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Abstract

Finger millet [Eleusine coracana (L.) Gaertn.] is an important coarse cereal crop grown

in the arid and semi-arid regions and often experiences high temperature (HT)

stress. The objectives of this research were (i) to quantify effects of season-long HT

stress on physiological and yield traits, (ii) to identify the developmental stages most

sensitive to HT stress and (iii) to quantify the genetic variability for HT stress toler-

ance in finger millet. Research was conducted in controlled environment conditions.

HT stress decreased the chlorophyll index, photosystem II activity, grain yield and

harvest index. Maximum decrease in number of seeds per panicle and grain yield

per plant was observed when stress was imposed during booting, panicle emergence

or flowering stages. Maximum genotypic variation was explained by panicle width

and number of seeds per panicle at optimum temperature (OT) and grain yield per

plant at HT and number of seeds at HT. Based on the stress response and grain

yield, tolerant or susceptible genotypes were identified. Finger millet is sensitive to

HT stress during reproductive stages, and there was genotypic variability among the

finger millet genotypes for number of seeds per panicle and grain yield under HT,

which can be exploited to enhance stress tolerance.
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1 | INTRODUCTION

Finger millet [Eleusine coracana (L.) Gaertn.] is an important small mil-

let cultivated in arid and semi-arid regions of the world for food and

nutritional security at minimal cost compared with major cereals

(Gupta et al., 2017; Satish, Ceasar, & Ramesh, 2017). Finger millet

occupies �12% of the global millet area, and the major producers

are Uganda, India, Nepal and China. Finger millet annual world pro-

duction is 4.5 million tons of grain, of which Africa produces 2 mil-

lion tons (Upadhyaya, Gowda, Pundir, Reddy, & Singh, 2006). Finger

millet needs very little water for their production and can be culti-

vated under non-irrigated conditions or in very low rainfall regimes

(200–500 mm). The optimal day and night temperature for finger

millet growth and development is 27–32 and 22°C, respectively. The

critical daytime and night-time temperature is 18–32 and 18°C,

respectively. Temperature >32°C inhibits flowering in finger millet

(Board on Science and Technology for International Development,

1996; Directorate of Millets Development, 2014; Krishna, 2014).

Temperatures close to or >32/22°C are common in the semi-arid

regions of the world (Prasad, Boote, & Allen, 2006), where finger
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millet is an important food crop. With the anticipated global warm-

ing, these regions will be subjected to even higher temperatures.

Therefore, quantifying the impacts of high temperatures on repro-

ductive growth and yield processes of finger millet is needed.

Climate models predict that the arid and semi-arid regions of the

world are highly vulnerable to climate change, and in future, the fre-

quency of extreme events such as drought and high temperature

(HT) will be greater (Challinor, Wheeler, Garforth, Craufurd, & Kas-

sam, 2007; Lobell, Schlenker, & Costa-Roberts, 2011; Sivakumar &

Stefanski, 2011; Zeng, Neelin, Lau, & Tucker, 1999). Global mean

surface air temperatures have increased by 0.5°C in the 20th cen-

tury, and it is predicted to increase further by 1.4–3.1°C at the end

of 21st century (IPCC, 2013). The increase in temperature is brought

by differential changes in daytime maximum and night-time minimum

temperatures. Most climate models predict that, in future, the

increase in night-time minimum temperature will be higher than the

daytime maximum temperature (Dai, Wigley, Boville, Kiehl, & Buja,

2001). In addition to rising mean annual temperatures, the fre-

quency, duration and severity of periods with extreme HT will also

increase (Easterling, Meehl, & Parmesan, 2000; Tripathi, Tripathi,

Chauhan, Kumar, & Singh, 2016). Increases of temperature may

cause yield declines between 2.5% and 10% across a number of

agronomic crop species (Hatfield et al., 2011). The climate models

predict that the global crop yields will reduce by roughly 1.5% per

decade without effective climate change adaptation measure (Lobell

& Gourdji, 2012). Temperature projections for sub-Saharan Africa

(SSA) for all seasons have indicated that, the average temperature

will increase by 0.3–4°C by end of this century (Boko et al., 2007).

In many parts of SSA, increased both frequency and intensity of

extreme weather events are projected (IPCC, 2013). The tempera-

ture projections for South Asia indicated an increase of 3.3°C by the

end of this century. The increase in temperature will be more pro-

nounced during winter than in summer (IPCC, 2007).

In crop plants, HT stress tolerance is a complex phenomenon

involving an array of biochemical and physiological processes hap-

pening at organelle, cellular and whole plant level (Bita & Gerats,

2013; Bokszczanin & Fragkostefanakis, 2013; Mathur, Agrawal, &

Jajoo, 2014; Prasad, Bheemanahalli, & Jagadish, 2017; Wahid, Gelani,

Ashraf, & Foolad, 2007). HT stress decreases crop yields by (i) faster

crop development leading to shorter crop duration, (ii) impacting

rates of photosynthesis, respiration and grain filling rate and dura-

tion, (iii) an increase in the saturation vapour pressure of air leading

to reduced water use efficiency and (iv) damaging the cell ultrastruc-

ture (Lobell & Gourdji, 2012; Ray, Gesch, Sinclair, & Allen, 2002;

Stone, 2001; Ziska, Blumenthal, Runion, Hunt, & Diaz-Soltero, 2011).

Studies have shown that when plants are subjected to mild HT

stress (1–4°C above optimal growth temperature), there were mod-

erate decreases in yield (Sato, 2006; Tesfaendrias, McDonald, &

Warland, 2010; Timlin et al., 2006; Wagstaffe & Battey, 2006).

However, exposure to a more intense HT stress (>4°C above opti-

mum) results in severe yield loss and even complete crop failure

(Gote & Padghan, 2009; Kadir, Sidhu, & Al-Khatib, 2006; Sato, Peet,

& Thomas, 2000; Tesfaendrias et al., 2010). The impacts of HT

stress on yield were quantified for major field crops [rice (Oryza

sativa L.), wheat (Triticum aestivum L.), sorghum (Sorghum bicolor L.,

Moench), pearl millet (Pennisetum glaucum L. R.Br.), dry bean (Phaseo-

lus vulgaris L.), peanut (Arachis hypogea L.) and soybean (Glycine max

L.) (reviewed in Prasad et al., 2017). However, little information is

available on effect of HT stress on finger millet yield and its

components.

Research on various cereals revealed that HT stress decreased

chlorophyll content, photosystem II quantum yield, photosynthetic

rate and economic yield (Djanaguiraman, Prasad, Murugan, Perumal,

& Umesh, 2014; Narayanan, Prasad, Fritz, Boyle, & Gill, 2015; Sunoj,

Shroyer, Jagadish, & Prasad, 2016). Studies on rice, wheat, maize

(Zea mays L.), sorghum, pearl millet, peanut, cowpea (Vigna unguicu-

lata L.) and common bean indicated that reproductive stage appears

to be more vulnerable to HT than vegetative stages of crop develop-

ment (reviewed in Hatfield et al., 2008, 2011; Prasad & Djanaguira-

man, 2014; Prasad et al., 2017). Studies on maize (Schoper, Lambert,

Vasilas, & Westgate, 1987), wheat (Ferris, Ellis, Wheeler, & Hadley,

1998; Prasad, Pisipati, Ristic, Bukovnik, & Fritz, 2008), rice (Matsui,

Omasa, & Horie, 2001; Prasad, Boote, Allen, Sheehy, & Thomas,

2006; Prasad et al., 2017) and sorghum (Djanaguiraman et al., 2014;

Prasad, Djanaguiraman, Perumal, & Ciampitti, 2015) indicated that

HT stress during reproductive stages decreased the number of seeds

per panicle and individual seed weight, resulting in lower grain yields.

Grain numbers are a result of successful fertilization (seed set),

which mainly depends on the functionality of male (pollen) and

female (ovule) gametes. Adverse environmental conditions during flo-

ral development and anthesis can negatively influence gametes via-

bility and its functions leading to decrease in floret fertility,

consequently, seed set (Djanaguiraman, Perumal, Ciampitti, Gupta, &

Prasad, 2017; Djanaguiraman et al., 2014; Prasad, Boote, Allen,

Sheehy et al., 2006). HT stress during the grain filling period

decreases individual grain size due to shorter grain filling duration

(Prasad, Pisipati, Mutava, & Tuinstra, 2008) and/or grain filling rate

(Dias & Lidon, 2009; Prasad, Boote, & Allen, 2006, Prasad, Pisipati,

Ristic et al., 2008). The impacts of HT stress during the reproductive

stage of finger millet are not known. Improved knowledge on how

finger millet responds to HT stress and quantifying the response will

help to develop crop, soil, nutrient and water management practices

that can enhance resilience to changing environments.

Existence of genetic variability for HT stress tolerance is a critical

factor for the development of more HT-tolerant cultivars. Genetic

diversity among germplasm with varied degree of HT stress toler-

ance has been well documented in cereals such as rice, wheat, sor-

ghum and pearl millet (Djanaguiraman et al., 2014, 2017; Nguyen

et al., 2013; Pradhan, Prasad, Fritz, Kirkham, & Gill, 2012; Prasad,

Boote, Allen, Sheehy et al., 2006). In cereals, the HT-tolerant geno-

types are defined by maintenance of photosynthesis, chlorophyll

content and stomatal conductance under HT stress, while the yield

of these genotypes is maintained through higher seed set, grain

number and individual grain weight at HT (Djanaguiraman et al.,

2014, 2017; Nguyen et al., 2013; Pradhan et al., 2012; Prasad,

Boote, Allen, Sheehy et al., 2006; Prasad et al., 2017; Singh et al.,
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2015; Yang, Sears, Gill, & Paulsen, 2002). However, research on

quantifying genetic variability for HT stress in finger millet is limited.

Hence, the objectives of this research were (i) to quantify effects of

HT stress on physiological and yield traits, (ii) to identify the devel-

opmental stages of finger millet most sensitive to HT stress and (iii)

to quantify the genetic variability for HT stress tolerance in finger

millet.

2 | MATERIALS AND METHODS

Studies were conducted in controlled environmental facilities in the

Department of Agronomy at Kansas State University, Manhattan,

Kansas, USA.

2.1 | Effects of season-long HT stress

To determine the season-long HT stress effects on growth, physiol-

ogy and yield, ten seeds of the finger millet genotype, 27116701

SD, were sown at the 2-cm depth in 3.8 L PVC pots containing

Metro Mix 350 (Hummert International, Topeka, KS, USA). A con-

trolled release fertilizer, Osmocote Classic 90551 (19-6-12, N-P-K)

(Scotts, Marysville, OH, USA), was incorporated into the rooting

medium at the manufacturer’s recommended rate of 1.8 kg/m3

before sowing. Three indoor growth chambers (Conviron Model

CMP 3244, Winnipeg, Manitoba, Canada) were used to impose vari-

ous temperature treatments. Each growth chamber was 75 cm wide,

180 cm long and 185 cm high. After emergence, the plants were

thinned to three per pot.

All the three growth chambers were maintained at daytime maxi-

mum/night-time minimum temperatures of 32/22°C from sowing

until 10 days after emergence. Then, the three temperature treat-

ments were imposed by changing the temperature of growth cham-

bers to 32/22°C (OT), 36/26°C (HT1) and 38/28°C (HT2)

representing three temperature regimes until maturity. Daytime and

night-time temperatures were held for 12 hr (6 hr each) with a 6-hr

transition period between each daytime maximum and night-time

minimum temperatures. The photoperiod was 12 hr, and photon flux

density (400–700 nm) provided by cool fluorescent lamps was

940 lmol m�2 s�1 measured at canopy level. Relative humidity in

the chambers was uniformly set at 85%. The relative humidity was

maintained inside the growth chamber by automated spray of water

as fine mist by the growth chamber inbuilt program. Air temperature

and relative humidity were continuously monitored at 20-min inter-

vals in all growth chambers until maturity. The pots had drainage

holes and were watered daily to pot capacity to keep adequate soil

moisture to avoid water stress. Pots (50 in number) were randomly

moved within each growth chamber to eliminate any positional bias

with reference to treatment effects (temperature).

At the vegetative stage (5th visible leaf stage), one plant in each

pot (about 3–5 pots) was tagged for measuring leaf physiological

traits. A self-calibrating chlorophyll meter (SPAD, Model 502; Spec-

trum Technologies, Plainfield, IL, USA) was used for measuring

chlorophyll index. Photosystem II quantum yield (Fv/Fm ratio) was

measured using a pulse-modulated chlorophyll fluorometer (OS5p;

Spectrum Technologies, Plainfield, NH, USA). Leaf level photosynthe-

sis, stomatal conductance, transpiration and leaf temperature were

measured on individual, attached, top most fully expanded leaves in

the top 2nd internode from tagged plants in different pots using a

LI-6400XT Portable Photosynthesis System (LI-COR; Lincoln, NE,

USA). Gas exchange measurements were taken at growth tempera-

ture and ambient CO2 (400 lmol m�2 s�1) conditions. The internal

LED light source in the LI-6400XT was set at 1,600 lmol m�2 s�1,

and gas exchange was recorded during vegetative, booting, 50%

flowering and 50% grain fill stages.

At maturity, one plant from each pot was removed carefully,

washed in tap water and data on plant height (the maximum height

from the base of the stem to tip of the plant), number of leaves per

plant, number of tillers per plant and internode length (cm) were

recorded. Internode length was determined by taking an average of

3 internodes in the middle of the canopy (6th through 8th intern-

ode). The leaves were removed, and the area was measured using a

portable leaf area meter (LI-3000, LI-COR; Lincoln, NE, USA) and

expressed as cm2 per plant. The leaves and stems were dried at

65°C for 7 days and weighed.

To record the yield and its components, plants in five different

pots were chosen and tagged at the heading stage. At physiological

maturity, the number of panicles per plant was recorded and the

tagged panicle was harvested and dried at 40°C for 10 days. The

number of fingers per panicle, length of finger (cm), number of seeds

per panicle and seed dry weight (g) were recorded from the tagged

panicle. All the panicles were dried and hand-threshed to determine

grain yield (g) per plant, 100-seed weight (g) and harvest index (ratio

of grain yield to total above ground biomass). The 100-seed weight

(g) was estimated as the ratio of total seed dry weight to total num-

ber of seeds and multiplied by 100.

2.2 | Effects of short episodes of HT stress

To identify the HT sensitive stages of finger millet, ten seeds of the

finger millet genotype, 27116701 SD, were sown in the greenhouse

maintained at 27/18°C (daytime maximum and night-time minimum

temperature) and 50% RH as mentioned earlier. The photon flux

density (400-700 nm) provided by natural sunlight was around 400–

900 lmol m�2 s�1 during the crop growing season. All the plants

(30 pots) were maintained in the greenhouse until the start of the

booting stage then moved to a growth chamber maintained at 27/

18°C (OT: daytime maximum/night-time minimum temperature). At

the designated stage [booting, panicle emergence, flowering, 10, 20,

30 and 40 days after flowering (DAF)], three pots (3 plants/pot)

were transferred to growth chambers maintained at 38/28°C (HT:

daytime maximum/night-time minimum temperature) for short peri-

ods (10 days) and returned back to the greenhouse. Uniform plants

at similar developmental stages were selected based on plant height

and number of leaves to impose the HT stress. A set of three pots

were continuously maintained from booting to 40 DAF at OT and
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HT to serve as controls. The RH was set and maintained at 85%.

The other growth conditions were the same as season-long HT

stress experiment. At maturity, data on plant height (cm), number of

leaves per plant, leaf area (cm2) per plant, number of panicles per

plant, number of fingers per panicle and finger length (cm) were

recorded on the tagged plants/panicles as mentioned earlier. Plants

were separated into component parts (leaf and stem) and dried at

65°C for 7 days. Panicles were dried at 40°C for 10 days, hand-

threshed, and number of seeds per panicle, 100-seed weight (g) and

grain yield per plant were recorded.

2.3 | Genetic variability for HT stress tolerance

Fifty-one finger millet germplasm lines of the minicore collection

were obtained from ICRISAT, Hyderabad, Telangana, India and sown

at 2-cm depth in 1.8 L pots (pot diameter at the top and bottom

was 21 and 16 cm, respectively, pot depth was 20 cm) containing

commercial Sun Grow Metro Mix 200 potting soil (Hummert Interna-

tional, Topeka, KS, USA). The seedlings were grown in four large

growth chambers at optimum temperature (OT; 30/20°C, daytime

maximum and night-time minimum). The pots were randomly

arranged within each growth chamber to avoid positional effects

within the chamber. The crop husbandry and growth chamber condi-

tions were similar to those mentioned in previous sections. Finger

millet plants were grown under OT from seedling emergence until

booting. Thereafter, a set of five pots were transferred from the OT

to HT stress conditions (38/28°C daytime maximum/night-time mini-

mum) at booting stage. The duration of stress was 14 days. After

the stress period, the plants were returned to OT, where it remained

until final harvest at maturity. Control plants (five pots) remained

under OT from seedling emergence to final harvest at maturity.

The chlorophyll content and thylakoid membrane damage were

recorded in all the genotypes on 14th day of temperature treatment

using SPAD meter and OS30p chlorophyll fluorometer, respectively.

In each pot, the panicle from main tiller was tagged with cotton

thread. At maturity, the tagged panicle was hand-harvested and

dried at 40°C for 7 days. The number of fingers per panicle, panicle

length, panicle width, finger length, finger width was measured in

F IGURE 1 Effects of season-long HT temperature treatments [optimum (OT, 32/22°C), high temperature stress (HT1, 36/26°C) and (HT2,
38/28°C)], on (a) leaf transpiration (mmol m�2 s�1); (b) leaf temperature (°C); (c) PS II quantum yield (Fv/Fm ratio; unitless); and (d) chlorophyll
index (SPAD units) of finger millet at different growth stages. Vertical bars denote � SE of means. Means with the same letter are not
significantly different at p < .05
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the tagged panicles. The tagged panicles were hand-threshed, and

the seeds were counted and weighted. The 100-seed weight (g) was

estimated as the ratio of total seed dry weight per panicle to total

number of seeds per panicle and multiplied by 100.

2.4 | Data analyses

The experimental design for season-long, short episode and genetic

variability was a randomized block design. Temperature treatment was

randomly assigned to the growth chambers. Statistical analyses were

performed using SAS 9.1.3 (SAS Institute, 2003). The PROC GLM pro-

cedures were used, and the least square difference was used to sepa-

rate the treatment means. Standard error bars are shown as an

estimate of variability. The classification of finger miller genotypes for

HT stress tolerance was performed using principal component analysis

(PCA) as described by Kakani et al. (2005) by considering the repro-

ductive trait variability under OT and HT stress. Eigenvectors gener-

ated by PCA were used to identify parameters that differentiated

finger millet genotypes for HT stress tolerance. The factor loading val-

ues of variables and genotypes in PC1 and PC2 were used to classify

the variables and genotypes. Genotypes that had +PC1 and +PC2

scores were classified as tolerant (quadrant I). Those with +PC1 and

�PC2 scores were classified as moderately tolerant (quadrant II).

Those with �PC1 and +PC2 scores were classified as moderately sus-

ceptible (quadrant III), and those with �PC1 and �PC2 scores were

classified as susceptible (quadrant IV).

3 | RESULTS

3.1 | Quality control of growth chambers

The temperatures of the growth chamber for the OT treatment dur-

ing the season-long HT stress experiment were 31.7 � 0.5°C day-

time maximum and 21.6 � 0.5°C night-time minimum, respectively.

In HT1, they were 35.5 � 0.5°C and 25.8 � 0.5°C; and in HT2, they

were 37.9 � 0.5°C and 27.6 � 0.5°C. For the short-term HT stress

and genetic variability experiment, temperatures were also with

�0.4°C of the target temperatures. In all the experiments, relative

humidity was similar across all temperature regimes at about

85 � 5%. Quality of the temperature control and growth chamber

performance was previously published (Pradhan et al., 2012).

3.2 | Effects of season-long HT stress

Overall, there was no effect of HT on photosynthesis (Figure S1).

However, transpiration rate (mmol m�2 s�1), PS II quantum yield (Fv/

Fm ratio; unitless) and leaf temperature (°C) were significantly

(p < .05) affected by HT stress (Figure 1). Transpiration rate was

higher at the 50% flowering stage than at vegetative, booting or grain

filling stages (Figure 1a). Transpiration rate, stomatal conductance

(Figure S1) and leaf temperature were higher in the 36/26 and 38/

28°C treatments compared with the 32/22°C treatment. Lower values

for PS II quantum yield were observed at 38/28°C compared with 32/

F IGURE 2 Effects of season-long HT
temperature treatments [optimum (OT, 32/
22°C), high temperature stress (HT1, 36/
26°C and HT2, 38/28°C)] on (a) plant
height (cm); (b) internode length (cm); (c)
number of tillers per plant; and (d) total
number of leaves per plant at maturity of
finger millet. Vertical bars denote � SE of
means. Means with the same letter are not
significantly different at p < .05
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22 and 36/26°C (Figure 1c). Leaf chlorophyll index (SPAD units) was

higher at 32/22°C compared with 36/26 and 38/28°C (Figure 1d).

Significant interactions were observed between temperature and

stage of measurement for morphological and growth traits. Panicle

emergence was delayed by 16 days, flowering by 21 days and physi-

ological maturity by 28 days at 36/26°C compared to the control.

While at 38/28°C, panicle emergence, flowering and physiological

maturity were delayed by 19, 27 and 38 days, respectively, com-

pared to 32/22°C. HT stress decreased plant height, internode

length, number of tillers per plant and increased total number of

leaves per plant (Figure 2). Yield and yield components were signifi-

cantly (p < .05) influenced by temperature treatments (Figure 3).

Number of fingers per panicle was decreased (on average ~1–1.5 fin-

gers) with increasing temperature from 32/22 to 36/26 or 38/28°C

(Figure 3a). Compared with 36/26 and 38/28°C, plants at 32/22°C

had more seeds per panicle (Figure 3c) and heavier seeds (Fig-

ure 3d). The leaf and stem dry weights were decreased by HT stress

(Figure S2). Grain yield decreased by 75% under 36/26°C and by

84% at 38/28°C compared with 32/22°C (Figure 3e), and harvest

index decreased by 54% under 36/26°C and by 62% under 38/28°C

compared with 32/22°C (Figure 3f).

3.3 | Effects of short episode of HT stress

Finger millet growth traits such as plant height (cm per plant), num-

ber of leaves per plant, leaf area per plant (cm2) and leaf dry weight

(g per plant) were not influenced by short episodes of HT stress

(Table 1). However, stem dry weight per plant (g) was significantly

(p < .05) decreased by HT stress. At continuous HT stress, stem dry

weight decreased 51% compared with the OT control.

F IGURE 3 Effects of season-long HT
temperature treatments [optimum (OT, 32/
22°C), high temperature stress (HT1, 36/
26°C and HT2, 38/28°C)] on (a) number of
fingers per panicle; (b) finger length (cm);
(c) number of seeds per panicle; (d) 100-
seed weight (g); (e) grain yield (g per plant);
and (f) harvest index at maturity. Vertical
bars denote � SE of means. Means with
the same letter are not significantly
different at p < .05
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Yield and yield components (panicle dry weight, number of seeds

per panicle, 100-seed weight and grain yield per plant) were signifi-

cantly (p < .05) decreased by short episode of HT stress imposed at

various stages, but there were no significant differences for number

of panicles per plant, number of fingers per panicle and finger length

(Table 1). The highest percentage decrease (~70–75%) in number of

seeds per panicle occurred when short episode of HT stress was

imposed at booting or panicle emergence, compared to plants grown

at continuous OT. While short episode of HT stress during flowering

or 10 days after flowering caused similar decreases (~60%) in num-

ber of seeds per panicle. There was no significant effect of short epi-

sode of HT stress on 100-seed weight (Figure 4b). Only continuous

HT stress decreased 100-seed weight by 52% compared with the

control. Grain yield significant decreased by 36% at booting, 72% at

panicle emergence, 57% at flowering, 36% at 40 DAF and 79% at

continuous HT compared with the control (Figure 4c).

3.4 | Genetic variability for HT stress tolerance

Across all genotypes, HT stress decreased the chlorophyll index

(SPAD units; 6.6%) and increased the O/P ratio of chlorophyll a fluo-

rescence by 70.5% (Table 2). Finger millet genotypes varied signifi-

cantly (p < .05) for chlorophyll index (SPAD units), O/P ratio of

chlorophyll a fluorescence and canopy temperature (Table 3). Among

the genotypes, the O/P ratio of chlorophyll a fluorescence at HT

ranged between 0.309 (relative units; IE2312) and 0.371 (relative

units; IE4734) (Table 3). Similarly, the chlorophyll index ranged from

44.8 (SPAD units; IE2437) to 52.9 (SPAD units; IE3973) and canopy

temperature at HT ranged between 37.6°C (IE4734) and 42°C

(IE4497) (Table 3). The interaction of genotype and temperature

showed that the highest increase in O/P ratio of chlorophyll a fluo-

rescence was observed in genotype IE6154 (108%) and IE3952

(105%) due to HT stress and maximum decrease in chlorophyll index

(SPAD units) was observed in the genotype IE4734 (14%; Table 3).

Across all genotypes, HT stress significantly decreased (p < .05)

panicle width (15%), finger width (19%), number of seeds per panicle

(95%), seed yield per panicle (97%) and seed size (31%) over OT

(Table 2). Irrespective of temperature, finger millet genotypes varied

significantly (p < .05) for number of seeds per panicle, panicle length

(cm), panicle width (cm), finger length (cm), finger width (cm), number

of seeds per panicle, seed yield per panicle and seed size (g per 100

seed) (Table 4). The panicle length ranged from 19.8 cm (IE3392) to

4.5 cm (IE4570), and finger length ranged between 17.2 cm (IE3392)

and 3.4 cm (IE4570) (Table 4). The panicle width and finger width

ranged between 5.8 cm (IE6337) and 1.3 cm (IE4570) and 1.1 cm

(IE3973) and 0.4 cm (IE4570) cm, respectively (Table 4). Averaged

across temperatures, the highest number of seeds per panicle was

observed in genotype IE2957 (1377.9) and the lowest in genotype

IE4757 (180.4) (Table 5). The seed yield per panicle ranged from

3.4 g per panicle (IE5066) to 0.29 g per panicle (IE4757) (Table 5).

The 100-seed weight was the highest in the genotype IE2296

(0.375 g) and the lowest in genotype IE2871 (0.079 g) (Table 5).

The interaction of genotype and temperature showed that the

highest panicle width decrease was observed in genotype IE4570

(50.6%) due to HT stress; however, the genotype IE2710 had

increased (3%) panicle width due to HT stress (Table 4). The data on

finger width indicate that in most of the genotypes, the finger width

was decreased by HT (Table 4). Number of seeds per panicle and

seed yield per panicle showed a decrease in the range of 71%–100%

and 80%–100%, respectively. The genotype IE2312 had a decrease

of 71% in number of seeds per panicle; however, the genotypes

IE4673, IE4734 and IE6154 had a decrease of 100% due to HT

stress (Table 5). HT stress decreased the 100-seed weight in all the

genotypes, except in IE2589, IE4545, IE4673, IE 4757, IE5201,

IE5367 and IE6473 (Table 5).

3.5 | Principal component analysis

The principal component analysis indicated that the first two princi-

pal component vectors (PC1 and PC2) accounted for 45.4% of the

total variation (Figure 5a). Among the various traits in PC1, maxi-

mum variation was explained by panicle width OT at HT (17%) and

TABLE 1 Effects of short episode of HT stress imposed during different stages of development on finger millet growth and yield traits

Trait

Stages of high temperature stress imposition

LSD1a 2 3 4 5 6 7 8 9

Plant height (cm) 127.5 129.0 124.5 137.5 125.3 131.0 134.3 138.5 124.3 NS

Number of leaves per plant 34 47.3 36.8 50.0 64.0 46.8 27.5 27.0 47.3 NS

Leaf area (cm2 per plant) 267 391.5 178.8 318.0 451.5 437.3 432.0 231.8 194.0 NS

Leaf dry weight (g per plant) 24.4 22.3 23.7 22.9 25.5 22.7 19.6 23.2 20.3 NS

Stem dry weight (g per plant) 40.5 29.5 30.5 29.6 28.1 29.5 28.1 31.8 19.9 7.4*

Panicle dry weight (g) 38.1 24.6 28.7 27.2 28.8 27.0 34.4 35.5 34.4 8.7*

Number of panicles per plant 2.8 1.8 4.0 4.0 6.5 4.5 2.8 3.5 2.8 NS

Number of fingers per panicle 7.8 6.8 5.8 5.5 7.3 7.0 7.5 6.8 7.3 NS

Finger length (cm) 9.8 9.5 7.5 7.0 8.5 8.3 8.5 7.3 11.0 NS

*Significant at the .05 probability level; NS—non-significant at the .05 probability level.
aDevelopmental stages of high temperature stress imposition: 1, continuous OT (control); 2, booting; 3, panicle emergence; 4, flowering; 5, 10 days after

flowering (DAF); 6, 20 DAF; 7, 30 DAF; 8, 40 DAF; 9, continuous high temperature (HT).
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grain yield per panicle at OT (14%) (Figure 5a). In PC2, maximum

variability was observed for number of seeds per panicle at HT

(26%) followed by grain yield per panicle at HT (24%) (Figure 5a).

Among the finger millet germplasm, 13 genotypes (top four as

IE2312, IE2957, IE5201 and IE2430; +PC1 and +PC2 scores;

quadrant I, Figure 5b) were classified as HT tolerant. Fifteen geno-

types were classified as moderately tolerant to HT (e.g., IE4028,

IE4497, IE2437 and IE2710; +PC1 and -PC2 scores; quadrant II; Fig-

ure 5b). The 10 genotypes under �PC1 and +PC2 group were classi-

fied as moderately susceptible to HT (e.g., IE2911, IE6082, IE6421

and IE3391; quadrant III, Figure 5b), and 13 genotypes under �PC1

and -PC2 group were classified as susceptible to HT (e.g., IE4797,

IE4757, IE4570 and IE4734; quadrant IV; Figure 5b).

4 | DISCUSSION

This research showed evidence that (i) season-long HT (≥36/26°C)

stress decreased leaf physiological traits, yield and yield components,

(ii) short episode of HT (10 days of 38/28°C) stress decreased stem

and panicle dry weight, number of seeds per panicle, 100-seed

weight and grain yield per plant, (iii) booting, panicle emergence and

flowering stages were the most sensitive to HT stress and (iv) there

exists a good genetic variability for HT stress response in finger

millet.

HT stress (38/28°C) decreased chlorophyll index compared to

OT (32/22°C; Figure 1d). Lesser accumulation of chlorophyll mole-

cule in HT-stressed plants may be attributed to impaired chlorophyll

synthesis or its accelerated degradation or a combination of both

(Ashraf & Harris, 2013). HT stress (≥36/26°C) increased O/P ratio of

chlorophyll a fluorescence compared to OT (32/22°C; Figure 1c;

Table 2), which indicates structural and functional alterations in

chloroplast namely damages to thylakoid membranes (Ahmad, Diwan,

& Abrol, 2010; Allakhverdiev et al., 2008). HT stress decreased PSII

F IGURE 4 Effects of short episode of HT temperature [optimum
(OT, 27/18°C), high temperature stress (HT, 38/28°C)] at different
growth stages of finger millet on (a) number of seeds per panicle; (b)
100-seed weight; and (c) and grain yield per plant (g). Vertical bars
denote � SE of means. Means with the same letter are not
significantly different at p < .05. Abbreviations: control—continuous
optimum temperature (27/18°C); DAF—days after flowering; Cont.
HT—continuous high temperature (38/28°C)

TABLE 2 Main effect of temperatures [optimum temperature
(OT, 30/20°C: daytime maximum/night-time minimum temperature)
and high temperature (HT, 38/28°C)] during booting stage for
14 days on physiological and yield traits

Trait
Optimum
temperature

High
temperature LSD

Chlorophyll index (SPAD

units)

52.3 48.8 0.161***

O/P ratio (relative units) 0.200 0.341 0.001***

Leaf temperature (°C) 30.4 40.3 0.115***

Number of fingers per

panicle

6.42 6.33 0.198

Panicle length (cm) 9.54 9.48 0.187

Panicle width (cm) 3.48 2.94 0.077***

Finger length (cm) 6.57 6.61 0.141

Finger width (cm) 0.797 0.649 0.019***

Number of seeds per

panicle

1,467 67 18***

Seed yield (g per

panicle)

3.79 0.13 0.041***

Seed size (g per 100

seed)

0.265 0.183 0.012***

***Significant at the 0.001 probability level.
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quantum yield compared to OT which can lead to changes in energy

allocation to the photosystems (Wahid & Shabbir, 2005). Similar

changes were observed in other cereals (wheat; Prasad, Pisipati, Ris-

tic et al., 2008; sorghum; Djanaguiraman et al., 2014). Photosynthesis

has been long recognized as sensitive to environment stresses. In the

present study, the photosynthetic rate was not affected by HT stress

(38/28°C; Figure S1). The absence of a clear effect of HT on photo-

synthesis is consistent with previous reports for sorghum (Jain, Pra-

sad, Boote, Allen, & Chourey, 2007; Prasad, Pisipati, Mutava et al.,

2008) and rice (Prasad, Boote, Allen, Sheehy et al., 2006). This indi-

cates that the overall electron transport may remain almost unaltered

regardless of substantial PS II photodamage. The increase in overex-

citation of PS II might have exacerbated damage to PS II (Behrenfeld,

Prasil, Kolber, Babin, & Falkowski, 1998). The other possible mecha-

nism involved in PS II photodamage could be that the excess energy

that cannot be used to drive photosynthesis can enhance the produc-

tion of reactive oxygen species, which can induce photooxidative

damage to PS II (Roach & Krieger-Liszkay, 2014). Compared to OT,

the transpiration rate (Figure 1a) and the stomatal conductance (Fig-

ure S1) were enhanced under HT stress. When temperature

increases, the viscosity of water declines and mesophyll conductance

increases, which may improve the supply of water to sites of evapo-

ration and thus increase the stomatal aperture (von Caemmerer &

Evans, 2015). The higher transpiration rate in the HT might have

resulted in better leaf cooling which might have served as a self-pro-

tection mechanism to dissipate the harmful heat leading to no

change in photosynthesis (Yan, Chen, Shao, Zhang, & Xu, 2011).

TABLE 3 Interaction of genotype (G) and temperature [T,
optimum temperature (OT, 30/20°C: daytime maximum/night-time
minimum temperature) and high temperature (HT, 38/28°C)] during
booting stage for 14 days on physiological traits

Genotype
ID

Traits

O/P ratio of
Chlorophyll a
fluorescence
(relative units)

Chlorophyll
index (SPAD
units)

Canopy tem-
perature (οC)

OT HT OT HT OT HT

IE2296 0.210 0.346 53.1 49.8 30.4 40.7

IE2312 0.209 0.309 53.6 51.0 30.5 40.6

IE2430 0.209 0.324 53.3 50.4 30.7 40.7

IE2437 0.207 0.350 49.4 44.8 30.8 40.6

IE2589 0.188 0.320 51.8 48.6 30.5 40.6

IE2606 0.206 0.339 53.6 50.4 30.9 41.2

IE2619 0.199 0.331 52.2 47.2 30.3 41.4

IE2710 0.202 0.337 52.5 49.4 30.8 41.2

IE2821 0.192 0.344 53.7 49.1 30.8 40.9

IE2871 0.197 0.341 49.9 46.7 31.1 40.4

IE2911 0.205 0.316 53.3 50.5 30.5 40.5

IE2957 0.204 0.334 53.6 50.2 30.3 40.8

IE3104 0.206 0.339 55.2 52.8 30.9 40.8

IE3391 0.213 0.328 50.6 47.2 30.7 40.5

IE3392 0.209 0.352 52.0 48.1 30.7 40.9

IE3470 0.194 0.349 52.9 48.5 31.1 40.6

IE3475 0.195 0.329 51.7 48.2 30.4 40.5

IE3618 0.209 0.341 53.4 49.1 30.7 40.4

IE3721 0.209 0.346 52.3 47.1 29.7 40.4

IE3945 0.210 0.340 54.4 50.4 30.8 40.3

IE3952 0.177 0.362 48.4 45.4 29.5 38.0

IE3973 0.210 0.344 56.4 52.9 30.5 41.6

IE4028 0.208 0.345 53.4 49.8 30.8 40.7

IE4057 0.215 0.340 50.9 47.1 30.9 41.2

IE4121 0.203 0.337 52.0 49.8 31.0 40.5

IE4491 0.201 0.346 52.2 49.5 30.6 40.6

IE4497 0.211 0.335 48.5 45.2 31.2 42.0

IE4545 0.210 0.322 51.2 47.9 30.7 41.0

IE4565 0.199 0.349 51.3 48.5 30.3 40.2

IE4570 0.175 0.357 50.2 47.2 29.0 38.2

IE4622 0.214 0.355 51.4 48.9 30.9 40.6

IE4646 0.204 0.346 52.7 50.0 30.6 41.1

IE4673 0.179 0.353 48.3 45.5 29.5 37.7

IE4734 0.189 0.371 54.8 47.0 30.4 37.6

IE4757 0.207 0.348 53.1 49.8 29.9 39.7

IE4795 0.177 0.353 52.8 48.3 30.3 39.2

IE4797 0.201 0.351 55.4 52.4 29.5 39.0

IE4816 0.207 0.329 52.8 50.2 30.5 41.9

IE5066 0.203 0.342 50.7 47.9 30.2 40.4

(Continues)

TABLE 3 (Continued)

Genotype
ID

Traits

O/P ratio of
Chlorophyll a
fluorescence
(relative units)

Chlorophyll
index (SPAD
units)

Canopy tem-
perature (οC)

OT HT OT HT OT HT

IE5091 0.211 0.330 48.8 47.1 29.5 40.0

IE5106 0.195 0.342 51.6 47.1 30.2 40.2

IE5201 0.207 0.322 51.1 47.4 30.0 39.2

IE5367 0.198 0.342 53.7 50.0 30.3 41.1

IE6082 0.210 0.326 53.6 49.7 30.5 40.8

IE6154 0.176 0.366 51.7 48.4 30.0 37.9

IE6221 0.182 0.353 54.7 51.0 30.2 40.0

IE6240 0.190 0.337 51.3 49.0 30.4 40.5

IE6294 0.202 0.350 53.0 50.5 31.2 41.6

IE6337 0.203 0.351 51.4 48.5 30.5 40.7

IE6421 0.195 0.322 53.2 49.9 30.6 40.4

IE6473 0.206 0.346 52.6 49.1 30.8 41.1

Mean 0.200 0.341 52.3 48.8 30.4 40.3

LSD (G) 0.006 0.818 0.39

LSD (T) 0.001 0.162 0.58

LSD (G x T) 0.006 0.818 0.58
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TABLE 4 Interaction of genotype (G) and temperature [T, optimum temperature (OT, 30/20°C: daytime maximum/night-time minimum
temperature) and high temperature (HT, 38/28°C)] during booting stage for 14 days on yield traits

Genotype ID

Traits

Number of fingers per
panicle Panicle length (cm) Panicle width (cm) Finger length (cm)

OT HT OT HT OT HT OT HT

IE2296 7.67 7.50 10.00 9.42 4.37 3.40 5.27 5.53

IE2312 7.50 6.50 7.90 7.15 3.08 3.15 6.35 6.70

IE2430 7.50 7.33 9.55 9.57 3.57 3.00 7.95 7.73

IE2437 8.50 7.83 13.73 13.43 3.87 3.08 6.53 6.45

IE2589 6.17 6.67 12.30 12.13 3.55 3.48 8.20 8.43

IE2606 5.33 4.83 12.15 11.33 3.88 3.05 6.17 5.83

IE2619 5.50 5.50 9.98 9.72 2.78 2.83 6.83 6.75

IE2710 10.33 10.50 15.22 14.40 4.08 4.22 11.27 11.45

IE2821 6.83 6.17 5.98 6.07 3.10 3.07 5.17 5.17

IE2871 5.83 5.50 12.17 12.92 2.80 2.77 10.22 10.52

IE2911 4.33 4.50 9.53 9.15 2.95 2.72 3.48 3.63

IE2957 4.50 4.50 9.55 9.62 2.90 2.96 8.37 8.22

IE3104 5.50 5.33 11.10 11.55 3.50 3.20 9.28 9.00

IE3391 5.83 5.50 8.25 8.35 3.25 2.80 4.55 4.68

IE3392 6.17 6.17 20.00 19.65 3.42 3.38 17.18 17.87

IE3470 6.17 6.50 8.70 8.92 3.58 2.17 5.82 5.73

IE3475 6.33 5.50 9.00 8.73 2.20 2.13 5.82 5.43

IE3618 4.17 4.50 7.83 7.97 3.28 2.73 5.53 5.85

IE3721 6.17 6.33 8.60 8.58 2.93 2.93 7.37 7.35

IE3945 7.33 7.83 8.38 8.37 2.37 2.17 4.17 4.35

IE3952 9.33 9.50 7.60 7.52 4.50 3.55 4.17 4.33

IE3973 6.00 5.50 9.33 9.38 4.15 3.25 6.98 7.17

IE4028 7.17 7.17 6.63 6.33 3.32 3.07 4.23 4.60

IE4057 6.00 5.67 6.77 6.60 3.30 3.15 4.65 4.85

IE4121 5.33 5.50 9.45 9.43 4.35 2.40 8.32 8.58

IE4491 7.33 7.17 9.52 9.60 3.50 3.08 7.50 7.32

IE4497 8.50 8.17 9.65 9.28 3.42 2.78 5.45 5.45

IE4545 6.50 6.67 10.17 9.40 3.55 3.50 6.53 6.77

IE4565 7.00 6.83 7.33 7.48 3.33 2.35 4.40 4.65

IE4570 4.67 4.83 4.63 4.45 2.57 1.27 3.72 3.42

IE4622 5.33 5.00 8.73 8.37 2.48 1.73 5.17 5.43

IE4646 5.50 5.83 8.88 8.47 3.82 2.95 6.53 6.80

IE4673 8.00 7.50 10.07 10.52 3.58 2.52 6.13 6.42

IE4734 5.33 5.50 9.57 9.27 3.20 2.22 8.33 8.33

IE4757 5.67 5.50 8.45 8.45 2.78 2.38 5.32 5.42

IE4795 7.17 7.50 10.28 10.42 3.55 3.20 6.65 6.45

IE4797 4.17 4.17 6.65 6.78 2.33 1.98 4.80 4.83

IE4816 6.50 6.33 8.77 8.80 3.42 2.52 5.85 5.42

IE5066 6.50 6.17 11.57 12.03 3.02 2.42 6.57 6.52

IE5091 6.50 6.67 10.78 10.65 3.95 3.35 5.55 5.45

IE5106 6.50 6.17 6.43 6.67 4.87 4.80 4.43 4.45

IE5201 7.50 7.50 6.70 6.90 3.62 3.37 5.32 5.32

(Continues)

10 | OPOLE ET AL.



Season-long HT stress decreased growth traits (e.g., plant height,

internode length and total dry matter) leading to lower grain yield.

The decreased plant height under HT1 and HT2 was attributed to

decreased internode length (Figure 2b). In grain sorghum, season-

long HT stress resulted in significant increases in leaf numbers, par-

ticularly when reproductive development was arrested without any

decrease in leaf photosynthetic rates (Prasad, Boote, & Allen, 2006).

Exposure of plants to severe HT stress (>36/26°C) decreased the

stem growth resulting in decreased plant height. High temperatures

caused decreases in vegetative dry matter of other C4 cereals [maize,

Sunoj et al. (2016) and pearl millet (Pennisetum glaucum (L.), Ashraf

and Hafeez (2004)]. Increased respiration rate under HT stress can

also contribute to lower dry matter production under HT stress

(Djanaguiraman, Prasad, & Schapaugh, 2013; Sunoj et al., 2016). Sea-

son-long HT stress had adverse effects on yield and yield compo-

nents compared with OT (Figure 3). Lower seed yield at HT stress

compared to OT was due to lower seed numbers per panicle and

100-seed weight. In sorghum, temperatures >36/26°C decreased

seed set, seed yield and harvest index compared with 32/22°C (Pra-

sad, Boote, & Allen, 2006). Similarly, exposure to longer duration HT

stress during panicle development or grain filling also decreased

grain yield due to decreases in seed numbers and/or individual seed

weight of grain sorghum under field conditions (Prasad et al., 2015).

The decrease in harvest index under HT stress is due to decreased

grain yield and stem and leaf dry matter accumulation (Figure S2).

Different stages of finger millet development responded differ-

ently to a short episode (10 days) of HT stress (Figure 4). Maximum

decreases in seed numbers and/or grain yield were observed when

short episode of HT stress was imposed at booting, panicle emer-

gence, flowering and 10 days after flowering (Figure 4). These

results concur with those of Prasad, Pisipati, Mutava et al. (2008),

Prasad et al. (2015), Prasad and Djanaguiraman (2014), and

Djanaguiraman et al. (2017) who reported that maximum decreases

in yield of grain sorghum, wheat and pearl millet, respectively,

occurred when HT stress was imposed at gametogenesis and flower-

ing. Similar results were also reported by Wollenweber, Porter, and

Schellberg (2003), where grain number of wheat was decreased by

41% and individual grain weight decreased by 45% when short epi-

sode (8 days) of HT stress (35/25°C) was imposed at anthesis. The

adverse effects of short episodes of HT stress on yield of finger mil-

let could be explained by a decrease in seed numbers and seed

weight. Decreased seed numbers are generally attributed to

decreased percent seed set caused by injury to microsporogenesis

(pollen development) and mega-sporogenesis (ovule development)

process under HT stress (Cross, McKay, McHughens, & Bonham-

Smith, 2003; Prasad, Craufurd, Kakani, & Boote, 2001; Prasad, Pisi-

pati, Mutava et al., 2008; Young, Wilen, & Bonham-Smith, 2004;

Djanaguiraman and Prasad, 2014). According to Jain et al. (2007),

loss of pollen viability under HT stress is associated with altered car-

bohydrate metabolism and starch deficiency in developing pollen

grains. Other mechanism associated with loss of viability of gametes

includes increased production of reactive oxygen species, alterations

in lipid composition, anatomical abnormalities and decreased antioxi-

dants (Prasad et al., 2017).

The finger millet genotypes varied for panicle length, finger length,

number of seeds per panicle at HT and O/P ratio for chlorophyll a fluo-

rescence at HT (Figure 5a). Under HT stress, seed yield is positively

correlated with number of seeds per panicle and negatively correlated

with O/P ratio for chlorophyll a fluorescence. In sorghum, under HT

stress, the seed set percentage (number of seeds per panicle) is

strongly correlated with seed yield (Nguyen et al., 2013; Singh et al.,

2015). The number of seeds per panicle and seed yield per panicle was

ranged between <1 – 360 and <0.01 – 0.73 g, respectively, suggesting

that ample genetic variation is available in finger millet that could be

TABLE 4 (Continued)

Genotype ID

Traits

Number of fingers per
panicle Panicle length (cm) Panicle width (cm) Finger length (cm)

OT HT OT HT OT HT OT HT

IE5367 5.50 5.50 9.68 9.30 3.78 2.32 6.07 6.15

IE6082 5.67 5.50 9.60 9.73 3.20 2.75 7.57 7.35

IE6154 7.33 7.17 8.58 8.27 3.18 2.82 5.87 5.77

IE6221 7.83 7.83 8.35 8.27 5.33 4.58 6.45 6.55

IE6240 5.50 5.17 9.82 9.55 3.32 2.77 6.32 6.30

IE6294 6.17 6.33 8.43 8.70 3.60 3.03 6.05 5.97

IE6337 6.67 6.17 14.87 15.30 5.78 4.83 11.45 11.02

IE6421 6.67 6.83 9.60 9.65 3.45 2.53 6.20 6.32

IE6473 6.17 6.17 9.95 10.33 3.87 3.25 7.38 7.37

Mean 6.42 6.32 9.54 9.47 3.48 2.94 6.58 6.62

LSD (G) 1.00 0.94 0.39 0.71

LSD (T) 0.19 0.18 0.07 0.14

LSD (G x T) 0.19 0.18 0.07 0.14
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exploited in breeding programmes. Even under such extreme HT

stress, some finger millet genotypes (e.g., IE2301 and IE5201) had rela-

tively higher seed yield at HT stress through increased number of

seeds per panicle and decreased O/P ratio for chlorophyll a fluores-

cence at HT. Chlorophyll fluorescence analysis, a non-intrusive

method, can detect the effects of environment stress in plants and

give insights into the ability of a plant to tolerate environment stresses

(Maxwell & Johnson, 2000). Climate predictions indicate that finger

millet growing areas are likely to get warmer. Our results indicate such

an increase in temperature may have serious implications for finger

millet productivity. The HT stress in our experiments may be too

extreme and harsh for finger millet. The presence of genotypic varia-

tion even under extreme HT stress suggests opportunities for genetic

improvement. Targeted plant breeding programmes for enhancing HT

tolerance are possible and can help crop plants to adapt to HT stress

and other associated biotic and abiotic stresses. Further evaluation of

HT tolerance of the selected lines across locations and under field con-

ditions is essential before initiating large-scale targeted HT stress tol-

erance breeding programmes.

The responses observed in the present investigations are from

tagged panicles that were exposed to HT stress under controlled

environment conditions. However, under field conditions, it will be

different due to day to day variation in timing, intensity and duration

of stress events. Hence, further research is warranted under field

conditions for quantifying the impact of season-long and short epi-

sodes of HT stress on finger millet yield on multiple genotypes and

quantifying genetic variability. In both of our experiments (season-

long and short HT stress), the relative humidity in the growth cham-

bers was kept constant at 85% under all the temperatures regimes;

TABLE 5 Interaction of genotype (G) and temperature [T,
optimum temperature (OT, 30/20°C: daytime maximum/night-time
minimum temperature) and high temperature (HT, 38/28°C)] during
booting stage for 14 days on yield traits

Genotype ID

Traits

Finger
width (cm)

Number of
seeds per
panicle

Seed yield
(g per pani-
cle)

Seed size
(g per 100
seed)

OT HT OT HT OT HT OT HT

IE2296 0.80 0.63 666 30 4.10 0.04 0.62 0.13

IE2312 0.97 0.95 1,236 354 3.01 0.61 0.25 0.17

IE2430 0.95 0.52 1,252 189 3.33 0.35 0.27 0.18

IE2437 0.97 0.68 1,329 32 3.66 0.02 0.28 0.07

IE2589 0.80 0.77 1,567 133 1.98 0.33 0.13 0.25

IE2606 0.87 0.58 2,233 41 5.10 0.06 0.23 0.14

IE2619 0.88 0.58 861 13 1.78 0.02 0.21 0.13

IE2710 0.75 0.52 2,482 24 4.40 0.02 0.18 0.09

IE2821 0.53 0.52 1,380 13 3.12 0.02 0.23 0.14

IE2871 0.73 0.77 1,968 10 2.68 0.00 0.14 0.02

IE2911 0.65 0.62 1,395 360 2.37 0.40 0.17 0.11

IE2957 0.97 0.95 2,533 223 4.81 0.34 0.19 0.15

IE3104 0.93 0.90 1,709 105 4.02 0.15 0.24 0.14

IE3391 0.52 0.58 1,367 139 3.50 0.32 0.26 0.23

IE3392 0.53 0.55 1,159 57 4.15 0.02 0.36 0.03

IE3470 0.65 0.62 1,364 19 5.16 0.02 0.38 0.11

IE3475 0.58 0.55 1,310 78 3.01 0.13 0.23 0.18

IE3618 0.72 0.78 1,662 69 4.07 0.16 0.25 0.24

IE3721 0.80 0.72 1,264 86 2.14 0.09 0.17 0.11

IE3945 0.72 0.57 1,436 16 4.06 0.02 0.29 0.15

IE3952 0.55 0.52 2,190 4 5.70 0.00 0.26 0.05

IE3973 1.15 1.10 1,509 151 4.82 0.17 0.32 0.12

IE4028 0.83 0.62 1,417 29 5.17 0.06 0.37 0.21

IE4057 0.83 0.75 1,407 42 3.97 0.10 0.28 0.25

IE4121 1.03 0.72 1,247 7 4.70 0.01 0.38 0.15

IE4491 0.95 0.53 954 7 2.58 0.01 0.27 0.16

IE4497 0.62 0.58 2,343 19 5.53 0.04 0.24 0.23

IE4545 0.58 0.55 929 86 2.49 0.26 0.27 0.31

IE4565 0.55 0.42 1,455 2 2.46 0.00 0.17 0.16

IE4570 0.48 0.35 658 1 1.04 0.00 0.16 0.05

IE4622 0.85 0.85 1,191 15 3.81 0.03 0.33 0.21

IE4646 0.93 0.82 2,422 145 4.32 0.18 0.18 0.13

IE4673 0.93 0.67 1,711 1 5.34 0.00 0.31 0.33

IE4734 0.63 0.45 844 0 1.50 0.00 0.18 0.07

IE4757 0.57 0.42 358 3 0.58 0.00 0.16 0.24

IE4795 0.95 0.65 562 1 1.48 0.00 0.27 0.14

IE4797 0.49 0.48 559 1 1.31 0.00 0.24 0.13

IE4816 0.88 0.58 1,631 137 3.95 0.28 0.24 0.21

IE5066 0.65 0.62 2,220 4 6.86 0.01 0.31 0.30

IE5091 0.97 0.62 900 84 3.20 0.25 0.36 0.30

(Continues)

TABLE 5 (Continued)

Genotype ID

Traits

Finger
width (cm)

Number of
seeds per
panicle

Seed yield
(g per pani-
cle)

Seed size
(g per 100
seed)

OT HT OT HT OT HT OT HT

IE5106 0.98 1.02 1,752 14 5.04 0.04 0.29 0.28

IE5201 0.87 0.65 1,391 209 4.55 0.73 0.33 0.35

IE5367 0.88 0.73 889 16 2.31 0.04 0.26 0.28

IE6082 0.75 0.55 1,463 236 3.85 0.55 0.26 0.23

IE6154 0.92 0.75 1,780 1 5.75 0.00 0.32 0.16

IE6221 0.92 0.72 2,160 3 6.10 0.01 0.28 0.23

IE6240 0.92 0.68 2,499 10 6.77 0.03 0.27 0.25

IE6294 0.97 0.63 1,200 2 3.32 0.00 0.28 0.21

IE6337 1.10 0.58 2,060 12 6.24 0.03 0.30 0.28

IE6421 0.78 0.62 850 156 2.54 0.42 0.30 0.27

IE6473 0.82 0.55 2,128 79 6.06 0.24 0.29 0.31

Mean 0.80 0.65 1,468 68 3.80 0.13 0.27 0.18

LSD (G) 0.09 92 0.20 0.06

LSD (T) 0.01 18 0.04 0.01

LSD (G x T) 0.01 18 0.04 0.01
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this resulted in different vapour pressure deficits (VPDs) in different

temperature regimes. In future, it is predicted that increased temper-

ature will be observed; however, the relative humidity will remain

constant (Rind, 1998), resulting in different VPD under different

temperature regimes. Thus, treatment conditions of our experiments

are expected to occur in future climates. However, the direct effects

of different VPD (at same temperatures) on finger millet are not

known and require further investigation.

5 | CONCLUSIONS

Season-long HT stress (36/26 or 38/28°C) compared to 32/22°C

decreased chlorophyll index, seed number, 100-seed weight, grain

yield and harvest index. The stages of finger millet most sensitive to

short episode of HT stress were booting, panicle emergence and

flowering, leading to decreased number of seeds per panicle and

lower grain yield. There was differential response of genotypes to

HT stress, with some genotypes showing tolerance with respect to

chlorophyll a fluorescence, with number of seeds per panicle and

seed yield per panicle under HT stress. To achieve optimum produc-

tivity of finger millet, a desirable crop management strategy would

be to prevent HT stress during the most vulnerable reproductive

stages, by choosing appropriate genotypes (phenology and duration)

and planting dates. In addition, development of finger millet geno-

types with improved tolerance to HT stress can provide greater yield

stability and resilience in current and future climates.
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