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A B S T R A C T

The microbial diversity and pasting properties of three sourdoughs produced from composite gluten-free flours
were investigated using 16S rRNA gene clone libraries and the Rapid Viscoanalyser. Finger millet-pearl millet
(FP), Pearl millet-sorghum (PS) and Finger millet-sorghum (FS) sourdoughs were produced. Eleven aerobic
bacteria and twelve lactic acid bacteria (LAB) were randomly selected from the sourdoughs. Presumptive Bacillus
subtilis and Pediococcus spp. were identified in all the sourdoughs after 48 h of fermentation, while yeast was not
detected in any of the products. The LAB population and pH ranged from log 7.70 CFU g−1 to log 10.52 CFU g−1

and 3.8 to 4.2 respectively. The findings showed that well-developed sourdough could be produced from these
composite flours by spontaneous fermentation. Significant differences were observed in the pasting properties of
all the sourdoughs. Decline in the tendency to retrograde occurred in all sourdoughs, thereby justifying the lower
staling rate of final products. This study enhanced the corpus of existing knowledge on the microbial diversity of
gluten-free sourdough and provided a basis for the possible application of Pediococcus spp. and Weisella spp. as a
starter culture(s) in fermented products.

1. Introduction

Fermented food possesses an ecosystem that comprises lactic acid
bacteria (LAB), acetic acid bacteria and other Gram positive/negative
and/or fungi that contribute to its several beneficial characteristics,
such as prolonged shelf-life, improved texture and organoleptic prop-
erties (Wood, 1998). Cheese, yoghurt and sourdough are some of the
examples of myriads of fermented food commonly consumed. Sour-
dough is a mixture of milled cereal and water that is spontaneously
fermented (Gobbetti, 1998; Vrancken, Rimaux, Weckx, Leroy, & De
Vuyst, 2011) by the action of LAB and yeasts leading to improved
dough structure, aroma, palatability, nutritional value and prolonged
shelf-life (Moroni, Dal Bello, & Arendt, 2009). Previous studies have
affirmed that the positive effects of LAB on dough include the release of
small peptides and free amino acids, which are essential for pH re-
duction, rapid growth of microorganisms, precursors for flavour de-
velopment (Rollan, De Angelis, Gobbetti, & De Valdez, 2005), larger
and evenly distributed gas cells, higher loaf volume (Edema,
Emmambux, & Taylor, 2013), accumulation of bioactive peptides (Hu
et al., 2011) and metabolite production (Galle, 2013).

Specifically, it was reported that the presence of Leuconostoc species

had improved the visco-elastic properties of sour maize dough (Edema,
2010). According to Salovaara (2004), some common LAB species
found in sourdoughs include Lactobacillus acidophilus, Lactobacillus far-
ciminis, Lactobacillus delbrueckii (obligate homofermentative), Lactoba-
cillus casei, Lactobacillus plantarum, Lactobacillus rhamnosus (facultative
heterofermentative), Lactobacillus brevis, Lactobacillus sanfransicencis
and Lactobacillus fermentum (obligate heterofermentative). Studies have
shown that the dominant microbial species in sourdough is influenced
by temperature and type of flour (Vrancken et al., 2011; Ercolini et al.,
2013; Harth, Van Kerrebroeck, & De Vuyst, 2016; Ogunsakin et al.,
2017). Hence, it becomes imperative in product development to scru-
tinize the flour to be used, so as to ascertain the microbial community
present in it. This will not only ensure the safety of targeted consumers,
but also help food scientists to develop healthy starter cultures that can
be of immense benefit to the food production sector.

Pearl millet (Pennietum glaucum), finger millet (Eleusine coracana)
and sorghum (Sorghum bicolor) are gluten-free cereals known to be rich
sources of energy and used in the production of fermented foods
(Akinola, Badejo, Osundahunsi, & Edema, 2017; Nazni & Shalini,
2010). In addition to these benefits, flour-blends have the characteristic
advantage of synergistically combining the strengths of individual
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grains, thereby making up for possible weaknesses of the individual
flour. Three multigrain flours, each containing two of the listed cereals
in equal proportion, were screened for microbial diversity and pasting
properties. This work is part of a large-scale and ongoing research
aimed at producing bread from underutilized gluten-free African cer-
eals using sourdough technology. As with the development of new food
products, several components that could affect the resultant product's
nutritional value, acceptability and organoleptic quality must be as-
certained. The key objective of this research was to identify pre-
dominant fermenting organisms in the dough, which could be utilized
for the development of a starter culture, and to understand the rheo-
logical parameters of the fermented multigrain sourdough.

2. Materials and methods

2.1. Sample collection

Flours made up of Finger millet (Eleusine coracana) of the KNE 1149
variety (F), Pearl millet (Pennisetum glaucum) of the ICMV 221-White
variety (P) and Sorghum (Sorghum bicolor) of the KARI MTAMA 1
variety (S) were used. These grains were sourced from the International
Crops Research Institute on Semi-Arid Tropics (ICRISAT) in Nairobi,
Kenya. The grains were cleaned, milled through a knife mill and sieved
to a particle size of ≤0.2 mm. The flours were stored in labelled air-
tight containers for further analyses. The proximate composition (dry
matter basis) of the grains was obtained using the AOAC (2005)
method. The respective values for F, P and S are as follows; protein (N ×

6.25),18.26 ± 0.88%, 18.58 ± 0.02% and 9.84 ± 0.91%, fat;
8.90 ± 0.01%, 9.65 ± 0.14% and 6.94 ± 0.42%, crude fibre;
2.22 ± 0.17%, 1.31 ± 0.12% and 1.62 ± 0.09%, ash;
2.12 ± 0.08%, 1.58 ± 0.11% and 1.34 ± 0.24%, total carbohydrate;
68.49 ± 1.13%, 68.88 ± 0.07% and 80.26 ± 1.48%.

2.2. Sourdough preparation

Preparation of sourdough was done using the Type I sourdough
technique, which does not require the use of starter culture(s). Three
composite flours, namely finger millet-pearl millet (FP), pearl millet-
sorghum (PS) and finger millet-sorghum (FS), were mixed in equal
proportion (50:50) to allow for equal expression of its unique proper-
ties, whereby none of the sourdough predominates the other quantita-
tively. The sourdough from of each of the developed blends were than
produced, as previously described by Edema et al. (2013), with slight
modifications. The flour-to-water ratio was 1:2 due to the dough's
consistency. The flour and tap water were thoroughly mixed and al-
lowed to ferment naturally at room temperature (27 °C) for 48 h. Pre-
parations were carried out in triplicate.

2.3. pH determination, enumeration and isolation of cultivable bacteria and
yeast

Prepared samples were analysed every 12 h for a total duration of
48 h so that each sample was analysed four times within the stated
period. The pH was determined using a Model pHs-25 pH meter, and all
analyses were carried out in triplicates. Ten grams of each sample was
homogenized with 90ml of sterile 0.85% (wt./vol.) NaCl solution.
Viable bacteria and lactic acid bacteria were enumerated at 37 °C for
24 h under aerobic conditions and 37 °C for 48 h under anaerobic
conditions, respectively. The media used for the former was Nutrient
agar (NA) with cycloheximide (0.1 g L−1), while the latter used the de
Mann Rogosa and Sharpe (MRS) agar. Rose Bengal Chloramphenicol
(RBC) agar was used for enumerating yeasts at 30 °C for 72 h under
aerobic conditions. Culture dependent approaches were used for in-
vestigating the sourdough microbiota. At least 11 colonies of pre-
sumptive bacteria were randomly selected from plates containing the
three highest sample dilutions with distinct colonies. The isolates were

re-streaked on Nutrient agar with cycloheximide (0.1 g L−1) and culti-
vated in Nutrient broth at 37 °C for 24 h. About three randomly selected
colonies of Gram positive, catalase negative rod and coccus from plates
containing the three highest sample dilutions with distinct colonies
were re-streaked and sub-cultured on MRS broth at 37 °C for 72 h. Stock
cultures were stored at - 20 °C in 10% (vol/vol) glycerol.

2.4. Genotypic identification of bacteria

The Genomic DNA of bacteria was extracted using the Wizard
Genomic DNA purification Kit (Promega Corporation) according to
manufacturers' instruction. For identification of presumptive bacteria
and lactic acid bacteria, two primer pairs, namely 27F (5′-AGAGTTTG
ATCMTGGCTCAG-3′) and 1492R (5‘-GGTTACCTTGTTACGACTT-3’),
were used for amplifying the 16S rRNA genes. Electrophoresis was
carried out on 1.5% agarose gel, while the amplicon was purified using
Wizard SV Gel and PCR Clean Up System (Promega Corporation; USA).
The amplicon was then sequenced using the Dye Terminator. Sequence
alignments were carried out using the multiple-sequence alignment
method called ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2)
and the sequence was identified by a BLAST search in the GenBank
(http://www.ncbi.nlm.nih.gov/GenBank/).

2.5. Pasting properties

Pasting properties were determined using the Rapid Viscoanalyzer
(RVA Super 4, Australia), as previously described by Akinola et al.
(2017). The procedure was carried out according to the operational
manual. Prior to loading the sample in to the RVA, 2 g of flour each
were dried in an oven at 105 °C to obtain a constant weight. A pro-
grammed heating and cooling cycle was used at a constant shear rate,
where the sample was held at 50 °C for 1min, heated from 50 °C to
95 °C at 6 °C/min, held at 95 °C for 5min, cooled to 50 °C at 6 °C/min
and held at 50 °C for 5min.

2.6. Statistical analyses

Data were subjected to one-way Analysis of Variance (ANOVA),
while Duncan's Multiple range test was used to separate the mean at a
significance level of P < 0.05. All data were determined in triplicate
and analyses were performed using the Statistical Package for Social
Sciences (SPSS) 16.0 version software.

3. Results and discussion

3.1. Microbial population and acidification dynamics during sourdough
fermentation

Colony counts on nutrient agar at the beginning of the fermentation
revealed the presence of bacteria in all the sourdoughs produced
(Fig. 1). A drastic increase in bacterial growth (P < 0.05) was observed
in all sourdoughs within the 12 h fermentation period. The significant
difference in bacterial population between the 0–12 h of fermentation is
indicative of a favourable environmental condition. The peak cell
density of FS was attained at 12 h fermentation, while that of FP and PS
were attained at 24 h fermentation. The sourdoughs generally recorded
cell densities within the range of log 9.60 (PS) and log 11.48 (FS) CFU
g−1. A decline in the bacterial count was observed in the sourdoughs
following the attainment of maximum cell densities. This waning in
bacterial count is attributed to the corresponding increase in the
dough's acidity (Fig. 3). Corsetti and Settanni (2007) and Weckx et al.
(2010) had independently stated that some microbes die off with an
increase in fermentation time, owing to its inability to survive in acidic
medium.

Final bacterial loads in the sourdoughs at 48 h fermentation were
slightly different, having values of log 7.95, log 8.30 and log
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8.45 CFU g−1 for FP, PS and FS, respectively. A direct relationship
between the growth of LAB and bacterial load could be ascertained at
the commencement of the fermentation, as both followed the same
pattern (Figs. 1 and 2), with the exception of PS, which was devoid of
LAB at the beginning of the fermentation (Fig. 2). Generally, the in-
crease in LAB count from the beginning to the end (48 h) of fermen-
tation, as shown in Fig. 2, agreed with the findings of Ogunsakin,
Banwo, Ogunremi, and Sanni (2015) and Wakil and Daodu (2011). The
maximum LAB count recorded in PS and FS was observed at 12 h

fermentation period. This could be due to the presence of sorghum in
both samples, which provided a favourable environment and more
nutrients for the growth of lactic acid bacteria. At the end of the fer-
mentation, the FS sourdough had the highest LAB count with a value of
log 10.52 CFU g−1. However, the LAB count for FP and PS sourdoughs
were not significantly different (P < 0.05) at 48 h fermentation. All the
sourdoughs satisfied the minimum LAB count threshold of log
7.00 CFU g−1 (Corsetti, 2013).

Throughout the fermentation process, no yeast was identified in any
of the three sourdoughs produced. This could possibly be due to a wide
range of circumstances, ranging from environmental conditions to the
type of substrate used. On the contrary, Adepehin (2017, p. 237) had
identified the Candida glabrata strain in finger millet sourdough.
Moroni, Arendt, and Dal Bello (2011) reported that Saccharomyces
cerevisiae and Candida glabrata dominated the teff sourdough while only
Kazachstaniabarnetti was isolated in the buckwheat sourdough. The
absence of yeast in the blend of this cereal (finger millet) with sorghum
and pearl millet could be due to the synergistic effect of added cereals
on the resultant substrate.

The pH dynamics obtained for the three sourdoughs is shown in
Fig. 3. The result showed a significant pH decline in all the samples
during the first 12 h of fermentation, which is an indication of an acidic
fermentation. The pH trends in the sourdoughs were similar throughout
the 48 h fermentation period and a consistent pH reduction occurred as
the fermentation progressed. At the end of the fermentation, the pH
values of the three sourdoughs fell within the range of 3.8–4.2 with FP
and FS having a value of 3.8, which is an indication of the presence of
more acidic by-products. A similar range of pH values was reported for
maize sourdough (Edema & Sanni, 2008; Muyanja & Namugumya,
2009). The pH specification for a well-developed sourdough was earlier
documented to be within 3.5 and 4.3 (Esteve, Barber, & Martínez-
Anaya, 1994). The pH values of the three multigrain sourdoughs in this
study fell within this range; thus, indicating that spontaneous fermen-
tation is effective in producing sourdough from the three composite
flours, which can in turn be used for making baked food.

3.2. Microbial community of spontaneously fermented sourdoughs

Identification of 23 distinct isolates randomly picked from three
sourdoughs revealed differences in their final microbiota (Table 1). The
Bacillus species was detected in three sourdoughs (Fig. 4), resulting in a
total of 44.48% of the identified isolates. A single isolate (FP01, PS01
and FS02) in each of the sourdoughs was identified as Bacillus licheni-
formis. Based on the sequence results summarized in Table 1, the Ba-
cillus licheniformis strain identified in the FS sourdough (Bacillus liche-
niformis strain DSM 13) was different from that in PS and FP (Bacillus
licheniformis strain TS_16). Isolates selected from FP (3 isolates), FS (1
isolate) and PS (3 isolates) sourdoughs were identified as Bacillus sub-
tilis, according to the 16S rRNA gene sequence (Table 1). The two
identified strains, namely Bacillus subtilis and Bacillus licheniformis, were
reported to exhibit antimicrobial activities against undesirable micro-
organisms (Compaoré et al., 2013; Liu et al., 2015); hence, its presence
enhanced the safety aspect of the resultant products, especially in terms
of consumption.

Approximately 52.17% of the identified isolates were LAB. This is
consistent with the assertion by Gobbetti, De Angelis, Corsetti, and Di
Cagno (2005), whereby lactic acid bacteria are the dominant micro-
organisms in sourdoughs. The rheology, flavour and nutritional prop-
erties of sourdough baked products depend on LAB activities (Gobbetti
et al., 2005). Its inhibitory nature is attributed to the rapid consumption
of oxygen and fermentable carbohydrate, the formation of lactate with
concomitant reduction of pH and the acetate formed by this hetero-
fermentative LAB contributes to extending the shelf-life of bread
(Gänzle & Gobbetti, 2013). The LAB harbouring in sourdoughs are
Weissella confusa, Pediococcus acidilactici and Pediococcus pentosaceus.

Four isolates from the FP sourdough (FP05, FP06, FP07 and FP08)

Fig. 1. Bivariate plot showing bacteria population dynamics (Log CFU g−1)
with fermentation time in the three sourdoughs produced from composite
flours. Finger millet-pearl millet blend, Pearl millet-sorghum
blend, Finger millet-sorghum blend. Plotted values are mean of tripli-
cate readings.

Fig. 2. Bivariate plot showing lactic acid bacteria population dynamics (Log
CFU g−1) with fermentation time in the produced sourdoughs. Finger
millet-pearl millet blend, Pearl millet-sorghum blend, Finger
millet-sorghum blend. Plotted values are mean of triplicate readings.

Fig. 3. Bivariate plot showing variation in pH with fermentation time in the
produced sourdoughs. Finger millet-pearl millet blend, Pearl
millet-sorghum blend, Finger millet-sorghum blend. Plotted values are
mean of triplicate readings.
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were identified as Pediococcus acidilactici, based on the 16S rRNA gene
sequence. This strain was also identified in the PS sourdough. In con-
trast, there exists a dearth of Pediococcus acidilactici in the FS sour-
dough. At the end of the sourdough fermentation, two presumptive
Pediococcus species, namely Pediococcus acidilactici and Pediococcus
pentosaceus, were identified in the PS (Table 1). The presence of Ped-
iococcus acidilactici was common in both FP and PS, while Pediococcus
pentosaceus was common in PS and FS sourdoughs. Moroni et al. (2011)
documented the presence of the latter species in spontaneously-fer-
mented buckwheat and teff sourdoughs. Weissella confusa was identified
in FS and PS sourdoughs (FS03, FS04, FS05, PS06 and PS07), as shown
in Table 1 and Fig. 4. Some of these LAB were identified in sourdoughs
produced from other gluten-free cereals (Carrizo et al., 2017; Edema &
Sanni, 2008; Ogunsakin et al., 2017).

Unlike many other sourdough microbial communities reported by
previous studies, the composite sourdoughs were dominated by a range
of one to three LAB, with Pediococcus spp. present in all. Pediococcus
spp. is an obligate heterofermentative and facultative anaerobic LAB
with complex nutritional requirements have a temperature that ranges
from 25 °C to as high as 50 °C, with distinct tolerance to salt and high
acidity (pH of about 4.2) (Huys, Daniel, & De Vuyst, 2013). The low pH
and nutrient composition of spontaneously fermented multigrain
sourdoughs are favourable for the growth of Pediococcus spp., hence, its
consistent presence in all samples. The presence of the Pediococcus
acidilactici strain in maize, buckwheat and teff sourdoughs have been
reported (Edema & Sanni, 2008; Moroni, Arendt, Moriissey, & Dal Bello,
2010; Sanni, Onilude, & Fatungase, 1998). However, aside from spon-
taneously fermented gluten-free sourdoughs, Pediococcus pentosaceus
was not frequently isolated from conventional sourdough (Arendt &

Moroni, 2013).
Weissella confusa, present in PS and FS sourdoughs, has been re-

ported to share similar characteristics with Pediococcus spp., which is
the obligately heterofermentative LAB and the production of dextrans
or exopolysaccharides (EPS) (Kavitake, Devi, Singh, & Shetty, 2016).
Numerous studies have confirmed the presence of Weissella confusa in
gluten-free sourdoughs (Moroni et al., 2011; Moroni et al., 2010;
Vogelmann, Seitter, Singer, Brandt, & Hertel, 2009). In addition, the
Weisella confusa strain has been utilized as a starter culture for obushera,
a traditional sorghum malt fermented beverage (Mukisa, Byaruhanga,
Muyanja, Langsrud, & Narvhus, 2016). The dextran or exopoly-
saccharides produced by theWeisella confusa strain has been reported to
possess a molar mass of at least 106 g/mol and typically only 2–4% of
α-(1→ 3)-linkages (Maina, Tenkanen, Maaheim, Juvonen &Virkki,
2008). It has numerous potential applications in the food industry
(Leemhuis et al., 2013). It can be used to replace hydrocolloids for
texturizing, anti-staling, or as a prebiotic additive in bread production
(Tieking, Korakli, Ehrmann, Gänzle& Vogel, 2003). In addition, it can
be used as an alternative bio-thickener, which acts to viscosify, stabi-
lize, emulsify and/or as a gelling agent in gluten-free breads (Arendt &
Moroni, 2013), as well as produces a mildly acidic bread with improved
structure, volume, shelf-life and crumb softness during storage (Galle,
2013; Katina et al., 2009).

3.3. Pasting properties

The pasting properties of composite flour and its respective sour-
dough are shown in Table 2. The peak viscosity (PV) of FP, PS and FP
are 79.00 RVU, 56.29 RVU and 108.50 RVU, respectively. The PV is
closely associated with the degree of starch damage with high starch
damage resulting in times of high viscosity (Sanni, Kosoko, Adebowale,
& Adeoye, 2004). The lower PV value of FP and PS compared to FS can
be attributed to the protein and fat contents of pearl millet. Similarly,
restrictions in swelling, solubilization and viscosity were dependent on
the presence of lipid and other non-carbohydrates in the starch sus-
pension (Sanni, Adebowale, Olayiwola, & Maziya-Dixon, 2008). A
comparison of the unfermented flour blends with their sourdoughs
(Table 2) revealed that fermentation resulted in an increase in PV by
20.77%, 64.31% and 9.08% for FP, PS and FS, respectively. PV is an
important characteristic of starch granules and reflects the ability of
starch to swell freely before a physical breakdown. The increase in PV
in the three sourdoughs indicates that spontaneous fermentation leads
to a higher content of damaged starch as well as higher ability of the
starches to swell freely before physical breakdown occurs. According to
Ikegwu, Okechukwu, and Ekumankana (2010), a higher PV value is

Table 1
Bacteria strains isolated from the three sourdoughs produced.

Sourdoughb Isolate code Closest relativea Identity (%) No of strains Accession no Query cover

FP FP01 Bacillus licheniformis strain TS_16 95 1 KJ842639.1 99
FP02, FP03,FP04 Bacillus subtilis strain QD9 99 3 EF488088.1 100
FP05, FP06,FP07,FP08 Pediococcus acidilactici strain KTNA3010M 99 4 KT968348.1 100

PS PS01 Bacillus licheniformis strain TS_16 99 1 KJ842639.1 95
PS02, PS03,PS04 Bacillus subtilis strain QD9 100 3 EF488088.1 99
PS05 Cronobacter sakazakii strain BDCSS014 100 1 KU364465.1 99
PS06, PS07 Weissella confusa strain bcpcaqj1 100 2 KX247764.1 99
PS08 Pediococcus pentosaceus strain WiKim20 100 1 KX890131.1 99
PS09 Pediococcus acidilactici strain KTNA3010M 100 1 KT968348.1 99

FS FS01 Bacillus subtilis strain QD9 100 1 EF488088.1 99
FS02 Bacillus licheniformis strain DSM 13 99 1 KJ842639.1 95
FS03, FS04, FS05 Weissella confusa strain bcpcaqj1 100 3 KX247764.1 99
FS06 Pediococcus pentosaceus strain WiKim20 100 1 KX890131.1 99

a Species showing the closest identity to the strains isolated from the sourdoughs. The percent identity was found by performing multiple –sequence alignments in BLAST. Identification was carried out by 16S

rRNA gene sequencing.

b The composite flours used for producing sourdough were mixtures of two gluten free flours in a ratio of 50:50. FP is finger millet− pearl millet blend, PS is Pearl millet− sorghum blend, FS means finger

millet− sorghum blend, FPS is finger millet− pearl millet blend sourdough, PSS is pearl millet and sorghum blend sourdough, FSS means finger millet− sorghum blend sourdough.

Fig. 4. Bacteria strains identified through the culture-dependent method in the
two laboratory produced sourdoughs. The black and white boxes indicate the
presence and absence of strains, respectively.

J.O. Adepehin et al. LWT - Food Science and Technology 96 (2018) 344–349

347



indicative of the sourdough's suitability for high gel strength and
elasticity requiring products, such as bread and other baked foods.

The final viscosity (RVU) of the flour blends is shown in Table 2.
According to Shimelis, Meaza, and Rakshit (2006), the FV describes the
quality of starch, and is indicative of its stability when cooked. It is also
suggestive of the starch's capacity to form viscous paste after cooling
and the lack of stability of the starch paste commonly accompanied
with high breakdown value. A thorough analysis of the data in Table 2
showed that two sourdoughs (FPS and PSS) had conspicuously higher
FV relative to their unfermented blends. Wokadala, Ray, and
Emmambux (2012) reported that an increase in final viscosity could be
due to leached amylose, which had interacted with lipids to form
amylose-lipid complexes. The FV of FS decreased from 181.00 RVU to
144.92 RVU and this decline was consistent with the findings of
Farasara, Hariyadi, Fardiaz, and Dewanti-Hariyadi (2014) and Oloyede,
James, Ocheme, Chinma, and Akpa (2016).

Among the composite flours, the maximum trough viscosity was
observed in FS, with a value of 105.29 RVU. The TV of FP and PS
showed a similar trend as with the PV. Conversely, a decrease in TV by
6.73% was observed in FS. Setback viscosity (SV) measures the stability
of paste during cooling and storage. Reduction in setback values in-
dicates a low rate of starch retrogradation and syneresis (Gull, Prasad
and Kumar, 2016). In all the composite flours, a significant reduction in
SV occurred as a result of sourdough fermentation. This indicates a
lower rate of starch retrogradation, thereby reducing the staling rate.
This provides an added advantage in the form of extended shelf-life for
the final baked products. Farasara et al. (2014) documented the same
trend during fermentation of corn flour. The pasting properties of the
three composite flours were significantly affected by the fermentation
process.

4. Conclusion

The sourdoughs from this study were suitable for use in the pro-
duction of baked food, owing to its high acidity and lactic acid bacteria
content. Microbial diversity in the composite gluten-free sourdoughs
were mainly LAB (Pediococcus acidilactici, Pediococcus pentosaceus,
Weissella confusa) and two strains of Bacillus spp. (Bacillus licheniformis
and Bacillus subtilis). These arrays of organisms found in the cereal
blends have strong potential to inhibit the growth of pathogenic or-
ganisms, improve nutritional parameters and increase the shelf-life of
sourdough-based baked products. The impact of sourdough fermenta-
tion on the pasting properties of flour blends is capable of lowering
staling rate, thereby extending the shelf-life of the resultant food

products. These outcomes establish the suitability of gluten-free com-
posite cereals in the production of bread and other baked products.

Acknowledgements

The authors are grateful to the Editor and the three anonymous
reviewers for their constructive criticisms that enhanced the quality of
the manuscript. This research was made possible by the sponsorship of
the Borlaug Leadership for the Enhancement of Agriculture Program
(LEAP) fellowship awarded to the lead author for her Ph.D. It also en-
joyed the support of UC Davis, USA and ICRISAT Nairobi, Kenya. Late
Dr. (Mrs.) Edema, M.O. was instrumental in the conception of this re-
search idea. Her contribution and mentoring is greatly acknowledged.

References

Adepehin, J. O. (2017). Sourdough fermentation of three underutilised cereals (finger millet,
pearl millet, and sorghum) for bread makingAkure, Nigeria: Federal University of
Technology Unpublished Ph.D. thesis submitted to the Department of Food Science
and Technology.

Akinola, S. A., Badejo, A. A., Osundahunsi, O. F., & Edema, M. O. (2017). Effect of pre-
processing techniques on pearl millet flour and changes in technological properties.
International Journal of Food Science and Technology, 52, 992–999.

AOAC (2005). Official methods of analysis (18th ed.). Maryland, USA: Association of
Official Analytical, Chemists International.

Arendt, E. K., & Moroni, A. (2013). Sourdough and gluten-free products. In M. Gobbetti, &
M. Gänzle (Eds.). Handbook on sourdough biotechnology (pp. 245–264). New York:
Springer.

Carrizo, S. L., de Oca, C. E. M., Hébert, M. E., Saavedra, L., Vignolo, G., LeBlanc, J. G.,
et al. (2017). Lactic acid bacteria from andean grain amaranth: A source of vitamins
and functional value enzymes. Journal of Molecular Microbiology and Biotechnology,
27(5), 289–298.

Compaoré, C. S., Nielsen, D. S., Ouoba, L. I., Berner, T. S., Nielsen, K. F., Sawadogo-
Lingani, H., et al. (2013). Co-production of surfactin and a novel bacteriocin by
Bacillus subtilis subsp. subtilis H4 isolated from Bikalga, an African alkaline Hibiscus
sabdariffa seed fermented condiment. International Journal of Food Microbiology,
162(3), 297–307.

Corsetti, A. (2013). Technology of sourdough fermentation and sourdough applications.
In M. Gobbetti, & M. Gänzle (Eds.). Handbook on sourdough biotechnology (pp. 85–
104). New York: Springer.

Corsetti, A., & Settanni, L. (2007). Lactobacilli in sourdough fermentation. Food Research
International, 40(5), 539–558.

Edema, M. O. (2010). Effect of Leuconostoc mesenteroides on the visco-elastic properties of
sour maize meal. International Food Research Journal, 17, 55–61.

Edema, M. O., Emmambux, M. N., & Taylor, J. (2013). Improvement of fonio dough
properties through starch modification by sourdough fermentation. Starch/Stärke,
65(9–10), 730–737.

Edema, M. O., & Sanni, A. I. (2008). Functional properties of selected starter cultures for
sour maize bread. Food Microbiology, 25, 616–625.

Ercolini, D., Pontonio, E., De Filippis, F., Minervini, F., La Storia, A., Gobbetti, M., et al.
(2013). Microbial ecology dynamics during rye and wheat sourdough preparation.
Applied and Environmental Microbiology, 79(24), 7827–7836.

Esteve, C. C., Barber, C. B., & Martínez-Anaya, M. A. (1994). Microbial sour doughs

Table 2
Pasting properties of three flour blends and their sourdoughs.
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(RVU)
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(RVU)
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(RVU)
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(RVU)

Peak time
(min)

Pasting temperature (°C)

FP 79.00±
1.93 e

63.88±
1.10 e

15.13±
0.81 c

114.54±
2.64 c

50.67±
1.54 b

5.77±
0.04 d

82.25±
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FPS 99.71±
2.36 d
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8.17±
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136.58±
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2.17 c

7.00±
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90.45±
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Data are means ± standard deviations for three sourdoughs produced from composite flours, analysed in three replicates. Data in the same column with the same
letters are not significantly different (P < 0.05).
The composite flours used for producing sourdough were mixtures of two gluten free flours in a ratio of 50:50. FP is finger millet-pearl millet blend, PS is pearl millet-
sorghum blend, FS is finger millet-sorghum blend, FPS is finger millet-pearl millet blend sourdough, PSS is pearl millet and sorghum blend sourdough, FSS is finger
millet-sorghum blend sourdough.
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