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Current Status and Prospects of Genomic

Selection in Legumes

Ankit Jain, Manish Roorkiwal, Manish K. Pandey, and Rajeev K. Varshney

6.1 Introduction

Availability of proper nutrition is of extreme importance as malnutrition at an early

age may lead to reduced physical and mental development and limits the capacity to

learn. UN World Food Program has reported that more than 900 million people in

the world do not get nutritious food to eat. Global population has been growing at a

fast pace, and feeding the ever increasing population with nutritious food is

becoming more difficult day by day. This will continue until there is significant

genetic gain by increasing crop productivity with enhanced nutrition. Although

significant efforts have been focussing on enhancing the crop production to feed the

world, still there are famines occurring in several parts of the world (http://www.

latimes.com/world/africa/la-fg-southsudan-famine-20170220-story.html). Consid-

ering this alarming situation, the United Nations and other affiliated organizations

have a challenge to eradicate hunger and malnutrition to ensure food and nutrition

security by responding to nutritional needs, addressing emerging threats and meet-

ing the zero hunger challenge. To overcome this devastating situation of malnutri-

tion, legumes are expected to play significant role, and there is a dire need to

enhance the productivity of these legumes.

Legumes have been cultivated since early civilizations and have been the major

source of nutrition for humans and animals (Power 1987; Graham and Vance 2003;

Varshney et al. 2013a; Rubiales and Mikic 2015; Pandey et al. 2016). Legumes

have been recognized as most valuable food to meet the dietary requirements of

undernourished or underserved global populations (Rebello et al. 2014). Research

has shown that replacement of energy dense foods with legumes offers various
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health benefits (Tarawali and Ogunbile 1995). In addition, legumes have the ability

to fix atmospheric nitrogen, which is vital for improving the soil nutritional profile,

thereby reducing the requirement for nitrogen fertilizers enabling legumes more

suited for crop rotation programs.

Legumes are among the important crop commodities and have high demand

being a major supplement of protein, but the productivity is low compared with the

increasing demand resulting from several biotic (Rubiales and Mikic 2015) and

abiotic stresses (Araújo et al. 2015). The productivity trends for these legumes in

the last five decades suggest very little improvement leading to low productivity in

most of the legumes compared with cereal crops (FAOSTAT 2014). Nevertheless,

several efforts made in these years identified the genetic variations for various traits

of interest in these legumes to enhance the crop productivity. So far, limited success

could be achieved with the application of conventional breeding approaches for

enhancing the crop productivity by overcoming key constraints. It is time to adopt

modern and new technologies for enhancing the rate of genetic gain, so that

improved varieties can be developed faster and more precisely equipped with

essential traits to face the climate and other stress factors.

A paradigm shift is required in approaches and breeding methodologies to

develop superior varieties for the future. In this context, deployment of genomics

tools and technologies has shown great potential in understanding the complex

genetics and breeding problems. It has been realized that genomics-assisted breed-

ing (GAB), with integration of conventional breeding is the key to overcome

conventional breeding limitations (Varshney et al. 2013a). Further in the case of

legumes, a journey from a status of orphan crops with a dearth of genomic resources

a decade ago, to current well-enriched genomic resource crop status, opened the

possibility of deployment of GAB for these crops. Additionally, recent advent of

the next-generation sequencing (NGS) technologies had brought down the sequenc-

ing and genotyping cost significantly. As a result, draft genomes have become

available for several legume crops including model legumes, i.e., Medicago
truncatula (Young et al. 2011), Lotus japonicus (Sato et al. 2008) and crops such

as Glycine max (Soybean) (Schmutz et al. 2010), Cajanus cajan (Pigeonpea)

(Varshney et al. 2012), Cicer arietinum (Chickpea) (Varshney et al. 2013b; Jain

et al. 2013); Lupinus angustifolius (Lupin) (Yang et al. 2013), Vigna radiata (Mung

bean) (Kang et al. 2014) and Arachis duranensis and A. ipaensis (progenitors of
cultivated groundnut) (Bertioli et al. 2016; Chen et al. 2016). Genome sequencing

efforts followed by large scale re-sequencing efforts in each crop led to availability

of millions of structural variations leading to availability of large numbers of

genetic markers (see Varshney et al. 2013a; Bohra et al. 2014; Pandey et al. 2016).

Availability of large scale genome-wide genetic markers led to establishment of

several high-throughput genotyping platforms, offering precise, rapid and cost-

effective solutions to genotyping of large populations. For instance, informative

single nucleotide polymorphisms (SNPs) with high genome density are being

chosen and used to design assays/platforms for legumes such as in Vigna
unguiculata (Egbadzor et al. 2014; Huynh et al. 2013; Lucas et al. 2013, Mu~noz-
Amatriaı́n et al. 2016), Pisum sativum (Deulvot et al. 2010; Bordat et al. 2011;

Tayeh et al. 2015), Lens culinaris (Sharpe et al. 2013; Kaur et al. 2014a), Vicia faba
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(Kaur et al. 2014b), soybean (Lee et al. 2015; Wang et al. 2016), chickpea (Gujaria

et al. 2011; Hiremath et al. 2011; Roorkiwal et al. 2014), pigeonpea (Saxena et al.

2012) and groundnut (Pandey et al. 2017). Other alternative SNP detection systems

like competitive allele-specific PCR (KASPar) (Cottage et al. 2012; Hiremath et al.

2012; Kumar et al. 2012; Saxena et al. 2012; Xu et al. 2012; Fedoruk 2013; Khera

et al. 2013; Sharpe et al. 2013), custom-designed Illumina VeraCode assay

(Deulvot et al. 2010; Roorkiwal et al. 2013, Duarte et al. 2014) have also been

employed for various applications. The development and deployment of different

genotyping platforms provide cost effective and precise genotyping solution to

many legume crops leading to enhanced rate of progress in legume genomics.

NGS-based genotyping by sequencing (GBS) allows simultaneous marker discov-

ery as well as genotyping of the populations even in the absence of a reference

genome (Davey et al. 2011). Among legumes, the GBS approach has been success-

fully used in lentil (Ates et al. 2016) and chickpea (Deokar et al. 2014; Jaganathan

et al. 2015; Verma et al. 2015) for genome-wide SNP discovery and genetic

mapping. Further, whole genome re-sequencing (WGRS) and restriction site-

associated DNA (RAD) sequencing approaches have also been used to capture

the variations in the genome and to understand diversity prevailing in the germ-

plasm (see Varshney et al. 2013b).

GAB aims at to accelerate crop improvement by establishing and exploiting the

relationships between genotype and phenotype. Of the three GAB approaches,

marker-assisted backcrossing (MABC), marker-assisted recurrent selection

(MARS) and genomic selection (GS), MABC has been deployed in most of the

crops and proved to be an effective approach for development of improved varieties

and lines in many legume crop plants (see Pandey et al. 2016). MABC uses markers

linked to agronomical important traits and mainly aims at introgression of a limited

number of alleles from one genetic background (donor) to other (recipient) (Hos-

pital 2005). Further, the improved varieties developed as a result of MABC contain

one or a few alleles at major gene/QTLs from the donor genotype, keeping intact

the rest of the genome from recurrent parent (see Varshney et al. 2013a). For

instance, one “QTL-hotspot” region having QTLs for several drought tolerance-

related root traits was introgressed into JG11, a desi chickpea cultivar from the

drought tolerant line ICC4958 (Varshney et al. 2013c). Similarly introgression lines

developed using MABC for fusarium wilt (FW) and ascochyta blight

(AB) resistance in the background of C214 have shown enhanced resistance for

FW and AB (Varshney et al. 2014). In the case of groundnut, MABC has been

exploited to introgress major QTLs for leaf rust resistance from GPBD 4, a leaf rust

resistant cultivar into ICGV 91114, JL 24 and TAG 24 cultivars (Varshney et al.

2014). MABC along with MAS was further deployed in enhancing the oil quality

by increasing oleic acid in three different groundnut varieties, viz. ICGV 06110,

ICGV 06142 and ICGV 06420 (Janila et al. 2016). In the case of pea, Aphanomyces

root rot resistance QTLs (Lavaud et al. 2015) and frost tolerance QTLs (Hascoët

et al. 2014) were introgressed using MABC into different agronomically important

genetic backgrounds. Likewise in soybean, MABC was deployed successfully to

improve resistance to a defoliating insect (Zhu et al. 2007), bacterial leaf pustule
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resistance (Kim et al. 2008) and to reducing a kunitz trypsin inhibitor (Kumar

et al. 2015).

In order to address the limitations of MABC approach for improving multiple

complex traits, MARS has been proposed for combining major and minor QTLs in

several crops. In the case of MARS, the de novo QTL identification is carried out in

a breeding population derived from the crosses of superior varieties followed by

crossing genotypes with superior alleles for pyramiding targeted QTLs into one or

more genetic backgrounds (Bernardo and Charcosset 2006). However, the MARS

approach was not effective for increasing yield in chickpea (Pandey et al. 2016).

MARS was suggested a method for improvement of drought tolerance in ground-

nut, however more than 100 main and epistatic effect QTLs were reported

because handling these small effect QTLs through MABC was not possible

(Gautami et al. 2012).

GS utilizes phenotypic as well as genome-wide marker data to predict the

genomic-estimated breeding values (GEBV) for selecting the superior lines. In

brief, two populations, training population and testing population (sometimes, it

is part of training population, hence known as validation set as well) are used.

Training population is the one with comprehensive phenotypic data under different

environmental conditions, that is, different locations/seasons/treatments. Genome-

wide genotypic and phenotypic data for the training population are used to train

different statistical GS models. The training population can be subdivided into five

to ten groups, and then, cross validation is used to evaluate the GS models and

prediction accuracy. Trained models, are used to calculate GEBV of a testing or

selection candidate population that has been genotyped but not phenotyped. The

predicted GEBVs are used to select superior lines from the population. One of the

advantages associated with GS is that it reduces the selection cycle length by

eliminating the phenotyping that is required for multiple rounds of selection

hence reducing time and cost, leading to genetic gain.

Genomic prediction is a key to success in GS breeding, and it depends on high-

throughput and high-density genotyping along with accurate, multilocation

phenotyping data. Availability of ample genomic resources and affordable high-

density and high-throughput genotyping in several legumes will facilitate deploy-

ment of GS in legumes. This chapter briefly describes the critical factors determin-

ing the success of genomic selection and summarises the ongoing efforts to deploy

genomic selection in legumes and further the existing possibilities by integrating

available genomic resources to harness the full potential of modern breeding

approaches.

6.2 Critical Factors in Deployment of Genomic Selection

High-precision prediction accuracies are the most critical point that determines the

success of any GS breeding program. Multiple simulation and empirical studies

involving estimation of prediction accuracies rely on multiple factors viz. number
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and type of markers (Chen and Sullivan 2003; Poland and Rife 2012), population

structure (Nakaya and Isobe 2012; Spindel et al. 2015), training population size

(Daetwyler et al. 2008), heritability and architecture of target traits (Zhong et al.

2009; Zhang et al. 2014, 2016) and the relationship between training population and

selection candidates.

Numerous GS models have been proposed to address the diverse requirements

for achieving satisfactory prediction accuracies. Some of the routinely used GS

models include Random Regression Best Linear Unbiased Predictor (RR-BLUP;

Meuwissen et al. 2001; Liu et al. 2008; Zhang et al. 2010), Least Absolute

Shrinkage and Selection Operator (LASSO) (Tibshirani 1996; de los Campos

et al. 2009a), semiparametric strategies (Kinship GAUSS), Bayesian approach

viz. Bayesian Ridge Regression, Bayesian LASSO (de los Campos et al. 2009b;

Legarra et al. 2011), Bayes A (Meuwissen et al. 2001), Bayes B (Meuwissen et al.

2001) and Bayes Cπ (Habier et al. 2011) and machine learning Random Forest

Regression (RFR) (Breiman, 2001), and Support Vector Regression (SVR)

(Drucker et al. 1997). Various comparative accounts have been drawn to assess

the performances of these GS models among different organisms (Moser et al.

2009, Heslot et al. 2012, Resende et al. 2012a, b). Selection of an appropriate GS

model varies from case to case, and hence, multiple models should be considered in

any GS study.

Size of training population is another important factor that has significant impact

on prediction accuracies. Bernardo and Yu (2007) suggested that a minimum size of

the training population to be 100–150 genotypes to obtain the optimum prediction

accuracy. In the case of genetically diverse populations, larger training populations

are required to attain better prediction accuracies (Mujibi et al. 2011). Genetic

relatedness of the individuals in the training and selection populations is known to

affect the accuracies of GS studies (Asoro et al. 2011). Among cattle, GEBVs

estimated within breed were found to be more accurate than the ones estimated

across breeds (Hayes et al. 2009). Price et al. (2010) and Guo et al. (2014)

demonstrated significant reduction in prediction accuracies in structured

populations.

Application of genome-wide markers results in better prediction accuracies

(Meuwissen et al. 2001; Calus and Veerkamp 2007). Higher marker density has

been demonstrated to produce higher genomic prediction accuracy (Zhong et al.

2009; Asoro et al. 2011; Heffner et al. 2011; Poland et al. 2012; Heslot et al. 2013).

Low marker densities in some cases result in lower prediction accuracies, that could

be explained as lower probability of LD between markers and QTLs, because of the

smaller fraction of variation (Solberg et al. 2008). Hickey et al. (2014) reported that

a small number of markers (200–500) and phenotypes (1000) are required in a

closely related biparental population to achieve effective prediction accuracies,

whereas for a population that is unrelated to the selection candidates, a much larger

number of markers and phenotypes are required for the same prediction accuracy. A

large mixed training population set with higher marker density is recommendable to

achieve high prediction accuracies rather than using multiple training populations

representing one germplasm group (Asoro et al. 2011). In another study, De Roos

6 Current Status and Prospects of Genomic Selection in Legumes 135



et al. (2009) suggested that a high marker density is required if training and

selection populations are highly divergent.

High-throughput genotyping platforms such as DArT, SNP array and GBS are

being used based on different needs. GBS has been deployed in almost all the crops

in the initial genetic analysis as it provides a low cost option to plant species where

there is no reference genome (Poland et al. 2012). A comparison made by Poland

et al. (2012) using GBS for de novo genotyping of testing populations in case of the

wheat (Triticum aestivum L.) genome showed higher prediction accuracies of

0.3–0.5 in comparison to established marker platforms.

Enhancing the marker numbers while imputing the missing marker data has been

reported to improve in prediction accuracies. For instance, Poland et al. (2012)

showed an improvement of prediction accuracies with the genotyping data set

consisting of 35,000 SNPs with up to 80% missing data points, over the prediction

accuracies estimated from 2000 DArT markers with missing data points up to 2%.

In various studies including maize, wheat, barley and forest trees, a positive

relationship between the trait heritability and prediction accuracies has been

observed (Lorenzana and Bernardo 2009; Albrecht et al. 2011; Heffner et al.

2009, 2011; Grattapaglia et al. 2011; Guo et al. 2012; Combs and Bernardo

2013). In another study, Zhang et al. (2014) established higher prediction accura-

cies for less complex traits. Most of the results discussed here form the basis of

ongoing efforts in legume genomic selection and serve as the guidelines for

strategizing the future efforts. GS efforts in different legumes have been described

below in detail.

6.3 Soybean (Glycine max)

Deployment of GS among legumes first started with improving yield and agro-

nomic traits in soybean. A set of 301 elite breeding lines was genotyped with GBS

and phenotyped for grain yield at multiple locations (Table 6.1) (Jarquı́n et al.

2014). By keeping a randomly selected set of 50 accessions for a validation

population, a positive relationship was observed between the size of training

population and prediction accuracy, which began to plateau at a training population

size of 100; however, it continued to increase until the maximum available size. The

study included the evaluation of three different imputation methods to impute the

missing data for soybean. However, not many differences were obtained using these

imputation methods. Although, random forest imputation produced the highest

accuracies, no significant differences were observed. A high prediction accuracy

(0.64) reflected high potential of GS for yield in soybean (Table 6.1) (Jarquı́n et al.

2014).

Further, exploiting the GAB, genotyping data for 31,045 SNPs on 309 soybean

germplasm accessions were used to estimate the prediction accuracy for seed

weight (SW) (Zhang et al. 2016). Five-fold cross validation (CV) was applied by

randomly assigning 20% of the association panel as validation set and remaining
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80% as the training set. Based on the number of SNPs used and the size of training

population, the prediction accuracies were found to vary between 0.75 and 0.87.

Like other studies (Asoro et al. 2011; Jarquin et al. 2014), on size of the training

population, smaller populations resulted in lower prediction accuracies. Another

observation was the prediction accuracy using all 2000 SNPs was found to be same,

even reducing it to 500 SNPs. Higher prediction accuracies were observed com-

pared to Jarquı́n et al. (2014) with same number of markers, similar population size,

and broad sense heritability of traits, pointing towards the impact of genetic

architecture of traits in populations under investigation.

6.4 Alfalfa (Medicago sativa)

Alfalfa is a perennial legume with a long breeding cycle, which limits crop

improvement efforts. Selection cycle duration can be reduced by deploying GS

for complex traits such as yield by using GS for predicting the breeding values

(Li et al. 2015). Prediction accuracies were obtained using phenotyping data for

yield traits during two selection cycles from three locations and using genotyping

data for ~10,000 SNPs (Li et al. 2015). Varying levels of missing values from the

marker data set were used for GS modelling using random forest method for

missing values imputation. Validation of genomic prediction models was

performed by cross validation, in which randomly selected 90% genotypes were

used as training population and 10% was used for testing/validation. Marker data

sets with more missing values resulted in a large number of markers and resulted in

increased prediction accuracies. Prediction accuracies were validated for both the

generation viz. cycle 0 and cycle 1. In individual generation analysis, prediction

accuracies validated within locations were found to be much higher than prediction

accuracies across the locations, possibility due to G � E interaction for biomass

yield. Prediction accuracies of 0.43–0.66 for total biomass yield in a synthetic

alfalfa breeding population showed the underlying potential of further application

of GS in other complex traits (Li et al. 2015) (Table 6.1).

In total, 278 elite genotypes adapted to two different environments with a

different genetic base were genotyped using GBS and phenotyped for dry matter

yield of their densely planted half-sib progenies in separate environments

(Annicchiarico et al. 2015). Prediction accuracies were higher using joint SNP

calling in comparison to separate SNP calling for the two data sets. Random forest

was used for missing marker imputation. A comparison of prediction accuracies

within and across populations was performed with the same set of markers, and it

was observed that within-population prediction accuracies were higher than across-

population prediction accuracies, probably due to a high level of intra-population

variation. Results indicated a greater than three-fold higher prediction for yield gain

per unit time though GS in comparison to conventional selection (Annicchiarico

et al. 2015) (Table 6.1).
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6.5 Pea (Pisum sativum)

In the case of pea, SNP markers were used to predict the phenotypes using different

statistical methods (Burstin et al. 2015). Phenotyping data for two seasons and

genotyping data generated with 331 SNPs on>350 accessions representing various

cultivars, diverse wild types, landraces, etc. were used to estimate the prediction

accuracies (Table 6.1). To minimize the impact of population structure leading to

spurious associations, authors used the approach recommended by Johnson et al.

(2007). Thousand seed weight (TSW) was predicted better than the beginning of

flowering (BegFlo) and number of seeds per plant (NSeed). During the same year,

they reported deployment of a high-density genotyping platform for GS (Tayeh

et al. 2015). Similarly, genotyping data from the GenoPea 13.2 K SNP Array on a

collection of 339 accessions along with the phenotyping data for TSW, BegFlo and

NSeed were used for estimating genomic prediction values using five different

statistical methods (Tayeh et al. 2015). To estimate the impact of the training

population size over the prediction accuracies, different sizes of training

populations were selected randomly with multiple repetitions; however, the test

set was fixed with 99 accessions. Similarly, to assess the effect of marker density on

prediction accuracies, evenly distributed SNP subsets were selected for estimation.

Of five models considered in the study, four showed equivalent performance,

whereas performance of LASSO was less than others. Another highlight of the

study was that no significant differences were observed whether or not the markers

with low minor allele frequency (MAF) were included. The effect of a reduction in

the size of the training population was reduction in accuracy of the prediction

models (Q2). In addition, reducing the marker density but retaining only a single

marker per unique map position did not affect prediction accuracy. However, a

further reduction in the number of markers led to reduced Q2. Q2 values obtained in

Tayeh et al. (2015) were found to be higher than in Burstin et al. (2015).

6.6 Chickpea (Cicer arietinum)

In case of chickpea, there is only one report coming from ICRISAT about deploying

GS breeding and conducting initial studies of standardizing different GS models

(Roorkiwal et al. 2016). In this context, a training population containing 320 elite

chickpea breeding lines consisting of desi and kabuli seed types, from the Interna-

tional Chickpea Screening Nursery (ICSN), was genotyped using the DArTseq

platform. This platform generated 3000 polymorphic markers. Phenotyping data

were generated for yield and yield-related traits viz. seed yield (SY), 100 seed

weight (SDW), days to 50% flowering (DF) and days to maturity (DM), at two

different locations during two different crop seasons for two different treatments,

that is, rainfed and irrigated conditions. Six different statistical models were used to

calculate prediction accuracies and perform five-fold cross validation to estimate
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the prediction accuracies by randomly selecting 80% of the lines for the training

population and the remaining 20% as the testing population (Roorkiwal et al. 2016).

A large variation in prediction accuracies were observed among the traits under-

taken in the study, but overall performance of the models were found to be similar

for every trait. The effect of G � E interaction was observed in the prediction

accuracies of individual traits. For instance, the best prediction accuracy was

observed for SDW (trait least affected by G x E interaction and treatments, etc.);

however, prediction accuracies were lower for SY trait, which is known to be

affected by G � E. The impact of missing marker data and MAF on prediction

accuracies was assessed for 100 seed weight, using nine different combinations of

missing marker data and MAF (including markers in combination with 0%, �10%

and �30% missing data, and 0%, �5% and �10% MAF). The results showed that

the random forest model at 0% missing marker data and �5% MAF combination

had the best prediction accuracy, whereas the Bayes B model with 0% missing

marker data and �10% MAF produced lowest accuracies. This study also assessed

the impact of population structure on GEBV prediction accuracy. Desi and kabuli

seed types were undertaken as separate groups and also grouped together to

calculate prediction accuracies. The results reflected a higher prediction accuracy

using the complete set in comparison to different seed types considered separately,

which might be attributed to a larger population size (Roorkiwal et al. 2016)

(Table 6.1).

6.7 Groundnut (Arachis hypogaea)

In case of groundnut, ICRISAT has taken some initiatives towards deploying GS

breeding and conducting initial studies of standardizing different GS models

(Pandey et al. 2016).While undertaking deployment of GS in groundnut, the

focus of the study was to assess the impact of associated markers on prediction

accuracies for three important traits viz. days to flowering (DF), seed weight

(SW) and pod yield (PY) with different heritabilities (Pandey et al. 2014a, b;

Pandey et al. 2015). Six seasons of phenotyping data for these traits and genotyping

of the reference set with 2356 DArT markers were used for GS analysis (Table 6.1).

When comparing the prediction accuracy for total and associated markers, the

impact of population size and two different approaches were used to estimate the

prediction accuracies. In the first approach, the whole population set was consid-

ered as a training population, and a part of the training population was considered as

validation set to calculate the prediction accuracies. However, in another approach,

the whole population was fractioned into five random smaller sets, of which one set

was used to train the GS model, hence acted as training population, and the rest four

were used as validation sets. Associated markers were compared with using all

markers and the associated marker set showed higher prediction accuracies. How-

ever in a second approach where randomly selected smaller sets were used to

genotype the training population, prediction accuracies obtained with associated
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markers were less predictive than all genome-wide markers. Overall, only marginal

differences were observed between the prediction accuracies estimated using total

genome-wide markers by both the approaches. As expected, the traits with higher

heritability showed higher prediction accuracies in comparison to those with lower

heritability. A positive relation between the heritability and prediction accuracies

was observed, supporting similar observations in maize, wheat, barley, etc.

(Lorenzana and Bernardo 2009; Albrecht et al. 2011; Heffner et al. 2011; Guo

et al. 2012; Combs and Bernardo 2013). So far, the lack of a high-throughput

genotyping platform to generate high-density genotyping data has been the major

obstacle in deploying the GS breeding in groundnut. However, the availability of

genome sequences of a diploid progenitor species and 58 K Axiom_Arachis SNP
(Pandey et al. 2017) array during 2016 will further boost the deployment of GS

breeding in groundnut.

6.8 Conclusions

The majority of legume crops lacked the attention of researchers for generating

genomic resources for a longer time compared with cereal crops. Nevertheless, the

speedy development in NGS technologies and assembly methodologies made

generating genomic resources affordable and technically sound over the time.

The legume crops have made much progress from poor resource to highly enriched

genomic resourced crops. This has provided many opportunities to implement

advanced genomic-assisted breeding. GS breeding has demonstrated its great

value to the ongoing conventional breeding programs of cattle and in some plant

species. This approach is gaining attention from other crop breeders including

legumes as it promises greater genetic gain by improving complex traits in less

time with more precision. Seeing the benefits achieved in the maize and wheat

breeding programs, legume crops are now looking forward to deploying GS breed-

ing to address its some of the most complex problems that are the key obstacles in

achieving higher productivity. Selected studies conducted so far in legumes have

suggested the possibility of achieving high prediction accuracies. These prelimi-

nary studies also indicated the potential role of GS in developing superior varieties

with enhanced genetic gain and ability to overcome various stresses, hence ensuring

food security with higher productivity. Currently, the majority of the legume crops

are in the process of deploying GS in their breeding program; however, it will take a

few years for GS to become routine similar to other major crop breeding programs.
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