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Abstract Sorghum is one of the bioenergy crops, with

considerable tolerance to salinity. The current work was

undertaken to assess the salinity tolerance of brown midrib

(bmr) mutant lines and wild parents for biomass compo-

sition and potential theoretical ethanol yield (TEY). The

variation for salinity levels in field plots was significant;

hence, salinity screening under controlled environment was

performed. The mutant line N 600 (bmr-12) had performed

better under field screening (at 10 dS m-1) with fresh stalk

yield of 17.3 t ha-1, dry stalk yield of 7.4 t ha-1, and grain

yield of 2.0 t ha-1. The performance of bmr-6 and bmr-12

mutant alleles showed that bmr-12 allele, i.e., N 597 and N

600 had performed better than its wild types EHS and

Atlas, respectively, for relative fresh and dry biomass index

at 20, 40 and 80 days after imposing 150 mM salinity

stress. The lines N 597 (13.05 cm2 g-1), N 596

(6.84 cm2 g-1) and N 593 (7.39 cm2 g-1) recorded the

highest specific leaf area at 20, 40 and 80 days of stress,

respectively. High membrane stability index was recorded

in mutants N 596 (bmr-6-85.33%) and N 597 (bmr-12-

84.78%) with EHS though under different genetic back-

ground under stress. Higher TEY was recorded in N 597

(2219.82 L ha-1), N 600 (2159.79 L ha-1), N 595

(2019.03 L ha-1) and N 598 (1945.33 L ha-1) under

stressed conditions, with a moderate reduction of 47.85 and

47.50% in 2014 and 2015, respectively, in TEY.

Keywords Brown midrib (bmr) � Biomass � Salinity �
Sorghum � Membrane stability index (MSI) �
Theoretical ethanol yield (TEY)

Abbreviations

Bmr Brown midrib

ICRISAT International Crops Research Institute for the

Semi-Arid Tropics

SPAD Soil plant analysis development

SLA Specific leaf area

MSI Membrane stability index

SHR Seedling height reduction

RFBI Relative fresh biomass index

RDBI Relative dry biomass index

NDF Neutral detergent fiber

ADF Acid detergent fiber

ADL Acid detergent lignin

TEY Theoretical ethanol yields

Introduction

Sorghum (Sorghum bicolor L Moench.) is a major food and

forage crop in Asia and African continents, grown under

rainfed conditions (Srinivasa et al. 2009; Krishnamurthy

and Mand 2011) and considered as a potential bioenergy

feedstock. It is grown in environmental conditions harsh

for maize. With the current global climatic changes, it has

gained importance for its abiotic stress tolerance and as

bio-fumigation green manure crop (De Nicola et al. 2011).
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Salinity is the major stress in arid and semiarid region of

the world affecting the optimal crop growth during vege-

tative and reproductive stage thus reducing the economic

yield (Athar and Ashraf 2009). Salt stress will adversely

affect the plant growth by inducing external osmotic

potential, which prevents water uptake, and toxicity of Na?

ions on plant growth (Khajeh-Hosseini et al. 2003). The

magnitude of salt stress is directly proportional to decrease

in the shoot length as well as total biomass accumulation

(Bashir et al. 2011; Rani et al. 2012). Considering the

recent increase in utilization of sorghum in bioethanol

industry, the sweet and energy sorghum cultivars are par-

ticularly bred as a dedicated biofuel feedstock for fodder

production (Prakasham et al. 2014). The availability of low

lignin containing brown midrib (bmr) mutants is consid-

ered as boon for not only dairy industry (Dien et al. 2009;

Srinivasa Rao et al. 2012; Prakasham et al. 2014) but also

in biofuel industry as it significantly aids in reducing pre-

treatment costs while converting biomass to biofuels or

platform chemicals (Guragain et al. 2015). The lines with

lower reduction in biomass production under saline stress

are defined as salinity tolerant (Burton and Fincher 2014).

Nevertheless, the assessment of sorghum genotypes for

biomass yield under saline condition has been reported by

numerous researchers, (Saadat and Homaee 2015; Ali et al.

2014) but the effect of salinity on the biomass or biofuel

production has not been extensively studied (Vasilakoglou

et al. 2011; Srinivasa Rao et al. 2010) and no report on the

effect of different background of mutation in bmr allele

under saline conditions (Srinivasa Rao et al. 2012) is

assessed. Thus, an attempt to study the effect of wild

parents and mutational allele on salinity tolerance was

carried. The bmr mutants available at the International

Crops Research Institute for the Semi-Arid Tropics

(ICRISAT) gene bank were screened for salinity tolerance,

and their efficacy under stress for bioethanol production is

assessed.

Materials and Methods

Glasshouse Screening

The experiments were conducted in parallel at field

(100 mM) and in glasshouse (at 100 and 150 mM) during the

post-rainy season of 2014. Based on their performance for

biomass yield, 14 entries including themutants and theirwild

parents were selected and evaluated in glasshouse at

150 mM. The level of salinity for glasshouse screening was

set to double of field (i.e., 200 mM), but no plant stand was

established at 200 mM; hence, 150 mM with considerable

germination required to record observations was finalized.

Eight bmr mutants possessing bmr-6 and bmr-12 alleles

including their wild types, making to 12 lines (Table 1) were

used for screening salinity tolerance in 2014 and 2015 at

glasshouse conditions in ICRISAT, India. The experimental

design adopted was randomized complete block design

(RCBD) with 3 replications under control and saline condi-

tions. The pots used in the experiment had following speci-

fications top diameter 27.5 cm, bottom diameter 20.5 cm

and height 23 cm. Ten seeds of each genotype were planted

in each pot under control and stress, placed at equal distance,

after 2 weeks the seedlings were thinned to 5 per pot. The

checks used were S 35 (tolerant check) and ICSR 170 (sus-

ceptible check) (Krishnamurthy et al. 2007). The salinity

level chosen was 150 mM, applied in two split doses of

75 mM NaCl, to avoid salt shock (Shavrukov 2013). The

field saturation level was achieved on a volume by weight

basis (v/w), i.e., 200 mL of water is required to saturate 1 kg

of pot mixture (red soil: sand in the ratio 4:3); thus, 10 kg of

potmixturewas saturatedwith 2000 mL of 75 mM saltwater

at time of sowing. A week later the second split dose of

75 mM salinity was imposed with 200 mL of 75 mM salt-

water. The bottom of the pots was sealed to ensure no salt-

water seepage loss. Water to the pots was not provided till

second split dose and later on alternate days up to 20 days

after sowing and every day at later stages of growth to replace

evapotranspiration losses and bring soil moisture levels to

field capacity. The water requirement was determined by

weighing 5 pots, and the difference in weight was replaced to

maintain field capacity. On the other hand, for control (non-

saline) pots, double distilled water was used for watering and

the bottom of the pots was not sealed, so that additional water

will seep out.

Field Screening

The bmr mutant (8 lines provided in Table 2) were

screened in the field of Agriculture Research Station

(ARS), Gangavathi, University of Raichur, Karnataka,

India (Location: 15�2504800N, 76�3104800E. The soil has

natural salinity level of 8–10 dS m-1 and the screening

was performed during post-rainy season 2014 in a RCBD

with three replications following standard management

practices (House 1985). Agronomic traits like days to 50%

flowering, plant height (m), fresh stalk, dry stalk and grain

yield (t ha-1) were recorded at maturity.

The morpho-physiological observations recorded were

on plant height (cm), fresh weight (g) and dry weight (g) of

plants per pot. The physiological observations were soil

plant analysis development (SPAD) which was measured

from top third leaf with 5 replications on each leaf using

chlorophyll meter (SPAD-502Plus); specific leaf area (SLA

(cm2 g-1)) was measured using leaf area meter (LICOR

LI-3100), and membrane stability index (MSI) was adopted

from Singh et al. (2008), as follows
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MSI %ð Þ ¼ 1� Value A

Value B

� �� �
� 100

Value A—the conductivity of the bathing solution

(double distilled hot water) after incubation; Value B—

the conductivity of the bathing solution after disks was

boiled for 15 min to kill the tissue.

Shoot height reduction (SHR), relative fresh biomass

index (RFBI) and relative dry biomass index (RDBI)

(Kandil et al. 2012) were the other traits recorded to assess

the salinity tolerance in the given experiment.

SHR %ð Þ ¼ Shoot length in control� Shoot length in salinity

Shoot length in salinity
� 100

RFBI %ð Þ

¼ Shoot fresh weight in control� Shoot fresh weight in salinity

Shoot fresh weight in salinity

� 100

RDBI %ð Þ

¼ Shoot dry weight in control� Shoot dry weight in salinity

Shoot dry weight in salinity

� 100

All these observations were recorded at 20, 40 and

80 days of interval from stress initiation from the 10

seedlings, except MSI, at 80 days after sowing, to see the

recovery of plants at physiological maturity against stress

and control. The data were recorded on shoot samples, as

the main objective was to study on the effect of salinity for

purpose of production of biofuel; hence, no data on roots

were recorded.

Biomass Composition Protocol

The dry biomass from two seasons of salinity screening

from glasshouse in three replications were sampled for

quality analysis; the biomass samples, including stem and

leaves, were chopped and oven-dried at 60 �C for

approximately 3 days and then fine ground to pass through

a sieve of pore size 210–800 l. The powdered samples

were stored in airtight covers until analysis to avoid

moisture absorption. Biomass composition in Fibretherm

apparatus (Gerhardt) was assessed at ICRISAT for the

following traits—neutral detergent fiber (NDF), acid

detergent fiber (ADF) and acid detergent lignin (ADL),

which were determined using 1 g of biomass sample. The

calculation of theoretical ethanol yield (TEY) from the

Table 1 bmr-6 and bmr-12 mutant lines with its respective wild parent were used for salinity screening in glasshouse at ICRISAT, India

S. No. Wild Parent S. No. bmr-6 mutant Pedigree of mutant S. No. bmr-12 mutant Pedigree of mutant

1 Rox Orange (RO) 5 N 592 RO 9 N 121 9 N 593 RO 9 F 220

2 Kansas Collier (KC) 6 N 594 KC 9 N 121 10 N 595 KC 9 F 220

3 Early Hegari-Sart (EHS) 7 N 596 EHS 9 N 121 11 N 597 EHS 9 F 220

4 Atlas 8 N 598 Atlas 9 N 121 12 N 600 Atlas 9 F 220

Table 2 Mean performance of mutant lines in field condition in 10 dS m-1 at ARS, Gangavathi, Karnataka during Post-rainy-2014 season

SI No. Genotypes Days to 50% flowering Plant height (m) Fresh stalk yield (t ha-1) Dry stalk yield (t ha-1) Grain yield (t ha-1)

1 N 592 83bc 1.99c 10.48c 4.36c 1.46b

2 N 593 84c 1.69ab 8.80a 3.26a 1.18a

3 N 594 82ab 1.28a 8.52a 3.25a 1.07a

4 N 595 83bc 1.65ab 15.81d 5.74e 1.15a

5 N 596 83bc 1.48ab 9.74b 3.78b 1.19a

6 N 597 82ab 1.76bc 15.28d 6.70f 1.17a

7 N 598 81a 1.73bc 10.28bc 4.70d 1.23a

8 N 600 82ab 1.43ab 17.30e 7.40g 2.00c

Mean 82.5 1.63 1.63 4.90 1.30

SEM± 0.62 0.19 0.31 0.10 0.06

LSD 5% 1.32 0.41 0.67 0.22 0.13

CV % 1.00 14.40 3.20 2.60 5.90

SEM standard error of the mean; LSD least significant difference; CV coefficient of variation, means followed by the same letter in a column do

not different significantly according to Duncan’s multiple range test
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total soluble sugars (cellulose and hemicellulose) was

calculated (Zhao et al. 2009), and ADL is reported on an

ash free basis.

NDF %ð Þ ¼ Dry weight of sample after treatment�Ash

Initial weight of sample
� 100

ADF %ð Þ ¼ Dry weight of sample after treatment�Ash

Initial weight of sample
� 100

ADL %ð Þ

¼ Weight of crucible with sample�Empty weight crucibleð Þ
Initial weight of sample

� 100

Ash %ð Þ

¼ Weight of crucible with ash �Empty weight of crucible

Initial weight of sample

� 100

From the above parameters, the cellulose, hemicellulose

and lignin weights were determined:

Cellulose %ð Þ ¼ ADF�ADLð Þ
weight of the sample

� 100

Hemicellulose %ð Þ ¼ NDF�ADFð Þ
weight of the sample

� 100

Lignin %ð Þ ¼ ADL�Ashð Þ
weight of sample

� 100

Statistical Analysis

The analysis of variance was performed for both field and

the glasshouse data by using GENSTAT (14th edn. 2011,

ver 14.1.0.5943, VSN International ltd). Model:

Yi = l ? aj[i] ? bk[i] ? ei with ei * iid N (0, r2 e)

l = population mean across treatments, aj = deviation of

irrigation method j from the mean, constrained to Pa j = 1

aj = 0. bk = fixed block effect (categorical), k = 1,…,

b constrained to Pb k = 1 bk = 0, or random effect with

bk * iid N (0, r2b). In the current experiment salinity

treatment was considered as the fixed effect and genotypes

as the random effect. Further the means comparison was

performed using SPSS package (SPSS Inc. version 16.0)

for all sets of data and means were compared using Duncan

multiple range test (DMRT) at P = 0.05.

Results

Glasshouse Screening

There was no significant variation observed for the inter-

action for SPAD at 40 days after sowing (DAS), NDF,

ADF and Dry weight at 5% probability across the year;

SPAD at 40 and 80 DAS was not significant in treatments.

Lignin and PAD at 80 DAS were not significant for

G*Y interactions; SLA at 40 DAS was significant across

year and treatments interactions. Across genotype, year and

treatments SLA and SPAD at 20, MSI, NDF and Lignin

were not significant (Table 3).

The lowest seedling height reduction of stress plants

over control was recorded for Kansas Collier (KC) with

29.6, 22.3 and 16.6% at 20, 40 and 80 days after stress,

respectively, followed by Rox Orange (RO) with 32.6 and

25.3% of height reduction at 20 and 40 days after stress

and at 80 days after stress N 597 (17.5%) (Table 4). The

highest SPAD was recorded by the parent Early Hegari-

Sart (46.7%), KC (44.8%) and in mutants N 593 (bmr-12)

(45.21) and N 592 (bmr-6) (44.68) with RO background, at

80 days of salinity stress, but not higher than tolerant check

S-35 (47.15) (Table 5). The SPAD value under saline

conditions was lower than the control conditions; the

average of 36.83 and 38.53 was recorded across two sea-

sons under stress conditions. The SLA recorded at different

intervals has shown reduction under stress conditions with

crop growth. The average SLA recorded under saline

conditions was 5.3 and 5.7 cm2 g-1, in 2014 and 2015,

respectively, whereas under control conditions were 12.2

and 12.6 cm2 g-1. The lines N 597 (13.0 cm2 g-1), N 596

(6.8 cm2 g-1) and N 593 (7.3 cm2 g-1) have recorded

highest SLA at 20, 40 and 80 days, respectively, although

genotype with highest SLA was N 593 (7.4 cm2 g-1) and

least was by N 595 (3.1 cm2 g-1) at 80 days after stress.

Both of these two lines have the mutant bmr-12 allele in

RO and EHS background, respectively. The MSI at

80 days after stress imposition was in the range of

74.5–85.3%. The lines with high MSI were N 596 (85.3%)

and N 597 (84.7%) with EHS as genetic background with

Theoretical ethanol yield Lha� 1ð Þ ¼
celllulose þ henicellulose %ð Þ � dry biomass t ha�1

� �
� 1:11� 0:85� 0:51� 0:85� 1000

0:79� 100
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bmr-6 and bmr-12 alleles, respectively, and N 592 (84.4%)

with bmr 6 allele in RO background. The genotype N 596

(91.0%) recorded highest MSI under controlled conditions,

followed by N 592 (90.1%) and wild parent KC (90.4%)

(Table 4).

The highest salinity tolerance was recorded in N 596

(bmr-6) and N 597 (bmr-12) with EHS as background

followed by N 592 (bmr-6) with RO. Furthermore, the

mutants N 593 (bmr-12) (45.2) and N 592 (bmr-6) (44.6)

with RO background have recorded highest chlorophyll.

Thus, the allele bmr-12 has shown better physiological

tolerance for salinity in RO background for both SLA and

chlorophyll content at 80 days after stress. Similarly, in

case of seedling height reduction, the Atlas has recorded

higher reduction in seedling height (74.3%) compared to

EHS (62.8%). The bmr-12 allele (N 597 and N 600) per-

formed better than its wild types EHS and Atlas for relative

dry biomass index and relative fresh biomass index at

different intervals, whereas in case of seedling height

reduction the bmr-6 mutant N 598 performed better than its

wild type Atlas at 20, 40 and 80 days of stress (Fig. 1). The

maximum RDBI was recorded by the mutants lines N 593

(49.0%) at 20, N 597 (63.9%) at 40 and N 600 (74.3%) at

80 days of stress. The lines with bmr-12 gene, N 600, N

597 and N 595 performed better over their wild parents for

the relative dry biomass index. The parental line KC

recorded high RFBI of 82.5% at 80 days of stress over

mutants and checks and its bmr-12 mutant N 595 (69.97%)

and RO (80.4%) ranked second at 40 and 80 days after

stress, respectively (Table 5). A definite effect of back-

ground was observed for both EHS and Atlas on their

mutants N 596, N 597 and N 598, N 600, respectively. This

performance of bmr-6 and bmr-12 has shown that the

mutants with bmr-12 have better agronomic superiority in

terms of relative biomass accumulation and in seedling

height reduction across the background of Atlas and EHS

(Fig. 2a, d). The average relative biomass accumulation

was high in the mutants with EHS in their background

(50.7 and 49.9% for fresh and dry biomass, respectively)

compared to Atlas in the background (55.5 and 54.6%,

respectively) (Fig. 2b–e).

Field Screening

There was non-significant variation for days to 50%

flowering and plant height in field conditions, flowering

duration ranged between 81 (N 598) to 84 days (N 593)

and 1.3 m (N 594) to 1.9 m (N 592). The genotypic dif-

ferences for fresh stalk, dry stalk and grain yield were

significant (ANOVA not shown). The line N 600 was

superior for the above agronomic traits (17.3, 7.4 and

2.0 t ha-1, respectively), and N 594 was poor (8.52, 3.25

and 1.07 t ha-1, respectively) (Table 2).

Biomass Compositional Traits and Theoretical
Ethanol Yield (TEY)

The mutants with highest NDF in stressed conditions were

N 595 (64.5%, bmr-12 allele and KC-genetic background)

followed by N 598 (57.9%, bmr-6 allele in Atlas back-

ground) and N 593 (57.0%, bmr-12 allele in RO back-

ground). The percent reduction of NDF under stress over

control in 2014 and 2015 was 13.9 and 12.9%. The ADF

ranged from 32.3–44.6 and 36.4–42.7% in 2014 and 2015,

respectively. The parental line Atlas (41.9%) has recorded

highest ADF, followed by N 600 (41.7%) and N 598

(41.4%), with bmr-12 and 6 alleles with Atlas background,

respectively. The percent reduction of ADF in 2014 and

2015 was 14.3 and 12.4%, respectively. The ADL ranged

between 5.7 and 9.9% in 2014 and 6.0–10.1% in 2015;

Fig. 1 Comparison across the bmr mutant genes containing lines for relative fresh biomass index, relative dry biomass index and seedling height

reduction
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ADL % was high in mutant N 592 (10.0%, bmr-6 allele in

RO background) followed by N 593 (8.6%, bmr-12 allele

in RO background). The lower ADL was recorded in

parents, KC and Atlas (6.3 and 6.5%, respectively)

(Table 4).

The range of TEY (L ha-1) for bmr mutants and their

wild parents was from 1228.6 to 2219.8 and 2738.7 to

4287.1 L ha-1 under stress and controlled condition,

respectively (Fig. 3a). Under stressed conditions, TEY

recorded higher in bmr mutants than their parents for N

597, N 600, N 595 and N 598 with 2219.8, 2159.7, 2019.0

and 1945.3 L ha-1, respectively, whereas at controlled

conditions, the Atlas (4287.1 L ha-1) and EHS

(3890.5 L ha-1) yield higher TEY than other wild types

and mutant lines, followed by the bmr-6 and bmr-12

mutants of Atlas, N 598 (3660.9 L ha-1) and N 600 (3610.7

L ha-1), respectively. The TEY in terms of liters per ton of

dry weight (L t-1) for bmr mutants and their wild parents

ranged from 241.3 to 298.0 L t-1 and 264.3 to 337.9 L t-1

under stress and control conditions, respectively (Table 4).

The high TEY (L t-1) observed for the mutant line N 595

over other wild types and mutant lines at both stress and

controlled conditions with 298.0 and 337.9 L t-1, respec-

tively, and N 597 ranks second in controlled condition with

TEY of 304.2 L t-1. The maximum TEY per ton under

stress was recorded for tolerant check S-35 with 301.0 L

t-1 (Fig. 3b).

Discussion

The field salinity level will not be uniform throughout the

experiment plot; hence to study the treatment effect the

glasshouse screening was performed in parallel (Vadez and

Tom 2007). The effect of salinity is not significant from the

ANOVA across years, but significant variations were

observed for genotypic differences and at different crop

growth periods (Hassanein et al. 2010; Munns and James

2003; Ramesh et al. 2005). The leaf area has reduced under

stress conditions by 64% (Netondo et al. 2004; Rishi and

Sneha, 2013). This reduction could be due to the damage

caused by salinity at initial stages affecting the cell growth,

division and cell wall expansion (Giaveno et al. 2007;

Munns and James 2003; Vile et al. 2005). The mutant N

593 has recorded highest SLA with bmr-12 allele and RO

background under stress condition. Thus, the effect of

mutant allele bmr-12 in different background is noteworthy

(Dien et al. 2009), as in the mutant N 595 has bmr-12 allele

but with EHS as parent. Similar effect of salinity on

chlorophyll content (SPAD value) was observed earlier

(Meloni et al. 2003).

The osmotic stress caused by the salinity in seedling

stage could lead to membrane damage similar to drought

stress; thus, MSI was used as a criteria to evaluate the

recovery of the plants from stress at later stages of plant

growth (Saravanavel et al. 2011; Munns and Tester 2008).

Table 4 Mean of genotypes under stress conditions and different intervals of stress for agronomic traits

SI No. Genotype Seedling height reduction (%) Relative dry biomass index Relative fresh biomass index

1 Atlas (NSL 3986) 143.53g 124.92e 99.50g 38.08cd 45.18ab 51.20b 42.68ef 44.22b 48.42b

2 Early Hegari-Sart 163.37h 112.91e 58.01e 19.33a 46.35ab 49.94b 34.36bc 51.76def 54.28cde

3 ICSR 170 78.93c 72.7c 63.51e 35.13cd 44.03a 44.35a 35.81cd 36.44a 42.47a

4 Kansas collier 29.66a 22.32a 16.66a 39.55d 61.54ef 68.49ef 46.14f 71.32h 82.50h

5 N 592 89.81d 74.8c 72.43f 35.80cd 55.89cd 61.00d 41.51e 46.8b 58.52def

6 N 593 86.86d 51.43b 41.44c 49.03e 52.70c 55.68c 40.02de 49.61cde 51.13bc

7 N 594 101.29e 74.11c 49.27d 35.66cd 45.56ab 49.02b 33.58bc 52.73ef 59.85def

8 N 595 140.53g 97.92d 57.28e 38.53cd 52.92c 72.66fg 50.91g 69.96h 78.02h

9 N 596 160.82h 51.91b 43.05cd 34.00c 45.38ab 60.00cd 30.18ab 48.79cd 63.48fg

10 N 597 66.29b 37.68ab 17.56a 27.31b 63.90f 73.62g 27.44a 61.04g 68.48g

11 N 598 105.2e 52.79b 31.0b 37.99cd 58.88de 66.58e 36.76cd 50.50de 53.36bc

12 N 600 112.88f 96.49d 47.44cd 36.31cd 59.15de 74.31g 55.65h 58.54g 79.02h

13 Rox Orange 32.58a 25.34a 18.62a 46.07e 48.62b 67.41e 52.59gh 54.56f 80.42h

14 S-35 33.29a 27.47a 15.06a 56.93f 77.06g 84.49h 56.38h 75.38i 78.25h

Mean 96.08 66.66 45.07 37.84 54.07 62.77 41.72 55.12 64.16

Maximum 163.37 124.92 99.5 56.98 77.06 84.5 56.39 75.38 82.51

Minimum 29.66 22.32 15.06 19.34 44.04 44.35 27.45 36.44 42.48

LSD @ 5% 7.7 13.23 6.97 4.59 3.96 4.33 4.29 3 5.18

SEM± 2.73 4.68 3.49 1.63 1.4 1.53 1.52 1.06 1.83

SEM standard error of the mean; LSD least significant difference, means followed by the same letter in a column do not different significantly

according to Duncan’s multiple range test
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The MSI under stress conditions recorded were lower than

under controlled conditions at 80 days after stress, indi-

cating that the plants have recovered from the saline stress

(Macharia et al. 1994) or might have acclimatized to saline

conditions. A significant variation was observed among

genotypes under stress and control, but the difference of

percent membrane stability between salinity stress and

control conditions is trifling (Ali et al. 2009). The RFBI

and RDBI of bmr mutants and wild types have decreased

significantly under the stress conditions with concomitant

seedling height reduction, because of a salt accumulation in

stem cells decreased the biomass production (Kandil et al.

2012; Incesu et al. 2014). The chlorophyll content and dry

biomass accumulation have shown significant positive

correlation at 20 and 40 days under stress conditions

(R2 = 0.595 and 0.527, respectively). Thus, chlorophyll

content and the biomass accumulation are positively cor-

related and both reduced with increase in stress at vege-

tative stage (data not shown). The mean performances of

bmr-12 mutant alleles viz., N 600, N 597 and N 595 across

two seasons were greater than their wild parents (Atlas,

EHS and KC, respectively). The check S-35 has recorded

the maximum dry and fresh biomass index (relative basis)

(Krishnamurthy et al. 2007). The wild parent KC has

recorded the maximum relative fresh biomass index than

their mutant lines and tolerant check at 80 days of stress.

The significant reduction in theoretical ethanol yield in

stressed condition is attributed to lower ADF, NDF and

RDBI values (de Lacerda et al. 2005; Vasilakoglou et al.

2011). The NDF and ADF levels were slightly high in wild

types than mutants, and also in bmr-12 mutants than bmr-6

mutants (Scully et al. 2015); these may be due to the

abundance cell wall polysaccharides. The percent ADL

reduction in mutant lines of EHS (N 596 and N 597) and

Atlas (N 598 and N 600) was 25 and 29%, respectively,

compared to the parents (Scully et al. 2015; Sattler et al.

2014; Cherney et al. 1988; Porter et al. 1978), suggesting

that significant reduction of lignin upon the mutation of

alleles, with 22–24% reduction across bmr-6 and bmr-12

mutants (Dien et al. 2009). The TEY (L ha-1) decreased

with the effect of salt stress, since the plants exposed to

salinity would decrease the carbohydrate accumulation in

Table 5 Performance of genotypes for physiological and biomass quality parameters under stress and control conditions across two seasons

Season Salinity 2014 2015

Parameters Mean Maximum Minimum LSD @ 5% Mean Maximum Minimum LSD @ 5%

SLA_20 DAS Stress 6.67 12.07 3.53 2.23 7.62 14.40 2.76 2.35

Control 15.40 33.40 11.22 15.77 27.55 11.49

SLA_40 DAS Stress 4.37 6.59 2.54 0.68 4.37 7.09 2.90 0.63

Control 10.68 12.43 9.05 11.33 16.83 9.23

SLA_80 DAS Stress 4.89 7.65 3.15 0.67 5.15 7.53 3.17 0.54

Control 10.47 12.39 8.98 10.82 15.51 8.03

SPAD_20 DAS Stress 27.86 38.25 22.84 2.58 29.48 34.44 24.01 3.70

Control 32.36 39.13 27.82 33.63 38.27 26.22

SPAD_40 DAS Stress 39.53 45.47 33.91 2.98 41.73 45.32 39.14 2.59

Control 40.66 46.92 32.54 42.89 50.37 37.43

SPAD_80 DAS Stress 43.09 48.51 38.07 3.37 44.39 48.48 41.41 3.17

Control 44.41 49.62 33.81 46.10 53.17 39.79

MSI_80 DAS Stress 79.81 85.63 74.11 2.38 80.92 85.25 75.02 1.97

Control 86.93 91.03 78.19 88.09 91.16 82.15

NDF % Stress 57.17 69.34 52.25 3.43 57.57 63.78 52.43 2.55

Control 66.43 73.48 60.64 66.12 75.54 59.97

ADF % Stress 39.12 44.64 32.33 1.86 39.20 42.73 36.42 2.15

Control 45.66 49.53 42.67 44.77 49.64 40.29

Lignin % Stress 7.87 9.89 5.75 0.98 7.56 10.15 6.01 1.03

Control 10.22 13.24 8.28 9.84 11.91 7.91

TEY (L ha-1) Stress 1863.67 2949.04 1216.45 227.60 1787.17 2535.50 1240.86 174.95

Control 3573.96 4977.09 2763.40 3404.03 4253.03 2714.13

TEY (L t-1) Stress 268.84 327.23 236.43 17.31 255.61 297.08 239.26 13.32

Control 301.94 331.92 273.50 289.53 343.88 255.18

SLA specific leaf area; SPAD soil–plant analysis development; MSI membrane stability index; NDF neutral detergent fiber; ADF acid detergent

fiber; TEY theoretical ethanol yield; LSD least significant difference; DAS days after stress
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stem cells (Almodares et al. 2008; Vasilakoglou et al.

2011). Salinity negatively affected biomass quality and

quantity that resulted in significant TEY reductions. Such

fluctuations in biomass quality and yield may have sig-

nificant consequences for developing lignocellulosic

biorefineries. The bmr mutants (N 595, N 597, N 598 and N

600) have significantly higher TEY compared to wild

parents (KC, EHS and Atlas), due to the decrease in dry

biomass yield of wild parents under saline conditions

(Vasilakoglou et al. 2011), whereas in control conditions,

mutants TEY was lesser than their parents, contrasting to

that of saline conditions. Similar trend have been predicted

in TEY (L t-1), that the mutants with bmr-12 in the wild

type KC background under stressed and control conditions

have recorded higher yield. When reduction in quality and

quantity were combined, TEYs decreased by 26–59%. In a

related study, we determined that lignin structure and

crystallinity of cellulose have a pronounced effect on actual

and theoretical ethanol yields from biomass mutants

(Guragain et al. 2014)

Conclusion

This study revealed that the salinity stress has caused

considerable amount of decrease in the plant height and

biomass accumulation in the mutants and wild parents.

Among bmr-6 and bmr-12 mutant alleles studied, bmr-12
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(N 600, N 597 and N 595) have better agronomic superi-

ority in terms of biomass accumulation and TEY (L ha-1)

at both field and glasshouse conditions. The wild parent

EHS has shown better agronomic superiority in its mutants

(N 596 and N 597) and in particularly for bmr-12 (N 597).

The lignin percent reduction under stress condition was up

to 25% in EHS background. The bmr lines were found to

be moderately tolerant under stress conditions, the mutant

lines (N 597) outperformed the wild types under salinity,

and it can be concluded that these lines can be used for

bioethanol production on marginal lands and/or for feeding

the livestock.
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