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Cropland fallows are the next best-bet for intensification and extensification, leading to
increased food production and adding to the nutritional basket. The agronomical
suitability of these lands can decide the extent of usage of these lands. Myanmar’s
agricultural land (over 13.8 Mha) has the potential to expand by another 50% into
additional fallow areas. These areas may be used to grow short-duration pulses, which
are economically important and nutritionally rich, and constitute the diets of millions
of people as well as provide an important source of livestock feed throughout Asia.
Intensifying rice fallows will not only improve the productivity of the land but also
increase the income of the smallholder farmers. The enhanced cultivation of pulses will
help improve nutritional security in Myanmar and also help conserve natural resources
and reduce environmental degradation. The objectives of this study was to use remote
sensing methods to identify croplands in Myanmar and cropland fallow areas in two
important agro-ecological regions, delta and coastal region and the dry zone. The study
used moderate-resolution imaging spectroradiometer (MODIS) 250-m, 16-day normal-
ized difference vegetation index (NDVI) maximum value composite (MVC), and land
surface water index (LSWI) for one 1 year (1 June 2012–31 May 2013) along with
seasonal field-plot level information and spectral matching techniques to derive
croplands versus cropland fallows for each of the three seasons: the monsoon period
between June and October; winter period between November and February; and
summer period between March and May. The study showed that Myanmar had total
net cropland area (TNCA) of 13.8 Mha. Cropland fallows during the monsoon season
account for a meagre 2.4% of TNCA. However, in the winter season, 56.5% of TNCA
(or 7.8 Mha) were classified as cropland fallows and during the summer season, 82.7%
of TNCA (11.4 Mha) were cropland fallows. The producer’s accuracy of the cropland
fallow class varied between 92 and 98% (errors of omission of 2 to 8%) and user’s
accuracy varied between 82 and 92% (errors of commission of 8 to 18%) for winter
and summer, respectively. Overall, the study estimated 19.2 Mha cropland fallows
from the two major seasons (winter and summer). Out of this, 10.08 Mha has sufficient
moisture (either from rainfall or stored soil water content) to grow short-season pulse
crops. This potential with an estimated income of US$ 300 per hectare, if exploited
sustainably, is estimated to bring an additional net income of about US$ 1.5 billion to
Myanmar per year if at least half (5.04 Mha) of the total cropland fallows (10.08 Mha)
is covered with short season pulses.
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cropping systems; short-duration pulses; grain legumes
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1. Introduction

Agriculture in Myanmar is an important sector of the economy and accounts for about
38% of the gross domestic product (GDP) (FAO 2017). More than 70% of the population
lives in rural areas and are directly dependent on agriculture for their livelihoods (MPHC
2014). Myanmar has an estimated population of about 51.5 million (2014) and a land area
of approximately 67.7 Mha (CSO 2016). The country is one of the largest exporters of
rice, maize, black gram (Vigna mungo), green gram (Vigna radiata) and other pulses in
Southeast Asia. Myanmar is the only country in Southeast Asia with surplus pulse
production and has enormous potential to export to the large markets in India and
China (Bhalla 2017). Rice, being the most important crop within the sector, occupies
the majority of arable land, covering 58.1% of the total cropped area during 2010–11
(FAO 2013), and contributing significantly to livelihood, employment, and income for the
majority of the rural population. However, around 26% of the total population in the
country remains below the poverty line and 28% of children were underweight due to
poor nutrition (DPH 2011). With increasing population pressure, there is also a need for
food and nutritional security in the country. Introduction of short-season pulses in irrigated
or rainfed fallow cropland areas has the vast potential to not only intensify the cropping
systems, but also increase income and nutritional security of small and marginal farmers
in the country.

Pulses are the second largest crop grown after rice and have been cultivated in
Myanmar since the 1960s (Zaw et al. 2011). The dominant pulses grown include
chickpea, green gram, black gram, pigeonpea, cowpea, soybean and lablab. The wide
range of agro-ecologies, diverse soils and new legume production systems, and the
potential germplasm introduced by IARC researchers has facilitated the pulse revolution
in the country (Than et al. 2007). There was a substantial increase in total pulse cultivation
in the country from 0.73 Mha in 1988–89 to 4.4 Mha by 2011–12 (Winn 2012).
Correspondingly, the export of pulses has increased from 17,000 metric tons in 1988–
89 to around 1.3 million metric tons in recent years. Although the major share of pulse
cultivation occurs in the central dryland zone (CDZ) of Myanmar, there is still huge
potential for pulse crops to be grown in the irrigated CDZ during the non-rice periods
(Than et al. 2007). The commercial cultivation of rainfed groundnut and pigeonpea crops
was also observed in Mandalay and Magway (see Figure 1). However, cultivation of local
and low-yielding cultivars of pulses is a common problem observed in CDZ. Farmers
have limited access to improved crop varieties, such as stress-tolerant/disease-resistant
cultivars. Proper targeting and introduction of improved pulse technologies are critically
needed in this zone. Yellow mosaic virus is the most widespread problem observed in rice
fallow black gram crop. Identification or introduction of suitable varieties resistant to
yellow mosaic disease is therefore urgently needed.

There are, however, major gaps in understanding where cropland may be intensified,
and therefore a need for spatial analysis to identify suitable areas. Myanmar has three
main crop growing seasons in a calendar year, depending on the location: the monsoon
period between June and October; the winter period between November and February;
and the summer period between March and May. It is important to map the spatial
distribution of cropland fallows in each of these seasons to better understand where
pulse crops may be promoted. Near real time satellite image analysis provides an alter-
native approach to ground sampling for the estimation of cropping intensity, area, and
changes in a country; unlike ground sampling, satellite image analysis is relatively quick,
inexpensive and independent of land use estimation (Badhwar 1984; Thiruvengadachari
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and Sakthivadivel. 1997; Lobell et al. 2003; Thenkabail et al. 2009b; Thenkabail 2010).
Several studies have reported the use of multi-spectral and multi-temporal data to map
agricultural areas at various scales (Varlyguin et al. 2001; Goetz et al. 2004; Thenkabail,
Schull, and Turral 2005; Knight et al. 2006; Velpuri et al. 2009; Dheeravath et al. 2010).
Many studies were conducted using moderate resolution imaging spectrometer.
Normalized difference vegetation index (MODIS NDVI) time-series is used to map
agricultural area, including crop intensity, at regional level and for river basins (Biggs
et al. 2006; Gaur et al. 2008; Gumma et al. 2011c). Some studies have also used Land
Surface Water Index (LSWI) data for monitoring soil wetness and natural vegetation at a
regional scale (Ratana et al. 2005; Becerra et al. 2006; Xiao et al. 2006; Sakamoto et al.
2007; Chandrasekar et al. 2010).

The objectives of the study were to: (i) map cropland fallows in Myanmar during the
monsoon, winter and summer seasons using time-series moderate-resolution imaging
spectroradiometer (MODIS) 250-m imagery; (ii) determine cropland fallow areas suitable
for short-duration pulse crops; and (iii) assess the economic potential of these areas. The

Figure 1. The study area in Myanmar along with the administrative boundaries. a) Study area with
province and climatic zones (Source: http://www.fao.org/nr/gaez/en/); b) location map; and c) sub-national
boundaries.
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study used 16-day, 250-m spatial resolution, 4-band reflectance data composite images for
2012 from the moderate resolution imaging spectroradiometer (MODIS) sensor and
spectral matching techniques (SMTs) to achieve the goal. Secondary datasets and seasonal
reference training and validation ground data observations were extensively used to
identify major standing crops as well as cropland fallows over entire cropland areas of
Myanmar across seasons. Ground data helped develop knowledge, classify images and
identify classes using spectral matching techniques and MODIS 250-m time-series data.
Accuracy assessments were performed using error matrices based on independent
validation data of individual seasons and the cropland fallow areas were compared with
known national statistics.

2. Materials and methods

2.1. Study area

Myanmar is one of the largest rice-growing countries in Southeast Asia. It extends from 9º
55′ to 28º 15′N latitude and from 92º 10′ to 101º10′ E longitude, with 67.7 Mha of
geographic area (Figure 1). Agriculture is the primary occupation in the country, and rice
is the major crop, covering about 60% of the total cultivated area. Myanmar has broadly
three agro-ecological zones: central dry, coastal, and hilly. These are further sub-divided
into eight physiographic regions: 1) northern hilly, 2) central dry, 3) Rakhine coastal, 4)
western hilly, 5) eastern hilly, 6) Ayeyarwady delta, 7) Yangon deltaic, and 8) southern
coastal (MECF 2012). The country`s geographical location, topography and climatic
conditions provide a natural setting for these different agro-ecological zones, making it
favorable to grow a variety of crops which suit the respective conditions (Kabir and
Uphoff 2007). At the region level, Myanmar is administratively divided into 7 regions/
states. The regions are sub-divided into 74 districts, which are further divided into 330
townships. The townships are again sub-divided into 13,588 village tracts. The basic
administrative unit in Myanmar is the village tract, which is administrated by the General
Administration Department, Ministry of Home Affairs. Most of the statistics in Myanmar
represent these administrative regions. Since the lowest administrative unit is the village
tract, statistics are usually collected on that basis.

2.2. Satellite data

MODIS Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V005
(MOD13Q1 product) imagery was downloaded from the Land Processes
Distributed Active Archive Center (LP DAAC) (https://lpdaac.usgs.gov/lpdaac/get_
data/data_pool). MOD13Q1 16-day composite for the year 2012–13 was used for the
analysis.

Four tiles covering the Myanmar region were downloaded from LP DAAC (LPDAAC
2014). Although the data have already undergone atmospheric correction (Vermote and
Vermeulen 1999) and cloud screening, each MODIS 16-day composite was further
processed and cloud contamination was removed through maximum value composites
by using equation 1. This is done as explained in previous studies (Thenkabail, Schull,
and Turral 2005; Gumma et al. 2011c). MODIS re-projection tool (MRT) was used to re-
project and mosaic twelve tiles of study area and then stack them as a single composite
(Thenkabail et al. 2009a; Gumma et al. 2011b). Altogether 23 images were stacked for the
crop year 2012–13 (starting from June 2012 to May 2013).
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NDVIMVCi ¼ MaxðNDVIi1;NDVIi2Þ (1)

where, NDVIMVCi is the monthly maximum value composite of ith month (eg: “i” is Jan-Dec).
i1, i2 are every 16-day composite in a month.

The Land Surface Water Index (LSWI) (Xiao et al. 2006) was derived from the near
infra-red, and short wave infra-red bands of each 16-day composite in the 2012–2013 time
series of images using equation 2.

LSWI ¼ λNIR � λSWir

λNIR þ λSWir
(2)

The NDVI data was further processed to create monthly maximum value composites
(NDVIMVC) for the (rainy) season using equation 1.

2.3. Ground survey information

Ground data were collected during two cropping seasons across the dominant
agricultural areas of Myanmar from two extensive field campaigns. The first set of
field points (493 locations) were collected during December 11–20, 2012 for mapping
irrigated areas while the second field-plot dataset (597 locations) was collected during
March 20–30, 2013 (Figure 2). At each point, the farmers were interviewed with the
support of township managers and agricultural officers to determine drought intensi-
ties, crop types and length of growing periods during the 2012 rainy season and the

Figure 2. Ground survey data locations in Myanmar. There are 1090 locations where data on
cropping pattern, irrigation source and crop intensity were captured, of which 263 locations with
additional information on land use/land cover percentages were captured.
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2013 summer season, along with the previous cropping year (2011–12). A total of
1090 locations were sampled covering the major cropland areas. Each sample site
satisfies the following criteria: large field size (minimum 250 m x 250 m); homo-
genous (same crop, planted at the same time, with the same watering method); and
recommended by a local agricultural expert. These steps were followed to ensure that
each sample only contained a single agricultural land use/land cover (LULC) and no
auto-correlation existed between field sites. The percentage of LULC in a large diverse
sampled area was another important parameter, which was recorded during the field
visits.

Out of 1090 locations, 263 samples (132 for December and 131 for March) were
used for training the algorithm by generating ideal spectra (Gumma et al. 2011b) leading
to classification of images based on acquired knowledge. The remaining 827 field
survey points were used for accuracy assessment. The ground spatial resolution of
MOD13Q1 product is 250 m x 250 m; so a minimum sampling unit of 250 m x
250 m was selected for ground data validation. Ground survey locations were selected
based on the homogeneity of locations and road access. The emphasis was on “repre-
sentativeness” of the sample location in representing one of the classes to ensure precise
geo-location of the pixel. Class names were assigned in the ground survey using a
labeling protocol (see Thenkabail et al. 2009b).

Ideal spectral signatures were generated using time-series data that were extracted
from 263 survey samples. Each of the samples chosen to generate the ideal spectral
signatures (Gumma et al. 2014) represents a definitive crop type and/or cropping system
such as “irrigated-rice-fallow-rice.” Multiple samples with the same crop type/system
were combined to create a single ideal spectra (between 5 and 15 samples per spectra),
even though the locations are spatially distributed in discrete patches. This was done to
generate fewer and more representative spectral signatures (e.g., Figure 4) for each
cropping system.

2.4. Mapping cropland areas

An overview of the methodology is shown in Figure 3. It begins with the preparation of
appropriate MODIS 250-m data cubes. Data cubes for three seasons have been produced
(Figure 3).

This study used spectral matching techniques (Thenkabail et al. 2007, Gumma et al.
2016) for mapping cropland fallows using MODIS time-series imagery along with
extensive ground data information (Gumma et al. 2011a, 2011b, 2015). The purpose
and focus of this paper is to map seasonal fallows after rice. After unsupervised
classification of NDVI MVCs, during the class identification and labeling process, we
used 16-day as well as monthly MVCs.

Information was also used for class identification, which was collected during 2012–13.
Ideal spectral signatures were based on 263 unique samples available from ground survey
data. Nearly 215 samples were grouped into 7 major cropping categories for each season, as
explained in previous studies (Gumma et al. 2011b, 2014); the remaining 48 samples were
non-croplands. Initial classes were generated through an unsupervised ISODATA cluster
algorithm on the 4-band monthly MVC NDVI for the year 2012–13 (ISODATA in ERDAS
Imagine 2015TM) followed by progressive generalization (Cihlar et al. 1998). The initial
classification was set at a maximum of 100 iterations and a convergence threshold of 0.99,
which resulted in 100 classes. We used decision tree (DT) algorithms to reduce 100
unsupervised classes by grouping. DT algorithms based on monthly NDVI thresholds at
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different crop growth stages in the season were used for initial grouping (Figure 4) (Gumma
et al. 2014). The months and threshold values were chosen based on knowledge of the crop
calendar from local experts and field observations as well as published crop development
stages (Thenkabail et al. 2007). Figure 4 illustrates DT algorithms for the monsoon season.

Each of the points (Figure 2) selected to generate ideal spectra signatures (Figure 5)
represented a definitive crop type as “Irrigated-surface water-double crop-rice-fallow-
rice.” Numerous measurements of similar classes (e.g., “Irrigated-SW-DC-rice-fallow-
rice” measurements from “6” samples spatially well spread out as shown in Figure 5)
were combined into a single ideal spectrum (e.g., Figure 5), which becomes a representa-
tive ideal spectral of temporal signature for that class. The ideal spectra were the average
of the spectra of above locations, representing a crop type class or crop dominance class.

Figure 3. Overview of the methodology for mapping rice areas using the MODIS time series and
ancillary data.
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Figure 4. Decision tree algorithm to group and identify classes (monsoon season). MODIS
monthly NDVI MVC classes are plotted and grouped.

Figure 5. Overview of cropping patterns and identification of fallows. Seasonal signature of the
NDVI and LSWI (Double–rice crop in central dry zone) for the 2012–2013 cropping year. Seasonal
signatures were derived from 16-day, 250-m MOD13Q1 product on areas verified to contain rice in
a ground surveying campaign. (Note: ideal spectra signature for Irrigated-SW-DC-rice- fallow-rice.
The higher LSWI values during the fallow period (blue circle) indicate enough soil moisture for crop
growth).
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Land use/land cover class identification and labeling were based on MODIS NDVI
time-series plots, ideal spectra, quantitative spectral matching techniques (QSMT), ground
reference data, and very high resolution images from the Google Earth application. SMT
is the process of matching ideal spectra signature with class spectra. Prior to doing this,
DT algorithms were grouped and matched with ideal spectra (Thenkabail et al. 2007;
Biradar et al. 2009; Thenkabail et al. 2009b; Gumma et al. 2011b, 2011c). The class
spectra were matched with the ideal spectra and labeled with that class of land use. After
this, the classes were verified with ground survey data and Google Earth high resolution
imagery. Also, Google Earth imagery was used to identify classes in inaccessible areas or
areas with insufficient ground survey data. This was also used to confirm the presence of
any rice terraces, vegetation conditions, and irrigation structures (e.g., canals, irrigation
channels, open wells). In a rigorous classification process, most of the 100 classes from
the unsupervised classification were identified and named. When a study area contains
many distinct land cover classes over a large spatial extent, there is a risk that some of the
classes from the unsupervised classification may contain several mixed classes. These
mixed classes were resolved by extracting them from the stack, reclassifying them, and
applying the methodology above on these subsets in order to separate them.

2.5. Classification accuracy assessment

A total of 827 ground data points were used to assess the accuracy of the classification
results, based on a theoretical description given by Jensen (2004), to generate an error
matrix. The columns of an error matrix contain field-plot data points, and the rows
represent the results of the classified rice maps (Congalton 1991b). The error matrix is
a multi-dimensional table with cells containing changes from one class to another. The
statistical approach of accuracy assessment consists of different multivariate statistical
analyses. A frequently used measure is Kappa (Cohen 1960; Congalton 1991a, 2009;
Gumma et al. 2014), which is designed to compare results from different regions and
classifications. In statistics, Kappa is a degree of agreement among user and reference
ground survey data. It gives a score of how much homogeneity or consensus there is in
the ratings given by an error matrix.

2.6. Identifying potential areas to introduce short-duration pulses in rice fallows

During ground data collection, every sample was identified for its potential to grow short-
duration pulse crops. The availability of adequate soil moisture (LSWI ranging from 0.689 in
October to 0.19 in January) indicates the suitability for growing short-duration pulses (Figure 5).
These samples were overlaid on cropland fallows mapped in this study (section 2.4) for the
respective seasons. For example, during summer season, 48% of the 193 samples that fell on
cropland fallow areas showed adequate soil moisture. Then the cropland fallow areas of – the
summer season were multiplied by the percent of ground data samples that show adequate
moisture/water to arrive at cropland fallow areas that have potential for growing short-duration
pulses. This is discussed further in section 3.1 with results presented in Table 5.

2.7 Assessment of the economic potential of cropland fallows in myanmar

The cropland fallows identified with sufficient soil moisture could be targeted for
introduction of short-season pulse crops. Based on statistics from the Myanmar government,
short-season pulses (such as black gram, green gram, beans and lablab) could easily earn, on
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an average, a net profit of US$ 300 per ha (see Table 6). The successful introduction and
sustainable intensification of pulse-based cropping systems in the country would enhance
these economic benefits significantly in cropland fallows. The present study made an ex-
ante estimate of these benefits by multiplying half the potential additional cropland fallow
land area (5 Mha in Table 5) with the average net profit (US$ 300) of short-season pulses
per ha, leading to an estimate of US$ 1.5 billion per year.

3. Results

3.1. Crop classification and phenology

The monthly NDVI and LSWI time-series dataset is used to understand the differences
that occur within and between seasons, between rice and other crops, and between
irrigation sources (e.g., irrigated versus rainfed). For example, the illustrated curves in
Figure 5 show the distinct differences between double-/single-cropped rice that is irrigated
or rainfed. Irrigated areas have a much higher NDVI and are mostly double-cropped (two
crops in a calendar year).

Forest and shrublands were identified as having NDVI values greater than 0.75. In
rainfed-Single crop-rice-fallow-fallow (Class 2, Figure 6), NDVI values did not
exceed 0.3 during starting of growing season with a maximum of 0.8 during peak
growth stage (ARDC 2012). Since rice is an irrigated crop, the LSWI is usually high,
ranging from 0.2 to 0.8. Similarly, rainfed-rice areas have significantly low NDVI
during the rainy season, ranging from 0.2 to 0.68. However, the LSWI for rainfed-rice
remains the same.

Similarly, rainfed-rice areas have a lower NDVI during the rainy season. The
areas where other crops such as pigeonpea, which have much longer duration, were
grown show higher NDVI, however still lower values compared to the rice
signatures.

Altogether, 11 crop classes, including other land cover areas, were identified and
labelled (Figure 6). Of the 11 LULC classes, the first 3 classes are rainfed, classes 4
to 6 are irrigated, and class 7 consists of rainfed-mixed crops. Of the 3 irrigated
classes, class 4 is irrigated-double crop rice followed by rice and summer fallow,
class 5 is irrigated surface water rice with mixed crops and fallow with a small
portion of rice, and class 6 is irrigated-rice followed by fallow and summer rice.
Class 6 is mainly located in the Mandalay and Sagaing regions within the central dry
zone (Figure 6). Fallows followed by rice cultivation were identified across the study
area. Potential areas were mainly located in the central dry zone, which were
predominantly located in Sagaing and Mandalay (Figure 6). The region-wise areas
are tabulated in Table 5.

3.2 Cropland classes of myanmar during three growing seasons

Altogether, seven crop classes, including other land cover areas, were identified and
labelled (Figure 7). Statistics were computed for each class (Figure 7). Of the seven
LULC classes (Figure 7), the first three classes are rainfed, classes 4 and 5 are irrigated,
class 6 is cropland fallows, and class 7 is all other LULC classes. Major croplands are
seen during monsoon season with net cropped area (NCA) of 13.8 Mha. Of this, 20% area
is under rainfed-rice and 25% under irrigated-rice. During the winter season, 5.98 Mha is
under croplands; only 2% of NCA is under rainfed-rice and 5% under irrigated-rice. An
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important observation during winter is that 18% of NCA is under pulses, which can be
expanded into fallow croplands, amounting to 75% of NCA. During summer season, the
cropland area fell to 2.38 Mha.

3.3 Cropland fallows of myanmar during three growing seasons

Overall, NCA in the country was 13.8 Mha (Figure 7). Of this, during monsoon (June-
October), the standing crop was 13.5 Mha or 97.8% of the NCA (Figure 8). Even the
2.2% left as cropland fallows are often flooded. During winter season (November-
February), 5.98 Mha (43.3% of NCA) is cultivated and has a standing crop, leaving the

Figure 6. Spatial distribution of major croplands across the study area for the 2012–2013 cropping
season. Classes were classified using SMTs on MODIS 250-m time series data. SW = surface water,
SC = single crop per year, DC = double crop per year, LS= large scale.
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remaining 7.8 Mha (56.5% of NCA) as cropland fallows (Figure 8). During the summer
season (March-May), 2.38 Mha (17.2% of NCA) is cultivated and has a standing crop,
leaving the remaining 11.4 Mha (82.6% of NCA) as cropland fallows (Figure 8).

3.4 Accuracies of cropland and cropland fallows of myanmar

Accuracy was performed based on independent ground survey data (explained in section 2.3).
Accuracy assessment was performed with a total of 827 independent ground survey samples.
These samples were not used in class identification and labeling. The overall accuracies of the
seven classes during monsoon, winter and summer seasons were 90%, 85%, and 97%,
respectively (Table 1). Since, the main focus of this study is on cropland fallow mapping,
we evaluated cropland accuracies of class 6 (cropland fallows) across three seasons (Table 1).
Since the cropland fallows during season 1 were only 2.2%, they have little significance.

Figure 7. Spatial distribution of major croplands across the study area with season and irrigation
source.
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Cropland fallows which were 5.98 Mha during winter, had producer’s accuracy of 98% and
user’s accuracy of 82% (Table 1). Cropland fallows which were 11.4 Mha during summer,
had producer’s accuracy of 92% and user’s accuracy of 92% (Table 1). Thus, winter and
summer have massive cropland fallows which were mapped with greater accuracy.
Classification was performed on season-wise cropland products and the accuracy was
assessed for each class (Tables 2, 3 and 4).

Figure 8. Spatial distribution of cropland fallows across the study area for the 2012–2013 cropping
season.

Table 1. Accuracies of classes during three seasons for Myanmar showing: (a) overall accuracies
of 7 classes, and (b) producer’s and user’s accuracies of fallow cropland class.

Season Months

Overall
accuracy of 7
classes (%)

Kappa
(no units)

Producer’s
accuracy for

fallow cropland
classes (%)

User’s accuracy
for fallow

cropland classes
(%)

Monsoon June-October 90 0.85 57 80
Winter November-February 85 0.77 98 82
Summer March-May 87 0.7 92 92

GIScience & Remote Sensing 13
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3.5 Comparison of cropland areas reported by the national system and by this study

The total rice cropped area derived in this study was compared with rice cropped area
reported by the Myanmar Government official statistics (http://www.moai.gov.mm/) at the
region/state level. Rice cropped areas were obtained for all fourteen provinces in the
country. The MODIS-derived rice areas were consistently overestimated in Ayeyarwady,
Sagaing, and Mandalay regions and Shan state and slightly underestimated in Bago region
and Mon state. MODIS-derived rice areas were highly correlated with the sub-national
statistics with a R2 value of 97% variability (Figure 9).

3.6 Cropland fallows with sufficient soil moisture/water access for growing crops
across seasons

In general, winter receives very little rainfall; however, it is a season that immediately
follows the rainy season period of 5 to 6 months. Hence, during season-2, croplands hold
a significant amount of water in the soil and most importantly rice is grown in the
monsoon season. During field surveys, we established that the rice-fallows locations
revealed sufficient moisture to grow a second season, i.e., low water consuming, short-
season pulses (Table 5). This meant a total of 4.29 Mha (7.80 Mha of fallow croplands)
was available for cultivating a second crop (Table 5). Season-3, again receives significant

Figure 9. A comparison of cropland fallow areas derived from this study and those reported by
some of the administrative units of Myanmar during the 2012–2013 cropping season (winter).

GIScience & Remote Sensing 17
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quantum of rain. Hence, about 48% (5.47 Mha) of the total cropland fallows (11.40 Mha)
have potential for growing a third season crop.

3.7. Additional benefits due to alternate legume systems in rice fallows and central
rainfed lands

The economics of pulses cultivation during 2012–13 is summarized in Table 6.
Groundnut exhibited the highest net margins (US$ 963) per hectare of cultivated area,
higher than other leguminous crops. Its net margin was much higher than any other
competing cereal crops, such as paddy (US$ 330) and maize (US$ 523) (Table 6).
Groundnut was followed by the cultivation of pigeonpea, black gram, green gram and
chickpea, creating significant additional incomes per ha. The average net returns per ha
earned due to the introduction of short-season pulses was estimated to be around US$
300 per ha. The potential cropland fallow area estimated by the present study was 10.08
Mha across the country. However, the most promising potential areas for introduction of
short-season pulses in the country are Mandalay, Magway and Sagaing provinces (called
CDZ region) (see Figures 6, 7 and 8). The province-wise break-up of potential cropland
fallows across three seasons is summarized in Table 7. Mandalay, Magway and Sagaing

Table 5. Fallow cropland areas with sufficient moisture/water to grow crops across three seasons in
Myanmar.

Season Months

Cropland
fallow as %

of net
cropland
areas* (%)

Cropland
fallow
areas
(Mha)

Ground
data

samples #

Ground
samples with
sufficient

moisture for
crop growth

(%)

Fallow areas
with sufficient

moisture
available for
cultivation
(Mha)

Monsoon June-October 2.4 0.32 11 100 0.32
Winter November-

February
56.6 7.8 122 55 4.29

Summer March-May 82.7 11.4 193 48 5.47
Total 19.5 326 10.08**

* Total Net cropland area (TNCA) of Myanmar is = 13.8 Mha
** Half the potential cropland fallow area (5.04 Mha) is estimated to be grown to pulses.

Table 6. Economics of pulses cost and yield vis-à-vis cereals (COC)’ cultivation in Myanmar,
2013.

COC Yield Price Net margin Net margin

Crop (kyats/ha) (mt/ha) (kyats/ton) (kyats/ha) (US$/ha)

Pigeonpea 352,612 1.31 542,558 358,139 358
Groundnut 501,613 1.59 921,267 963,202 963
Black gram 315,794 1.4 470,259 342,569 342
Green gram 399,314 1.28 568,069 327,814 327
Chickpea 400,000 1.45 500,000 325,000 325
Other pulses 393,867 1.41 600,431 358,139 358
Paddy 604,160 3.84 243,480 330,803 330
Maize 543,620 3.64 293,184 523,570 523

Source: Myanmar Agriculture at a glance, 2013.
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provinces (CDZ region) together (6.32 Mha) represent nearly 63% of the total potential
cropland fallow (10.08 Mha) in the country. Optimistically, if we assume that nearly half
of the total cropland fallow area (5.04 Mha) can be brought under short-season pulse
crops, the estimated economic benefits would be around US$ 1.5 billion per year.

4. Discussions

4.1 Discussion on classification results

The most widely used classification algorithm for large area cropland mapping, where diversity
of landscape is high, is unsupervised classification. This is because, the very large volume of
training data required for supervised classification is resource intensive and often extremely
difficult collect as a result of inaccessibility of ground data locations. In this study, unsupervised
classification of seasonal time-series imagery (Figure 3) led to numerous informational classes
for each of the seasons. The NDVI time-series of each unsupervised information classes were
then analyzed either through their time-series profiles or through a decision-tree algorithm
(Figure 4) along with the ground data (Figure 2) to determine class labeling. Representative
samples of most of the cropping systemswere collected during ground data (Figure 2) collection
missions. The main goal in this study was to determine cropland fallows in one or the other of
the three seasons (Figure 3 to 5). Ideal spectral signatures (e.g., Figure 5) were generated from
the ground information as input to the Spectral Matching Technique (SMT) (Thenkabail et al.
2007) where class spectra from unsupervised classes (Figure 4) were matched with ideal spectra
(e.g., Figure 5) alongwith ground data (Figure 2) to identify and label classes (Figure 6) in entire
Myanmar. Through this process, spatial distribution of classes, season by season (Figure 7) in
entire Myanmar, were also established. The process, led to determining the distribution of
cropland fallows (Figure 8) in each of the three seasonsMonsoon, winter and summer for entire
Myanmar. Based on the ground data, we established cropland fallow areas that have adequate
soil moisture availability to grow legume crop during the rice fallow seasons. This led to
estimating season by season, cropland fallows (Table 5, Figure 8) in each of the three seasons

Table 7. Province-wise area of cropland fallows suited to the introduction of
short-season pulses.

Cropland fallows (‘000 ha)

Province Monsoon Winter Summer

Ayeyarwady 113 369 961
Bago 49 229 391
Chin 0 36 31
Kachin 6 103 76
Kayah 0 12 12
Kayin 30 23 36
Magway 8 961 1109
Mandalay 20 736 804
Mon 12 37 79
Rakhine 25 183 230
Sagaing 44 971 1033
Shan 4 547 498
Tanintharyi 4 2 3
Yangon 9 81 212

324 4290 5475
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(Monsoon, winter and summer) for entire Myanmar. Estimating season by season (Monsoon,
winter and summer) cropland fallow areas for entire Myanmar, helps in planning cropland
intensification (to grow crops during seasons when cropland is fallow, but have adequate soil
moisture to grow short season legume crops). Precise spatial location of where these cropland
fallows exist and during which season (Figure 8) will be of immense value to decisionmakers to
do filed visits and establish areas for cropland expansion. Such measures add additional
economic value to farmers as well as national income. The measure also contributes to food
and water security taking sustainable approach where to grow food one would use existing
croplands instead of cropland expansion to new areas.

4.2 Economic impact of expanded pulse production

The cultivation of pulses in rice fallows and central rainfed lands generates a substantial
additional agricultural income and contributes significantly to Myanmar’s national GDP.
However, it should be more precisely targeted by using remote sensing and GIS technol-
ogies. The exercise undertaken in this paper will immensely help researchers better
understand and aid the introduction of new pulse crop technologies. Enormous potential
has been observed in diffusing diverse pulse-based cropping systems in the country. Better
productivity levels coupled with export demand enhance their spread, along with devel-
opment of improved technologies in the country. Overall, it was estimated that if
Myanmar could use half of the suitable rice fallows (5.04 Mha of 10.08 Mha) to cultivate
short-duration pulse crops, mainly in the CDZ region, it could generate an additional
revenue of approximately US$ 1.5 billion per year from agriculture. However, most of the
central dryland zone farmers still cultivate local or low-yielding cultivars for these crops.
Introducing improved pulse cultivars and best management practices will not only
enhance legume production, but also improve the rainfed farmers’ livelihoods.

5. Conclusions

This study mapped cropland fallows of Myanmar using MODIS 250-m time-series data,
reference ground data, and spectral matching techniques during three seasons: monsoon
(June-October), winter (November-February), and summer (March-May). Myanmar had a
total net cropland area (TNCA) of 13.8 Mha. Of this, cropland fallow areas comprised 7.8
Mha (56.5% of TNCA) during winter, and 11.4 Mha (82.6% of TNCA) during summer.
Cropland fallow areas during the monsoon, the main growing season, constituted only
about 2.4% due to intense cultivation. The producer’s accuracy varied between 92% and
98% (errors of omissions of 2 to 8%) and the user’s accuracy varied between 82% and
92% (errors of commissions of 8 to 18%) for winter and summer, respectively. Of the total
19.2 Mha of cropland fallows from winter and summer combined, 10.08 Mha was
determined to have sufficient water/soil moisture to cultivate short-duration, and low
water consuming pulses (e.g, black gram, green gram and beans). Growing pulses during
winter and summer is considered to be the best use of existing cropland area without
having to expand to non-cropland areas. This approach of utilizing existing cropland
fallows is ecologically sound and climate friendly. It also brings in additional income for
farmers with an estimated revenue of about US$ 1.5 billion per year through the
introduction of short-season pulses on half (5.04 Mha) of the total cropland fallow area
(10.08 Mha). Further, it is water-smart agriculture as pulses consume far less water
relative to cereals (paddy and maize). This is an ideal approach to address the water,
food and nutritional security challenges of the twenty-first century.
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This research makes a broad contribution to the food and water security challenges
addressed by other research groups such as the Group on Earth Observations (GEO) for
monitoring agriculture areas, Agriculture and Water Societal Beneficial Areas (GEO
Agriculture and Water SBAs), the GEO Global Agricultural Monitoring Initiative (GEO
GLAM), and the global food security-support analysis data (GFSAD) project (www.
croplands.org).
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