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A B S T R A C T

In Mali's cotton belt, spatial variability in management practices, soil fertility and rainfall strongly impact crop
productivity and the livelihoods of smallholder farmers. To identify crop growth conditions and hence improve
food security, accurate assessment of local crop production is key. However, production estimates in hetero-
geneous smallholder farming systems often rely on labor-intensive surveys that are not easily scalable, nor
exhaustive. Recent advances in high-resolution earth observation (EO) open up new possibilities to work in
heterogeneous smallholder systems. This paper develops a method to estimate individual crop production at
farm-to-community scales using high-resolution Sentinel-2 time series and ground data in the commune of
Koningue, Mali. Our estimation of agricultural production relies on (i) a supervised, pixel-based crop type
classification inside an existing cropland mask, (ii) a comparison of yield estimators based on spectral indices
and derived leaf area index (LAI), and (iii) a Monte Carlo approach combining the resulting unbiased crop area
estimate and the uncertainty on the associated yield estimate. Results show that crop types can be mapped from
Sentinel-2 data with 80% overall accuracy (OA), with best performances observed for cotton (Fscore 94%),
maize (88%) and millet (83%), while peanut (71%) and sorghum (46%) achieve less. Incorporation of parcel
limits extracted from very high-resolution imagery is shown to increase OA to 85%. Obtained through inverse
radiative transfer modeling, Sen2-Agri estimates of LAI achieve better prediction of final grain yield than various
vegetation indices, reaching R2 of 0.68, 0.62, 0.8 and 0.48 for cotton, maize, millet and sorghum respectively.
The uncertainty of Monte Carlo production estimates does not exceed 0.3% of the total production for each crop
type.

1. Introduction

In Mali's cotton belt, smallholder farming systems face soil fertility
challenges, demographic, and environmental pressures that affect
farmers' livelihoods and food security (Karlson and Ostwald, 2015;
Potts et al., 2013). Crop production fluctuates strongly in time and
space and leads to chronic food insecurity (Akponikpe et al., 2011).
Smallholder rainfed agricultural systems host more than 50% of the
rural population in developing countries and yet produce 90% of the
food (Morton, 2007). While smallholder farming systems differ widely
between countries and agro-ecological zones, they often share common
features such as limited resource endowment, labor scarcity, low pro-
ductivity of labor, high productivity of capital and risk management in
economic decisions (Dixon et al., 2004; Cousins, 2010). In developing
countries, food security assessments often rely on early warning systems
(EWS) based on Normalized Difference Vegetation Index (NDVI)

anomalies. Such systems offer food security alerts at medium spatial
resolution that are not detailed enough to detect the emergence of local
food insecurity conditions, and often leverage remote sensing only in a
qualitative sense (Baruth et al., 2008). Meanwhile, the generation of
agricultural statistics (area, yield and production) relies almost ex-
clusively on labor-intensive field surveys that are both constrained re-
garding representativeness and reliability. Recent instances of EWS
failing to identify the emergence of localized famines in Ethiopia
(1999–2000), Malawi (2001–2002) and Niger (2005) (Genesio et al.,
2011; Devereux, 2009), highlight the outstanding challenges faced by
EWS in assessing local food insecurity, including data accuracy, time-
liness and disaggregation. For example, the 1999–2000 Ethiopian
famine was concentrated in the lowland pastoralist areas, while EWS
mainly focused on the crop-producing highlands (Maxwell, 2002).

Recent improvements in the spatial, spectral and temporal resolu-
tions of EO satellites hold significant potential for improved food
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security assessments. Remote sensing applications traditionally face
considerable challenges in smallholder agriculture because of small
field size, heterogeneity in management practices, the resulting land-
scape fragmentation, and the widespread presence of trees within the
fields (Delrue et al., 2013; Vancutsem et al., 2012). Some studies
achieved accurate land cover classifications of smallholder farming
systems using high-resolution (HR) imagery (Sweeney et al., 2015),
very high-resolution (VHR) imagery (Debats et al., 2016) or a combi-
nation thereof (Lebourgeois et al., 2017). While some authors deemed
VHR compulsory for such purposes (Lebourgeois et al., 2017; McCarty
et al., 2017), others found HR to be sufficient (Pervez et al., 2014).
Settling this question is probably context-specific. Results from Leroux
et al. (2014) in a similar and nearby agro-ecology suggest that a 10-m
spatial resolution may suffice for land cover classification in the Malian
cotton belt.

Quantitative estimates of smallholder yields from EO also offer
potential to improve scalability and objectivity, compared to estimates
generated from survey data. Two popular approaches used to estimate
crop yield from EO include (i) empirical models based on regressions
between yield measurements and spectral VIs and, (ii) crop growth
models involving the use of weather, soil, plant, management and sa-
tellite data. In theory, the agility of crop models featuring a finer-scale
representation of plant, soil and management processes confers them a
higher accuracy for yield estimation. In practice, however, they are
constrained by data availability (Morel et al., 2014; Burke and Lobell,
2017) and lack of granularity, and are biased towards temperate, high-
yielding cultivars (Srivastava et al., 2016; Gaiser et al., 2010). EO-de-
rived yield predictors, on the other hand, evaluate actual precursors of
yield and can be applied at granular scales increasingly congruent with
the reality of smallholder agricultural systems. A set of recent studies
(Schut et al., 2018; Jin et al., 2017; Han et al., 2017; Azzari et al., 2017;
Burke and Lobell, 2017; Jain et al., 2016) focused on yield estimation
from EO. Chivasa et al. (2017) suggested that the decreasing cost of EO
data opens opportunities for maize yield estimation in heterogeneous
African agricultural landscapes, but that reliable field data and accurate
classification methods remain key. Jin et al. (2017) compared an em-
pirically calibrated model using yield measurements and an un-
calibrated model based on pseudo training data generated from a crop
model. At an aggregated administrative scale (e.g., district and divi-
sion), the calibrated and uncalibrated models reach similar perfor-
mances with R2 ranging from 0.3 to 0.6 in both cases. Achieving robust
smallholder landscape yield predictions is important in sub-Saharan
Africa, notably where subsistence agriculture still determines food se-
curity, and for profitable farmer participation in more contract-oriented
agricultural areas. These yield predictions should also be robust at an
individual crop level, to adequately represent the diversity of food and
income sources, and for economic efficiency should attempt to leverage
as much value as possible from open-source, free data.

This research aims to propose an integrated method to estimate
crops production at local community scale, and uncertainty thereof, in
complex and heterogeneous smallholder farming systems. It involves
the field-level mapping of crop type using supervised pixel-based clas-
sification, the identification of a best crop-specific yield estimator from
a temporally reduced set of vegetation status proxies (vegetation in-
dices and LAI), and a stochastic combination of these two results and
their respective uncertainties. The approach, based on Sentinel-2 EO
data, is tested in 2016 in a rural commune of the Koutiala district in
Mali's cotton belt.

2. Study site

The study area (353 km2) is defined by the geographical footprint of
the 43 farmers associations registered in the five villages of the
Koningue commune (Koutiala district, South-Eastern Mali): Dougan,
Sukumba, Ngueguesso 1, Ngueguesso 2 and Banesso (Fig. 1). The site is
located in the older cotton production basin of Mali, characterized by

relatively high population density (by Malian standards), land satura-
tion, fragmentation, and degradation. The area also features a relatively
strong legacy of agricultural extension, spearheaded since 1974 by the
cotton parastatal, Compagnie Malienne de Développement des Textiles
(CMDT). Extension services provide access to subsidized inputs, an
outlet for the sale of cotton production, and agronomic advice that
covers the entire cropping system including other main crops like
maize, millet, peanut, and sorghum. The combination of these factors
results in a relatively advanced state of agricultural intensification, al-
beit with large heterogeneity in production levels from landscape to
community scales.

Average annual rainfall reaches 890-mm with high inter-annual and
intra-seasonal variability. Precipitations are very dominantly con-
vective, inducing high spatial heterogeneity at the local scale (Breusers,
2004) especially towards the tails of the season. Soil properties follow
the catena, with high plateaus presenting moderately deep, argillic
soils, midslopes featuring moderately deep to shallow, gravelly and
lateritic soils (Cuirustalfs, Mollic Cuirorthents, Lithic Haplustalfs), and
deep, well drained and moderately fine textured soils in the lowlands
(Plintic/Ultic Haplustalfs, Oxic Haplustults) (Diallo and Keita, 1995;
Blaes et al., 2016). Local farmers distinguish five soil types (Fig. 1): ‘
fara dugu kolo’, rocky soils located on plateaus and slopes; (2) ‘ bele dugu
kolo’, red gravelly soils located on plateaus; (3) ‘ cencen dugu kolo’,
sandy soils located on slopes and lowlands; (4) ‘ bogo dugu kolo’, loamy
soils located in lowlands; and, (5) ‘ mana dugu kolo’, lowlands clayey
soils.

Cotton (Gossypium sp.), maize (Zea mays L. ssp.), sorghum (Sorghum
bicolor (L.) Moench) and pearl millet (Pennisetum glaucum (L.) R. Br.) are
the main crops in the region. The growing season starts with the first
rains around May and crops are harvested from early September
(maize) to end of November (millet) (Fig. 2). CMDT organizes cotton
production with farmer organizations, which strongly impacts local li-
velihoods as cotton is the main cash crop (Baffes, 2007). Sorghum,
millet and peanut are cultivated mainly for household consumption.
Since a few years, different studies highlighted the ‘ maizification’ of the
area (Laris et al., 2015; Falconnier, 2009). The maize crop has several
advantages over other local grains: higher yields, easier to sell, and
rapid maturation allowing early harvest during the lean season. How-
ever, it requires more fertilizer and is more susceptible to drought than
sorghum and millet.

3. Data

3.1. Satellite imagery

Sentinel-2A time series for the 2016 season (temporal resolution of
10 days) was processed to level L2A following Sentinel-2 for Agriculture
(Sen2-Agri) protocols (Bontemps et al., 2015) (http://www.esa-
sen2agri.org/). The MACCS algorithm uses the multi-temporal dimen-
sion of the Sentinel-2 time series to detect clouds and shadows, correct
atmospheric perturbations and retrieve aerosol optical thickness
(Hagolle et al., 2015,2010). From the 12 Sentinel-2A images acquired
during the 2016 growing season, six were discarded due to cloud cover
exceeding 50%. The remaining six images (27-07, 26-08, 05-09, 05-10,
25-10, 14-11) were used for crop type mapping and yield estimation.
Within these images, local outstanding gaps due to cloud and shadow
filtering were filled in by linear temporal interpolation. Additionally, a
cloud-free WorldView-3 image at 1.24-m multispectral resolution was
acquired on 9 October 2016.

3.2. Secondary data

Secondary thematic data layers were provided by ICRISAT, a
partner in the 2014–2017 STARS project (Spurring a Transformation for
Agriculture through Remote Sensing) active in our study area. These
included 2014 and 2015 seasonal time series of VHR DigitalGlobe
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imagery, used in STARS to, inter alia, (i) exhaustively delineate 31,248
agricultural parcels and generate annual cropland masks; (ii) derive a
landscape-level tree mask from soil-specific NDVI thresholding of a
2014 early-season WorldView-2 image (Blaes et al., 2016); and (iii) a
concomitant digital dataset on vernacular soil types collected from
farmer interviews (6700 + georeferenced samples).

We used these secondary datasets to, respectively (i) update parcels
database and resulting cropland maps for 2016, by photointerpretation
of the additional DigitalGlobe coverage acquired on 9 October 2016,
and setting the 2016 cropland extent to a total 156 km2 over the study
area; and (ii) generate a vernacular soil map from the combination of
STARS farmer interview data, object-based segmentation of a Sentinel-2
derived soil brightness image, and Shuttle Radar Topography Mission
(SRTM) 30-m elevation digital elevation model.

3.3. In situ data

A set of 821 crop type georeferenced points were collected on the

ground in October and November 2016, and included six classes:
cotton, maize, millet, sorghum, peanut, and other (e.g. soybean).
Encompassing field boundaries were digitized on the VHR WorldView-3
image of 9/10/2016 for each of the geo-referenced points. Among the
821 resulting polygons, cotton came out as the dominant crop. It is
followed by millet, maize and sorghum covering 23.7%, 20.2% and
10.1% respectively. Peanut and other crops are minor contributors,
occupying less than 3% of the sampled area.

We measured total aboveground biomass (AGB) and grain yield on a
subset of 105 fields for the four dominant crop types (26 cotton, 27
millet, 27 sorghum and 25 maize), with 3 measurement replications per
field. Field selection followed a stratified sampling approach based on
catena position (plateau, slope and valley) and household endowment
level (low, medium, high), derived from local expert knowledge. There
were three fields per crop species in each of the nine strata. The slightly
smaller sample of maize and cotton fields was due to unexpected early
harvest by a couple of farmers. On each field, the operator physically
verified the field perimeter with the farmer, recording the boundaries

Fig. 1. The Koningue commune with the five village areas. The vernacular soil map is shown as background and produced combining geolocalized vernacular soils
information and EO data providing soil brightness and elevation. Parcel boundaries are available on the entire study area except for the southern part of the Banesso
and Ngueguesso 2 communities (stripped black lines). Source: Traroé et al (2015).

Fig. 2. Crop calendar of dominant crops in the cotton belt region with decadal rainfall for the 2016 year. Rainfall data source: http://dataviz.vam.wfp.org/.
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with a Trimble Juno 5 GPS. Within each field, three quadrats of 4-m2

were randomly selected for destructive sampling, subject to a separa-
tion distance of 20-m from the nearest tree crown or field boundary (to
avoid edge effects). Grain yield was estimated based on a threshing
ratio (weight of grain over weight of ear/panicle) of 0.6, 0.75 and 0.85
for maize, millet and sorghum respectively (Ajeigbe, 2017 and
Gangashetty, 2017, pers. comm.). Cottonseed weight was determined
directly, so no conversion ratio was applied.

4. Methodology

The overall approach involves three main steps: (i) mapping crop
type within the existing cropland mask, and estimating unbiased crop
area; (ii) predicting the yield of individual crops; and (iii) estimating
aggregate production, crop-wise with associated uncertainties ac-
counting for both crop map and yield model errors.

4.1. Crop type classification and crop area estimation

We used a pixel-based, supervised Random Forest (RF) classification
to discriminate main crop types within the cropland area. The reference
821 ground dataset (totaling 131,424 pixels) was split into spatially
uncorrelated training (2/3) and validation (1/3) subsets following a
stratified random sampling (strata being crop types). For the training
sample, a 10-m internal buffer was applied on VHR-extracted field
boundaries to reduce the number of mixels (that constraint was not
applied on the validation sample to avoid accuracy overestimation).

The RF classifier used all Sentinel-2 bands resampled to 10-m except
the blue, which was discarded due to the impact of aerosols and at-
mospheric scattering (Jia et al., 2014). The RF classifier was chosen
based on its lack of over-fitting, its parsimony for user-defined para-
meters, the features importance analysis, its low sensitivity to the
number of inputs, its minimization of correlations between classifiers,
its light computational requirements, and its robustness to noise and
overtraining (Rodriguez-Galiano et al., 2012; Hastie et al., 2009;
Gislason et al., 2006). The number of trees was set to 500 following
Rodriguez-Galiano et al. (2012).

To assess the most relevant combination of band and date (a.k.a ‘
feature’) for crop type discrimination, we computed the mean decrease
in Gini Index for each feature. To calculate feature importance, the RF

algorithm turns off one of the feature while maintaining the others
constant and assesses the decrease in accuracy with the Gini Index. The
feature has the highest importance when the mean decrease in Gini
Index is the largest (Breiman, 2001).

A majority voting was applied on the resulting pixel classification
using the VHR-derived cropland vector layer and the SpatialEco R
package (https://www.rdocumentation.org/packages/spatialEco), and
we computed overall accuracy (OA) at both pixel and parcel levels; user
accuracy (UA), producer accuracy (PA) and Fscore for each crop type
were computed at parcel level only =

+( )Fscore PA UA
PA UA

2 * * .
To generate an unbiased area estimate per crop, we used a direct

calibration estimator of the area, relying on ground truth to remove the
bias of the classified map following Gallego (2004). In the confusion
matrix, the conditional probability P(j|i) is the probability to be j
(ground truth) when classified as i, with j and i∈ (cotton,maize,-
millet,sorghum). The unbiased area is determined by the Eq. (1).

∑=
=

A A P j i( * ( | ))j
i

i
1

4

(1)

Where Aj is the unbiased area of crop j, Ai is the area of pixels
classified as i assuming that each pixel covers an area of 100m2, and P
(j|i) is the conditional probability to be j when knowing i.

Additionally, as farmers actively preserve numerous trees inside
crop fields for their commercial and soil fertility maintenance values
(Traoré et al., 2002; Traoré, 2003) including notably shea (Vitellaria
paradoxa) and néré (Parkia biglobosa), we investigated the effect of tree
exclusion on crop classification accuracies, considering the low rates of
changes of tree cover associated with active farmer preservation and
slow growth rates. The 2014 pre-existing STARS 2-m tree mask was
resampled to 10-m resolution, with resulting pixels considered as being
trees if tree coverage therein exceeded 20% (to limit the effects of tree
shadows and imperfect co-registration between images). Photo-inter-
pretation of the WorldView-3 image of 9 October 2016 validated this
coarser tree mask against 150 randomly selected pixels classified as tree
(100) or non-tree (50). The overall accuracies and their respective
standard deviations were computed to compare the performance of
crop type classifications with and without trees (Rossiter, 2004). Fi-
nally, the resulting crop type map was used to explore the relationship
between soil type and crop type.

Table 1
Vegetation indices (VI) selected for crop yield estimation.

VI Formulation Ref

Green VI
NDVI =

−

+
NDVI ρNir ρRed

ρNir ρRed
Rouse Jr. et al. (1974)

Green NDVI =
−

+
gNDVI ρNir ρGreen

ρNir ρGreen
Gitelson et al. (1996)

Red-edge NDVI
=

− −

+ −
NDVIre

ρNir ρRed Edge
ρNir ρRed Edge

Gitelson and Merzlyak (1994)

Chlorophyles indices
Green Chlorophyll Index = −Cl 1Green

ρNir
ρGreen

Gitelson et al. (2003)

Red-edge Chlorophyll Index
= −−

−Cl 1Red edge
ρRed edge

ρGreen
Gitelson et al. (2003)

Modified Chlorophyll Absorption Ratio Index
=

− − −

+ − − −
MCARI2 ρNir ρred ρNir ρGreen

ρNir ρNir ρred

1.5[2.5 * ( ) 1.3( )]

(2 1)2 (6 5 ) 0.5

Haboudane et al. (2004)

Triangular Vegetation Index = − − −TVI ρ ρ ρ ρ0.5[120( ) 200( )]Red Green red Green Broge and Leblanc (2001)
Modified Triangular Vegetation Index

=
− − −

+ − − −
MTVI2 ρNir ρGreen ρred ρGreen

ρNir ρNir ρred

1.5[1.2 * ( ) 2.5( )]

(2 1)2 (6 5 ) 0.5

Haboudane et al. (2004)

Dry biomass indices
Soil Tillage Index =STI ρSwir

ρSwir
1
2

Van Deventer et al. (1997)

Normalized Difference Tillage Index =
−

+
NDTI ρSwir ρSwir

ρSwir ρSwir
1 2
1 2

Van Deventer et al. (1997)

LAI Sen2-Agri System Weiss and Baret (1999)
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4.2. Yield estimation

Table 1 references the various spectral vegetation indices (VIs) and
leaf area index (LAI) estimates used in this study as predictors of final
grain yield, separately for each crop. These include canopy chlorophyll
metrics, which were shown to be more sensitive to high green LAI va-
lues than NDVI (Viña et al., 2011), alongside STI and NDTI, which are
related to dry biomass (Jacques et al., 2014; Renier et al., 2015).

The LAI comes from the Sen2-Agri system (Bontemps et al., 2015)
where it is estimated using an artificial neural network inversion of the
PROSAIL radiative transfer model based on Sentinel-2 data (Bontemps
et al., 2015). Theoretically, using a full VI seasonal integral (rather than
a subset thereof) should deliver higher prediction skill for crop yield, as
the end result of a highly non-linear plant development and growth
process. In practice, the downgraded overpass frequency imposed by
Sentinel2’s incomplete deployment in 2016 limited the number of
available tiles to 6. In the absence of detailed management information
for each individual field used for yield model calibration, and given the
large intra-specific variability in crop phenologies, we limited ourselves
to peak VI (and LAI) as the sole predictor against which yield mea-
surements are regressed. The potential of this approach has already
been demonstrated elsewhere (Azzari et al., 2017; Becker-Reshef et al.,
2010; Jain et al., 2016).

For each species, yield regression models were calibrated using the
most homogeneous half of the fields monitored, defined as fields lo-
cated on dominant soils (sandy, loamy, and clayey) and within which
heterogeneity in measured yield is lower than the 66th percentile. As
for crop type classification, a 10-m internal buffer and a tree mask were
applied - before VI and LAI extraction - to all studied fields in order to
rely on a ‘ pure’ predictor. Due to fieldwork constraints (peanut harvest
completed at the time of field campaign), only the four dominant crop
types (cotton, maize, millet and sorghum) are involved in yield esti-
mation. The determination coefficient (R2) computed for each linear
regression serves as performance indicator. The yield regression models
are validated using the complete data set by computing RMSE, variance
and standard deviation (Sj).

4.3. Production estimation

Uncertainties inherent to the crop type classification and to the
yield estimation are combined for unbiased production estimates using
a Monte Carlo approach with 100 realizations, as follows. For each
pixel classified as crop type i, each realization draws a random crop
type j constrained by P(j|i) as derived from the confusion matrix, then
applies the corresponding stochastic yield model with a Gaussian, zero-
mean error term ϵj (Eq. (2)).

N = + + ≈y α LAI β with S* ϵ ϵ (0, )j j peak j j j j (2)

With αj, βj the coefficients of the yield linear regressions for each
crop type j; ϵj the error on those regressions and yj one potential rea-
lization of yield for a pixel of crop type j. The estimated yields are
truncated at 0 and 10 t/ha which represents extreme theoretical values
for yield in these regions. The production estimate then corresponds to
the averaging across all 100 realizations of crop yields multiplied by
corresponding crop area. The standard deviation of the 100 simulations
of production estimates is computed and expressed the model un-
certainty for crop production estimates.

5. Results and discussion

5.1. Crop type classification

5.1.1. Accuracy of the crop type map and the resulting crop type area
The OA of the pixel-based crop type map reaches 80.16 (± 0.27)%.

After parcel filtering, it increases to 85.5 (± 0.23)% (Table 2). The

cotton crop, covering more than 40% of the cropland, is the most re-
liably mapped (Fscore: 93.86%), followed by maize (Fscore: 87.52%)
and millet (Fscore: 82.5%). The cotton vegetative cover differs sig-
nificantly from other crops making the discrimination easier. Sorghum
is the least well classified with Fscore of only 45.7%. Strong mis-
classifications occur between sorghum and millet, which was expected
due to the reasonably large calendar overlap. Pooling millet and sor-
ghum into a single target class increases the OA to 91%. High weed
infestation levels in peanut are often associated with prominent intra-
field heterogeneity, leading to high omission error (PA=55.07%).
Conversely, no commission error is observed because well weeded
peanut fields have a distinct spectral and temporal signature (Table 2).
The confusion between millet and cotton is also noteworthy (444
misclassified cotton pixels).

Generally, our findings are congruent with the expression of dif-
ferential phenotypic traits (plant phenology, canopy architecture) and
management practices (sowing date, density, weeding) between domi-
nant crops. Maize, a common stop-gap crop, is typically senescent well
ahead of other species making classification easier. The thickness of
cotton and millet canopies tend to homogenize crop response at the
field scale, in contrast to other species. Peanut features the broadest
range of weed infestation and thus reveals stark differences in house-
hold labor constraints later in the season. Sorghum, a typical frontier
crop planted on more marginal soils with the least fertilizer input of all,
expresses the highest within-field heterogeneity among the dominant
crops.

Fig. 3 presents the resulting crop type map.
From top to bottom, the false color Sentinel-2, the crop type clas-

sification and the crop type classification after object filtering are
shown in zooms for two different sites of the study area.

In spite of the complex modulation of systematic environmental
gradients by local management halos centered on separate smallholder
farm households, the crop map produced corroborates the explicit en-
vironmental determinism guiding spatial crop allocation in rainfed
systems (Fig. 4). On each farm, cash crop (cotton) and highly-fertilized
crops (cotton, maize) are preferably cultivated on more finely textured
soils with the highest water holding capacity (WHC), and highest fer-
tility. Millet, which is a more valuable and valued commodity than
sorghum for both self-consumption and (in the foreseeable future) sales,
is typically also inserted on the same parcels in rotation, benefiting
from fertility carry-over effects. Sorghum, a robust and phenologically
plastic crop is more frequently targeted to more marginal environments
(such as rocky soil), although it is also often substituted for millet in
rotations after cotton and maize.

The unbiased crop type area is computed for each village within the
Koningue commune (Fig. 5). Maize and cotton crops reflect only small
area differences between the pixel counting area estimate and the un-
biased area estimate, as their classification accuracy is high, in contrast
with the often-confused millet and sorghum crops. Reflecting popula-
tion and cultivated area sizes, Sukumba features the largest crop area
for any species (total cultivated area: 8899 ha), and Ngueguesso1 the
smallest (entire cultivated area: 523 ha). While at comparable total
cultivated areas, Banesso (3146 ha) and Dougan (2925 ha) respectively

Table 2
Confusion matrix for the crop type map after object filtering. Map categories are
the rows while the reference categories are the columns (n = 22,591).

Cotton Maize Millet Sorghum Peanut Other UA [%]

Cotton 9416 356 126 196 56 18 92.6
Maize 3 3986 88 255 64 138 87.91
Millet 444 196 5005 1095 13 23 73.86
Sorghum 32 37 141 740 0 0 77.89
Peanut 0 0 0 0 163 0 100
Other 0 0 0 0 0 0 /
PA [%] 95.16 87.13 93.38 32.37 55.07 0 OA=85.48
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feature more cotton and maize, and more millet and sorghum reflecting
the higher proportion of high (low) WHC soils in Banesso lowlands
(Dougan highlands).

5.1.2. Bands and dates importance for crop type discrimination
According to the Gini Index and as illustrated in Fig. 6, red-edge and

near infrared (NIR) reflectances for late-season acquisitions (Sept. 5,
Oct. 5) contribute most to the crop type classification accuracy in the
study area. Unfortunately, the first available low cloud-coverage image
was acquired at the end of July 2016, excluding the start of season from
the analysis.

The usefulness of red-edge and NIR bands corroborates earlier
conclusions by Immitzer et al. (2016). The importance of the end-of-
season dates might explain part of the confusion between millet and
cotton because this period emphasizes similarities between the two
species (canopy thickness, spherical to planophile leaf angle distribu-
tion functions) at the expense of differences. Given the limited number
of cloud-free acquisitions during the 2016 cropping season, and the
inter-annual variability in weather and farmers responsive manage-
ment, drawing a definitive conclusion on the best week for crop type
mapping is probably too ambitious. However, targeting the peak LAI
period in September is a pragmatic option in this production system.

Fig. 3. Crop type map over the study area produced with Random Forest classification based on Sentinel-2 time series. Zooms-ins are done on two different areas of
the image and show, from top to bottom, the false color Sentinel-2 (9 September 2016), and the crop type classification before and after object filtering.

Fig. 4. Distribution of the crops according to the vernacular soil map.
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5.1.3. Impact of in-field trees on crop type classification
The Sentinel-2 tree mask resampled from VHR tree mask (Fig. 7)

shows high performance with OA of 94.67% and Fscore for tree and
non-tree of 95.58% and 92.3%, respectively.

Removal of the trees footprint from the classification inputs leads to
a small decay in OA (from 80.16% to 79.99%), which remains within
the map's standard deviation (± 0.27%). We consequently suggest that
trees removal is not required for crop type mapping at 10-m spatial
resolution in the study area. This finding is consistent with the fact that
the preeminence of end-of-season dates in the classification approach

reduces the spectral differences between tree and crop pixels as crops
are at their maximum of vegetation growth. Besides, while it system-
atically varies along the catena and as a function of distance to main
settlements, residual tree density remains independent of the crop type
in a production system very dominantly based on inter-annual crop
rotations.

5.2. Yield estimation

Fig. 8 reports the strength of crop-specific linear regressions be-
tween field measurements of grain yield and total AGB. Very high R2’s
are observed for maize and millet (0.85 and 0.84 respectively).

Cotton being an indeterminate crop displayed a weaker AGB-yield
relationship (R2=0.68), as only one destructive sampling of cotton
bolls was possible which may have under-sampled the amount of re-
productive material generated. Contributing factors to low R2 for sor-
ghum (0.62) could include the typically wider range of soil types (no-
tably marginal soils) and low fertilization rates. The best yield estimator
differs for each crop type (Fig. 9). Nevertheless, on the average across
crop types, LAI outperforms VIs for yield estimation (average R2 = 0.64
in comparison with peak NDVI reaching an average R2 of 0.44). The
superior performance of LAI can be explained in part by its higher
sensitivity in conditions of higher vegetation biomass (when most VIs
saturate).

For yield estimation, the highest R2 is reached for millet followed by
cotton and maize. Sorghum shows lower R2 which can be linked to
lower AGB - yield relationship (R2=0.616) (Fig. 8). In fact, as sorghum
is often cultivated on shallow soils, low water availability can affect
both plant maintenance and grain filling in various proportions. Fur-
ther, sorghum is often strongly photoperiod sensitive, with amounts of
AGB generated function of its very variable sowing date, which typi-
cally spans up to 6 weeks in a single landscape. A highly photoperiodic
sorghum planted early would not only feature a depressed harvest
index due to its lengthened vegetative phase, it could also further de-
press grain yield due to competing allocation of residual soil water for
biomass maintenance during the grain filling stage. Finally, significant
agro-biodiversity is actively maintained by farmers, expressing mostly
in sorghum with easily 3–4 contrasting genotypes being employed by
farmers in response to various stressors and tactical opportunities. All
these factors contribute to decouple sorghum grain yield from AGB,
affecting in turn the correlation of yield and satellite-derived LAI.

Crop specific yield linear regressions were calibrated on a homo-
geneous subset of the field data to limit the impact of the ground
measurements heterogeneity and errors. Linear regressions between
peak LAI and in situ yield averaged at parcel level for each crop type are
shown in Fig. 10.

Depending on the crop, these explained between 48 to 80% of yield

Fig. 5. Crop area estimate for each village with the pixel counting approach and the unbiased area estimator.
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variability over the calibration fields. RMSE varied from 0.5 to 1 t/ha
for the different crops, in a context of wide yield ranges from 1 to 6 t/ha
(Table 3). As the peak LAI is reached around the end of August and
harvest starts – for most studied crops – at the end of September, the
peak LAI provides yield estimation at least one month ahead harvest.

5.3. Agricultural production estimate

The Monte Carlo combination of crop type and yield estimates
provides aggregate figures of crop-specific production by village
(Fig. 11). Given the considerable differences in cultivated area, the crop
production levels differ strongly across villages. The highest inter-vil-
lage variation in yield is observed for maize. Ngueguesso 1 displays the
highest maize and cotton yields. Potential explanations may include the

Fig. 7. Tree mask based on VHR image at the beginning of 2014 growing season (26/06/2014) and resampled to 10-m to match Sentinel-2 resolution. Both satellite
images are presented in false colors.

Fig. 8. Linear regression between yield and total above ground biomass as
measured in situ on 4m2 plots for each crop type. The outliers are colored in
gray and removed from regressions.

Fig. 9. R2 of the linear regressions between yield and peak VI's.

Table 3
Linear regression for yield estimation and its validation.

Equation RMSE σ2

Cotton Yield [t/ha]=−0.03+ 0.77 * peak LAI 0.5 0.25
Maize Yield [t/ha]=−1.04+ 1.93 * peak LAI 0.97 0.99
Millet Yield [t/ha]= 0.39+1.03 * peak LAI 0.62 0.39
Sorghum Yield [t/ha]=−1.56+ 2.66 * peak LAI 0.73 0.47

Fig. 10. Linear regressions between peak LAI and yield for each crop type. These regressions are calibrated on a subset (black dots) composed of the more homogeneous fields.
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widely documented trend towards ‘ maizification’ of cereal cultivation in
Mali's cotton belt, combined with higher response of maize to fertili-
zation, higher vulnerability to low soil fertility, and substantial fertility
carry-over in the locally dominant cotton-maize-(another crop) tri-
annual rotation scheme.

Aggregation of production values estimated through the Monte
Carlo approach results in low uncertainty of model estimate for all crop
types and villages (Table 4). Higher uncertainties are met in Ngue-
guesso1 due to smaller cultivated area, which increases error when
aggregating at village level. Due to their lower Fscore in the classifi-
cation, sorghum features higher production uncertainties. The actual
error of the production estimate could only be assessed by comparison
with accurate official agricultural statistics available only at a higher
level of aggregation (i.e. Mali's circle).

6. Conclusion

This paper proposes an integrated approach to estimate, using
Sentinel-2 data, crop-specific production at a community level based on
the combination of crop type classification, unbiased area estimate and
remotely sensed yield predictors in a stochastic framework. Production
estimates generated demonstrate a robust skill, featuring no more than
0.3% of model uncertainty on total production for one community and
one crop type.

The recent Sentinel-2 mission opens up new prospects for food se-
curity and agricultural performance monitoring in smallholder farming
systems. Subject to the availability of a field dataset (crop type polygons
to train the classification), high-resolution imagery (as Sentinel-2) ap-
pears sufficient to accurately classify crop type in the relatively ‘ simple’

smallholder farming systems of Mali's cotton belt (OA= 80%). The use
of 2-m VHR images for object filtering improved OA by 5%. Those re-
sults were obtained inside a cropland mask derived from VHR imagery.
Nevertheless, we believe that accurate cropland mask could be obtained
directly from Sentinel-2 data such as demonstrated using the Sen-2-Agri
system.

Remote sensing estimates of peak LAI outperformed all spectral VIs
tested for yield estimation. The particular value of a single peak LAI
predictor is that it offers yield estimation one month ahead of harvest.
While the doubling of acquisition frequency brought about by the
launch of Sentinel-2B in 2017 may result in an LAI time integral out-
performing peak LAI for yield estimation, possible accuracy and/or lead
time improvements will need to be evaluated against increased com-
puting costs. While the growing period obviously involves high and
persistent cloud coverage, preliminary evidence indicates that Sentinel-
2B effectively increases the likelihood of a successful< 20% cloud
cover image acquisition in the Sudano-Sahelian region. Although this
evidence remains anecdotal so far, a peak biomass approach such as the
one proposed here may offer a sufficiently robust, agile and scalable
option for early and granular estimates of crop production.

While estimates of aggregate production are expected to improve our
ability to monitor community-level food security accurately, the clear
resolution of intra-landscape variability in production levels may even,
more importantly, lead to better targeting of agricultural development
interventions, addressing the actual bottlenecks of smallholder pro-
ductivity improvement such as fertilization gaps (Schut et al., 2018). In-
deed, agricultural development interventions such as fertilizer or seed
supply, microcredit, market access, livestock support, diversification and
off-farm activities often follow one-size-fits-all approaches which are
unlikely to address the diverse socio-economic and biophysical produc-
tion conditions in heterogeneous smallholder systems. Efficient, granular
baseline mapping of smallholder production levels offers the perspective
of a truly transformative environment for the agricultural intensification
required to meet food security and enhanced livelihood targets.
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