned.

The additive component was found non-significant whereas the
dominance component was significant in all crosses, except ICSB
52×SPV 1359. Among the interactions, additive× additive (i) com-
ponent was significant in a positive direction in all the crosses except
ICSB 52×SPV 1359. Cross IS 20843× IS 2248 exhibited significant
dominance, additive× additive and dominance× dominance interac-
tions and additive, dominance, additive× additive, and dom-
inance× dominance interactions for IS 2248× IS 20843, and the
dominance and dominance× dominance interactions were in opposite
directions indicating the duplicate epistasis in the inheritance of this
trait.

4.2.7. Grain Fe concentration
The scales A, B, and D for ICSB 52× IS 13211; C for ICSB 52× SPV

1359; and A, B, and C for IS 20843× IS 2248 were significant, in-
dicating the presence of non-allelic interactions in the inheritance of
this trait. The F value for IS 2248× IS 20843 was not significant for this
trait; hence it was not involved in generation mean studies of this trait.
Partitioning of the genetic components revealed the significant means
for all the crosses. Additive, dominance, additive× additive and
dominance× dominance components were significant for the cross
ICSB 52× IS 13211 and additive and dominance for ICSB 52×SPV
1359; and dominance×dominance for IS 20843× IS 2248.
Phenotypic variance was high in all the crosses (Table 5). The dom-
inance variance was higher than the additive variance in all the crosses,
with dominance degree>1.00 for ICSB 52× IS 13211 and ICSB
52×SPV 1359.

4.2.8. Grain Zn concentration
Cross ICSB 52× IS 13211 had non-significant F value for this trait

and hence this cross was not involved in the generation mean studies.
Cross ICSB 52×SPV 1359 exhibited non-significant scaling test in-
dicating the additive-dominance model was sufficient to explain the
inheritance of this trait (Table 3). Crosses IS 20843× IS 2248 and IS
2248× IS 20843 showed at least one significant scale indicating the
presence of epistatic inheritance for this trait (Table 4). Partitioning of
genetic components revealed significant means for these crosses. Cross
ICSB 52× SPV 1359 showed significant additive and dominance ge-
netic components whereas cross IS 20843× IS 2248 exhibited sig-
nificant additive, dominance, additive× additive, and dom-
inance×dominance components. The dominance and
dominance× dominance components were in opposite directions for IS
20843× IS 2248, indicating duplicate epistasis in the inheritance of
this trait. Phenotypic variance was high for all the crosses (Table 5).
The dominance variance is higher than the additive variance for crosses
ICSB 52×SPV 1359 and IS 2248× IS 20843.

Only one scaling test, i.e., scale C was significant in crosses ICSB
52× IS 13211 and IS 20843× IS 2248; and scale-A was significant in
cross IS 2248× IS 20843, indicating the inadequacy of the additive-
dominance model in explaining the inheritance of grain zinc con-
centration. However, none of the scaling tests was found significant for
grain zinc concentration in cross ICSB 52× SPV 1359, for which there
were significant differences among generations indicating the adequacy
of the additive-dominance model in explaining the inheritance of this
character and the absence of epistasis.

Estimates of the additive component were significant in a positive
direction in the crosses ICSB 52×SPV 1359 and IS 2248× IS 20843
and negatively significant in the cross IS 20843× IS 2248 and non-
significant in the cross ICSB 52× IS 13211. The dominance component

Table 4
Scaling test and genetic components for various morphological, agronomic and nutritional traits of IS 20843× IS 2248 and IS 2248× IS 20843 in sorghum during
postrainy season, ICRISAT, Patancheru, 2012–13.

Days to flowering Plant height (cm) Panicle width (cm) Grain yield/plant (g) 100-grain weight (g) Grain Fe (mg kg−1) Grain Zn (mg kg−1)

IS 20843 × IS 2248

Scaling test
A 6.96 ± 0.37** −7.31 ± 5.16 −1.82 ± 1.12 54.67 ± 3.55** −0.06 ± 0.26 9.03 ± 2.70** 0.92 ± 2.66
B 5.07 ± 0.48** −0.003 ± 5.46 −0.81 ± 0.98 11.86 ± 1.72** 0.45 ± 0.29 12.61 ± 3.48** 3.30 ± 2.05
C −12.45.± 0.41** −77.38 ± 5.43** −1.05 ± 0.98 −77.87 ± 2.89** −1.48 ± 0.25** 17.99 ± 3.28** −10.59 ± 2.57**
D −12 ± 0.31** −35.03 ± 3.68** 0.79 ± 0.78 −72.20 ± 1.93** −0.93 ± 0.19** −1.82 ± 2.14 −7.41 ± 1.58**
Genetic components
m 53.66 ± 0.6** 200.69 ± 0.63** 8.48 ± 0.18** 29.77 ± 0.41** 3.18 ± 0.04** 44.17 ± 0.47** 33.96 ± 0.35**
d 6.28 ± 0.27** 0.57 ± 3.32 −0.57 ± 0.69 36.36 ± 1.74** 0.25 ± 0.17 −2.20 ± 1.92 −3.36 ± 1.41*
h 18.10 ± 0.64** 66.45 ± 7.69** −0.10 ± 1.60 157.95 ± 4.05** 2.25 ± 0.40** 0.93 ± 4.49 7.91 ± 3.35*
i 24.48 ± 0.62** 70.07 ± 7.37** −1.58 ± 1.56 144.41 ± 3.9** 1.86 ± 0.39** 3.65 ± 4.29 14.82 ± 4.66**
j 0.94 ± 0.29 −3.65 ± 3.51 −0.50 ± 0.72 21.40 ± 1.83 −0.25 ± 0.19 −1.78 ± 2.05 −1.19 ± 1.58
l −36.52 ± 1.18** −62.75 ± 14.35** 4.22 ± 2.94 −210.94 ± 7.52** −2.25 ± 0.75** −25.31 ± 8.37** −19.05 ± 6.22**

IS 2248× IS 20843

Days to flowering Plant height (cm) Panicle width (cm) Grain yield/plant (g) 100-grain weight (g) Grain Zn (mg kg−1)

Scaling test
A 0.57 ± 0.77 19.49 ± 5.68** −0.87 ± 0.88 8.52 ± 3.61* 0.29 ± 0.24 9.16 ± 3.56*
B 4.91 ± 0.81** 0.57 ± 5.17 0.38 ± 0.691 13.96 ± 4.20** 1.46 ± 0.23** −0.57 ± 3.64
C −2.55 ± 0.81** 9.62 ± 6.44 −4.20 ± 0.91** −10.17 ± 4.02* 0.94 ± 0.28** 1.36 ± 3.94
D −4.02 ± 0.59** −5.22 ± 3.67 −1.85 ± 0.51** −16.33 ± 2.96** −0.41 ± 0.15* −3.61 ± 2.54
Genetic components
m 53.66 ± 0.14** 217.30 ± 0.89** 9.07 ± 0.12** 32.18 ± 0.75** 3.33 ± 0.03** 35.92 ± 0.59**
d −3.10 ± 0.51** 3.84 ± 3.20 −0.52 ± 0.45 −11.02 ± 2.55** −0.64 ± 0.13 6.93 ± 2.24**
h 2.91 ± 1.22* 21.63 ± 7.81** 4.03 ± 1.10** 37.82 ± 6.08** 0.87 ± 0.33* 5.47 ± 5.32
i 8.04 ± 1.19** 10.44 ± 7.34 −3.71 ± 1.03** 32.66 ± 5.93** 0.82 ± 0.31* 7.23 ± 5.09
j −2.16 ± 0.54 9.46 ± 3.48 −0.62 ± 0.51 −2.71 ± 2.65 −0.58 ± 0.15 4.86 ± 2.34
l −13.54 ± 2.21** −30.51 ± 14.34* −3.22 ± 2.04 −55.14 ± 10.99** −2.58 ± 0.62** −15.82 ± 9.81

m=mean; d= additive gene action; h= dominant gene action; l = dominance× dominance gene interaction; i= additive× additive gene interaction; and
j= additive×dominant gene interaction.
*, **t-test significant at P < 0.05 and 0.01, respectively.
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was found significant in a positive direction in all the crosses except IS
2248× IS 20843, wherein a non-significant gene action was observed
for this trait. Among the interactions, the additive× additive compo-
nent was found significant in a positive direction in the crosses ICSB
52× IS 13211 and IS 20843× IS 2248 and non-significant in the
crosses ICSB 52× SPV 1359 and IS 2248× IS 20843. The dom-
inance× dominance interaction was significant in a negative direction
only in the cross IS 20843× IS 2248, and non-significant in the re-
maining crosses. Like in all the traits, additive× dominance interaction
was found non-significant for the trait in all the crosses.

For grain zinc concentration, the additive component was sig-
nificant in all the crosses except ICSB 52× IS 13211, whereas dom-
inance and additive× additive components of epistasis were positively
significant in the crosses ICSB 52× IS 13211 and IS 20843× IS 2248.
The dominance×dominance component was significant in a negative
direction for the cross IS 20843× IS 2248. Thus, the additive compo-
nent was playing a significant role in governing grain zinc concentra-
tion. This suggests that early generation selections and selecting parents
with high grain zinc concentration can be adopted to exploit the ad-
ditive component of gene action which may result in improved varieties
and hybrids with high grain zinc concentration.

5. Discussion

Understanding inheritance pattern, heritability and gene action
greatly help in enhancing grain Fe and Zn. Generation mean analysis
provides information on the relative importance of average effects of
the genes (additive effects), dominance deviations, and effects due to
non-allelic genic interactions, in determining genotypic values of the
individuals and, consequently, mean genotypic values of families and
generations. This study showed that the mean sums of squares due to
generations were significant, indicting the presence of genetic diversity
in the material used for the study. For grain Fe concentration, the
dominance component of variance was higher than the additive com-
ponent in all the crosses while non-allelic interactions had a greater role
in influencing the trait. Similar results were reported by Chakraborti
et al. (2010) in Maize. For grain Zn, the additive component played a
significant role in governing the trait while large interaction effects
were also observed. Additive gene action in the inheritance of grain
iron and zinc concentrations in pearl millet through combining ability
analysis was reported earlier (Velu et al., 2011 and Govindraj et al.,
2013). The mean performance of the parents and the progenies showed
that in order to improve both the grain Fe and Zn concentrations si-
multaneously, both parents should be improved for Fe and Zn, and in

Table 5
Estimates of various genetic parameters for different agronomic, morphological, and nutritional traits of four crosses of sorghum during postrainy season, ICRISAT,
Patancheru, 2012–13.

Plant height (cm) Panicle length (cm) Panicle width (cm) Grain yield/plant (g) 100-grain weight (g) Days to 50% flowering Grain Fe (mg kg−1)

ICSB 52 × IS 13211
σ2g 56.53 7.28 2.52 215.86 0.03 0.79 7.07
σ2a 35.33 2.58 −0.32 14.19 0.00 0.02 0.02
σ2d 21.20 4.70 2.84 201.66 0.03 0.77 7.05
σ2p 136.33 11.67 4.36 252.60 0.29 2.74 27.65
h2b 0.42 0.62 0.58 0.86 0.10 0.29 0.26
h2n 0.26 0.22 −0.07 0.06 0.00 0.01 0.00
Degree of dominance 3.94 7.67 1.49 −2.84 −2.01 1.30 2.38

ICSB 52× SPV 1359

Days to flowering Plant height (cm) Grain yield/plant (g) 100-grain weight (g) Grain Fe (mg kg−1) Grain Zn (mg kg−1)

σ2g 6.95 179.19 −17.35 0.02 23.11 40.82
σ2a 0.53 19.24 3.69 0.01 2.20 0.23
σ2d 6.42 159.96 −21.04 0.01 20.92 40.59
σ2a 9.47 230.28 43.14 0.19 36.42 53.64
h2b 0.73 0.78 0.40 0.11 0.64 0.76
h2n 0.06 0.08 0.09 0.04 0.06 0.00
Degree of dominance 3.15 −1.85 −5.67 −3.08 1.66 −2.72

IS 20843× IS 2248

Days to flowering Plant height (cm) Panicle length (cm) Grain yield/plant (g) 100-grain weight (g) Grain Fe (mg kg−1) Grain Zn (mg kg−1)

σ2g 0.34 28.22 3.80 7.91 0.11 8.82 3.10
σ2a 0.09 1.24 0.39 0.26 0.00 2.31 2.83
σ2d 0.25 26.98 3.41 7.65 0.12 6.52 0.27
σ2p 0.59 77.87 9.59 21.47 0.22 27.16 15.50
h2b 0.58 0.36 0.40 0.37 0.52 0.33 0.20
h2n 0.15 0.02 0.04 0.01 −0.02 0.09 0.18
Degree of dominance 1.69 10.78 −0.93 2.08 3.00 0.64 −1.53

IS 2248× IS 20843

Days to flowering Plant height (cm) Panicle width (cm) Grain yield/plant (g) 100-grain weight (g) Grain Zn (mg kg−1)

σ2g 2.32 46.55 0.48 61.93 0.06 29.02
σ2a 1.12 29.05 0.08 32.13 0.03 3.91
σ2d 1.20 17.49 0.40 29.80 0.04 25.11
σ2p 3.08 112.10 2.02 78.25 0.20 49.89
h2b 0.75 0.42 0.24 0.79 0.32 0.58
h2n 0.36 0.26 0.04 0.41 0.14 0.08
Degree of dominance −0.96 2.37 −2.76 −1.85 −1.16 0.88

σ2g= genotypic variance; σ2a= additive variance; σ2d= dominance; σ2p= phenotypic variance; h2b=broad-sense heritability; and h2n, narrow-sense herit-
ability.
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case only Fe is targeted, at least one of the parents should contain high
amounts of Fe. The generation mean studies indicated the presence of
gene interactions in the inheritance of all the agronomic traits studied.
Days to flowering, plant height, grain yield, 100-grain weight and grain
Zn concentration showed epistatic interactions in their inheritance with
a high degree of dominance and dominance variance indicating the
predominance of dominance gene action. Similar results have been
reported in sorghum (Mohammed et al., 2018). Panicle length, panicle
width, and grain Fe concentration showed additive dominance inter-
actions with a high degree of dominance and dominance variance in-
dicating the predominance of dominance gene action earlier in sor-
ghum (Narain et al., 2007; Rani et al., 2008; Yongfu Tao et al., 2017).

6. Conclusion

The estimate of generation mean parameters in sorghum indicated
that there was significant influence of all three types of gene actions,
additive, dominance and epistasis gene components in the expression of
grain iron and zinc concentrations. This means that superior lines with
higher mineral concentrations can be developed by applying effective
selection using reciprocal recurrent strategies. The presence of non-al-
lelic interactions and predominance of dominant gene action for the Fe
and Zn traits indicated that heterosis breeding can be used in devel-
oping high iron and zinc hybrids. If grain Zn alone is the target, se-
lection in the early generations for line development followed by using
both parents improved for Zn will give improved hybrids. Since several
important characters are influenced by dominance and non-allelic gene
interaction, it is advisable to delay selection to later generations which
increase the homozygosity. The results of this study will help in iden-
tifying appropriate parents, in selecting promising plants form segre-
gating generations, and in developing sorghum cultivars with high Fe
and Zn concentrations possessing higher grain yield. This is a first re-
port on using generation mean analysis to study inheritance of grain Fe
and Zn concentrations in sorghum.
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