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Abstract
Advances in availability of genomic resources coupled with genetic
resources have accelerated the process of developing better understanding
of cytogenetics and genetics of peanut using modern technologies. The
cytogenetic studies provided greater insights on chromosomal structures
and behaviour of different Arachis species along with their genetic
relationship with each other. Researchers are moving faster now in using
single nucleotide polymorphism (SNP) markers in their genetic studies as
simple sequence repeats (SSRs) did not provide optimum genome density
for genetic mapping studies in peanut. Due to availability of reference
genome of diploid progenitors, resequencing of some genotypes and soon
to be available tetraploid genome, a high-density genotyping array with
58 K SNPs is now available for conducting high-resolution mapping in
peanut. ICRISAT has developed next generation genetic mapping
populations such as multi-parent advanced generation intercross (MAGIC)
and nested association mapping (NAM) populations for conducting
high-resolution trait mapping for multiple traits in one go. Affordability of
sequencing also encouraged initiation of sequence-based trait mapping
such as QTL-seq for dissecting foliar disease resistance trait. Few
successful examples are available in peanut regarding development of
diagnostic markers and their deployment in breeding to develop improved
genotypes, which may see a significant increase in coming years for
developing appropriate genomics tools for breeding in peanut.
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7.1 Introduction

Cultivated peanut (Arachis hypogaea L.), also
called as groundnut, is the second largest oilseed
legume crop after soybean in the world. It covers
the tropical and subtropical regions but primarily
grown in the semi-arid tropics (SAT) regions of the
world. This crop is cultivated in >100 countries of
Africa, Asia and Americas and is consumed in
almost all the countries in one or the other form.
The global annual production in 2014 was 42.31
metric tons from an area of 25.44 million hectares
(FAO 2014, accessed on 10th March 2016).

Peanut productivity is highly affected by
several biotic and abiotic stresses across the
world. The major abiotic stresses include termi-
nal drought, heat and salinity (Fig. 7.1). The
major biotic stresses include rust, early leaf spot
(ELS) and late leaf spot (LLS), tomato spotted
wilt virus (TSWV), groundnut rosette disease
(GRD), peanut clump virus disease (PCVD),
peanut stripe virus (PStV), peanut bud necrosis

disease (PBND), peanut stem necrosis disease
(PSND), bacterial wilt and root-knot nematodes
(Nigam et al. 2012). The above-mentioned
stresses cause massive yield loss in different
intensities and quantity in addition to deteriorat-
ing the quality of the produce. In addition to
above yield reducing stresses, Aspergillus flavus
infection is a very serious issue as it produces
carcinogenic mycotoxins known as aflatoxins
which have an adverse impact on human health
and the economy. Aflatoxin is known to cause
cancer in human beings, animals and poultry
birds that are fed with contaminated peanut
seeds/cakes. The major causal agent for aflatoxin
contamination, A. flavus, is predominant species
in Asia and Africa while A. parasiticus in the
USA (see Pandey et al. 2012a; Janila and Nigam
2013). Further, recent increased awareness
among consumers has also raised demand for
good oil quality and nutritious peanut seed.

The domesticated peanut is an allotetraploid
(2n = 4x = 40) crop with two subgenomes

Fig. 7.1 Trait mapping efforts in peanut for developing trait-linked markers
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(A and B). About 3500 years ago, these two
subgenomes believed to have come together
from a single hybridization event between two
diploid wild species (2n = 2x = 20) accompa-
nied by whole genome duplication. The above
event gave rise to cultivated peanut which then
remained isolated over the centuries from its
progenitors’ genepool for further diversification.
As a consequence, the limited evolutionary his-
tory, coupled with hybridization barriers between
diploids and the tetraploid, have created road-
blocks in the mobilizing alleles from wild species
to the cultivated peanuts leading to narrow
genetic base for today’s cultivated peanut
(Simpson 1991). Amalgamation of the genomics
with the integrated classical breeding has calibre
to boost the yield of peanut by overcoming
selected genetic barriers. Since a decennary,
enormous progress has been made in the peanut
genomics leading to the development of enor-
mous genetic and genomic resources such as
genome sequences, whole genome re-sequencing
(WGRS), molecular markers, mapping popula-
tions, genetic maps, high throughput sequencing
and genotyping platforms, transcriptome
sequencing and proteome (Pandey et al. 2012a,
2016a; Varshney et al. 2013, 2015a, b). These
resources have been exploited and utilized in
genetic map construction, quantitative trait loci
(QTL) mapping for traits, association mapping
and ultimately transform it in the translational
genomics for the improvement of peanut (Pandey
et al. 2014a, 2016a; Varshney et al. 2015b).

Genetics and genomics offer excellent
opportunity to accelerate genetic gains and
achieve developing improved peanut varieties
with high yield and quality. In the case of peanut,
such technologies will contribute to improving
the biotic and abiotic resistance, oil quality, seed
quality, seed nutrition and yield. For increasing
genetic gains in breeding programs, efficient
utilization of genetic resources conserved in
available germplasm through genomics approa-
ches is essential. Development of superior vari-
eties with the improved characteristics keeping in
mind the requirements of a specific environment,
growers and consumers will eventually enhance

the chances of adoption, which unfortunately
touches quiet low now. Genomics utilizes the
analysis of full genetic constitute by tagging,
sequencing and functional examination to dis-
cover genes/QTLs that operate, check and alter
the expression. Plant breeding along with
genetics and genomics is a potent way to give
phenomenal growth to agriculture productivity
and sustainability. Advances in next-generation
sequencing (NGS) technologies has accelerated
the pace in crop genetics and breeding (Varshney
et al. 2009a). Peanut Genome Consortium
(PGC) with the collaboration of international
partners initiated the International Peanut Gen-
ome Initiative (IPGI) in 2012 and released the
first chromosomal-scale draft sequences of two
progenitors of tetraploid cultivated peanut (A.
hypogaea), representing A-genome (Arachis
duranensis, accession V14167) and B-genome
(A. ipaensis, accession K30076) (Bertioli et al.
2016). In a parallel effort by Diploid Progenitor
A-genome Sequencing Consortium (DPPAGSC)
(http://ceg.icrisat.org/dppga/Manuscript.html),
another draft sequence of A-genome progenitor
(A. duranensis, accession PI475845) has also
been developed and made available in the public
domain (Chen et al. 2016a). The IPGI-led gen-
ome assembly of A-genome progenitor is better
than the DPPAGSC-led genome assembly in
terms of quality and applicability in further
peanut genomics research. Nevertheless, the
DPPAGSC-led genome assembly provided
in-depth genome analysis identifying genes for
geocarpy, oil biosynthesis and allergens. The
above-mentioned genome assemblies will further
enhance the genomics research leading to gene
discovery, high-resolution trait mapping and
molecular breeding.

This chapter provides updates on cytological
studies, molecular markers, genetic linkage maps
and trait linked QTL identification using linkage
and association mapping/linkage disequilibrium
mapping approaches. Also, we discuss the
development of complex high-resolution trait
mapping populations like MAGIC (multi-parent
advanced generation intercross) and NAM (nes-
ted association mapping). In addition, we
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discussed NGS-based SNPs identification linked
to gene/QTLs for concerned traits using modern
high-resolution trait mapping and gene discovery
approaches.

7.2 Advances in Peanut Cytological
Research

With the generation of huge data through NGS
technologies, the challenge comes in computa-
tional analysis. The advanced plant cytogenetics
has made essential contributions to genomics by
interpreting the scaffolds, marker orders, genome
arrangements like translocations and inversions.
Chromosome markers developed using fluores-
cent in situ hybridization (FISH) with rDNA
probes and fluorescent banding were used in
development of chromosome map of peanut
(Robledo and Seijo 2010). FISH is commonly
used to map unique or low copy number
sequences and to localize repetitive sequence to
produce chromosome recognition cocktails or
explore genome relations in polyploid or closely
related plant species. Chromosome identification
in peanuts started with studies carried out by
Husted (1933), who delineated the occurrence of
two pairs of chromosomes in peanut. Karyotyp-
ing analysis and relationships among varieties of
A. hypogaea L. were studied (Stalker and Dal-
macio 1986) and later, the relationship of Arachis
section was cytologically implicated (Stalker
et al. 1991). Development of fluorescent banding
patterns (like Q-, C-, G-, R-, T-banding) revo-
lutionized the karyotyping and characterization
of the genomes of different plant species. The
fluorochrome banding patterns acted like markers
to differentiate different species of Arachis sec-
tion (Raina and Mukai 1999; Seijo et al. 2004).
Modified genomic in situ hybridization (GISH)
techniques were used to study the genomic
relationships between the cultivated peanut and
its probable progenitors (Seijo et al. 2007).
Lately, sequential GISH-FISH method was uti-
lized to study the chromosome analysis of peanut
(Pei et al. 2015).

Cytogenetic studies havebeenvery important to
distinguish and define different genomes of Ara-
chis section including the first genome constitution
establishment within the Arachis genus. Based on
thorough cytological studies, the Arachis species
were categorized to have A genome and non-A (B,
D, E, F, K, P) genomes (Smartt et al. 1978; Smartt
and Stalker 1982; Stalker 1991; Robledo and Seijo
2010). Interestingly, the species within each sub-
group were more closely distributed geographi-
cally andwere named using geographical reference
(Robledo et al. 2009). The karyotype features of A.
duranensis and A. cardenasii indicated the occur-
rence of ‘A’ genome;A. ipaensis of ‘B’ genome; A.
glandulifera of ‘D’ genome; A. batizocoi, A.
cruziana, A. krapovickasii of ‘K’ genome; and A.
benensis, A. trinitensis of ‘F’ genome. The origin
and evolution of peanuts have been studied based
on the rDNA, internal transcribed spacer (ITS) re-
gion, restriction fragment length polymorphism
(RFLP) markers. A. duranensis and A. ipaensis
were proposed to be the probable progenitors of
cultivated peanut using RFLP analysis (Burow
et al. 2009). Later based on the studies of rDNA
using FISH and heterochromatin distribution
showed that the A genome of the cultivated peanut
was more related to A. duranensis and B genome
was related to A. ipaensis (Seijo et al. 2004;
Robledo and Seijo 2010).

With advances in technologies and modifica-
tion of existing technologies like spectral kary-
otyping (SKY) and DNA fibre-FISH can be used
in more accurate physical mapping. During SKY,
all the chromosomes can be simultaneously
visualized using chromosome specific probes
(Imataka and Arisaka 2012). In DNA fibre-FISH
technique, the extended DNA fibres released
from lyzed nuclei are used as specimens for
hybridization instead of nuclei or chromosomes
as for conventional FISH. Fibre FISH can dis-
tinguish two probes separated by 1 kb on a DNA
fibre (Wang et al. 2013). Although there are no
reports yet in peanut, there is high scope to use
these new techniques in characterizing the wild
relatives. These crop wild relatives (CWR) have
untapped genomic regions that confer resistance
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to biotic stresses like ELS, LLS, PBND, PStV,
PMV, TSWV, aflatoxin, corn ear worm, southern
corn root worm, thrips, leaf hoppers and Spo-
doptera (Dwivedi and Johri 2003, 2008; Upad-
hyaya et al. 2011).

QTLs for disease resistance were reported
from crosses involving wild diploid species in
peanut (Bertioli et al. 2009) and the derivatives
from the wild (Gowda et al. 2002). Besides,
introgression of disease resistance genes has also
been reported from the wild diploid species (A.
cardenasii) into an elite peanut variety (Simpson
and Starr 2003; Simpson et al. 2003). Very
recently, introgression of rust resistance region
into three elite cultivars was reported, where the
donor GPBD 4 is the second cycle derivative of
interspecific hybridization (Varshney et al.
2014). The introgression lines can be used for
breeding and mapping of genes/QTLs simulta-
neously (Alpert and Tanksley 1996; Tanksley
et al. 1996; Tanksley and McCouch 1997)
through advanced backcross-QTL (AB-QTL)
approach (Iyer-Pascuzzi et al. 2007). Synthetics
developed from wild species were used to
develop chromosome segment substitution line
(CSSL) and used to dissect plant morphology in
case of peanut (Fonceka et al. 2012). Further,
CSSL intercosses and CS-RILs can be used to
dissect the complex traits involved in resistance
to biotic and abiotic stresses.

7.3 Genetic Markers

DNA markers have played very crucial role in
forming backbone of genomics, with the uti-
lization in genetic mapping, genomic assisted
breeding (GAB), association studies, genomic
selection and fine mapping (Hyten et al. 2010).
During the 90s, apart from DNA marker, iso-
zyme a protein-based marker system was
deployed for the genetic diversity in peanut
(Lacks and Stalker 1993). Shortly, DNA-based
marker systems viz. RFLP (Kochert et al. 1996),
random amplified polymorphic DNA (RAPD)
(Subramanian et al. 2000) and amplified frag-
ment length polymorphism (AFLP) (He and
Prakash 1997; Herselman 2003) replaced

isozyme completely. Meanwhile, several other
DNA-based markers also reported like
sequence-related amplified polymorphism
(SRAP) (Wang et al. 2010), single strand con-
formational polymorphism (SSCP) (Nagy et al.
2010), and miniature inverted-repeat transpos-
able elements (MITEs) (Shirasawa et al. 2012a).
Notwithstanding, they were rarely utilized for
peanut genotyping. With the most promising and
reliable technology, attention of peanut
researchers shifted towards development of
simple sequence repeats (SSRs) and single
nucleotide polymorphisms (SNPs) which rely on
sequence information.

SSR markers are regarded as the marker of
choice, because of several worthy properties viz.
co-dominance, reproducibility, high variability,
broad genome coverage and easy to use (Gupta
and Varshney 2000). Development of SSR
markers in Arachis came into existence in the
year 1999, although in very less number, i.e.
26 SSRs yet an important initiative in peanut
genomics studies (Hopkins et al. 1999). Never-
theless, >15,000 genomic as well as genic SSRs
have been developed in peanut in last 15 years
(Guo et al. 2013; Shirasawa et al. 2012a; Pandey
et al. 2016a). Several of these markers are still
not available to the global peanut research com-
munity. Few studies were also carried out to
check usefulness of these markers by checking
polymorphism in different germplasm sets
including parents of mapping population, con-
struction of genetic maps, marker-trait associa-
tion analysis and also molecular breeding
(Pandey et al. 2012b; Varshney et al. 2013).

A total of 199 highly informative SSRs
with >0.50 PIC were reported after screening
4485 SSR markers (Pandey et al. 2012b). This
study also reported >900 novel SSR markers,
which were made accessible to the global peanut
research community. Similarly, Zhao et al. (2012)
and Macedo et al. (2012) reported 1343 and 78
polymorphic SSRs after screening 9274 and 146
SSRs, respectively. Recently, by using EST data-
base available in public domain, Peng et al. (2016)
reported development of 6455 SSR markers, of
which only 339 SSRs amplified and only 22 were
found polymorphic. Thanks to the genome
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sequencing effort which has now ended the scar-
city of genetic markers in peanut and now lakhs of
SSRs are available due availability of draft gen-
ome sequences of the ancestor genomes (Bertioli
et al. 2016; Chen et al. 2016a). Two research
groups exploited the reference genome of diploid
progenitors andmade available primers for >150K
SSRs (Luo et al. 2017; Zhao et al. 2017).

SNPs acts as a direct marker because a
nucleotide base is the smallest unit of inheri-
tance, the sequence information provides the
accurate nature of the allelic variation. This
sequence variation affects the development of the
organism and their response to the environment.
Ample amount of SNPs are dispersed in the
genome, one SNPs at each 100–300 bp (Gupta
et al. 2001). SNP markers are invaluable as a tool
for genome wide association analysis and geno-
mic selection offering the potential for generating
ultra-high-density genetic maps. SNP develop-
ment is difficult in peanut due to allotetraploidy
that provides the abundance of polymorphism
amongst homoeologous genomes, i.e. A and B
genome (Dwivedi et al. 2007). Accordingly,
development of SNP is very low in peanut.
A 1536 SNPs Illumina GoldenGate array were
designed by comparing sequences of 17 tetra-
ploid genotypes with Tifrunner’s transcriptome
in the University of Georgia (Nagy et al. 2012).

In order to deploy SNPs in breeding program,
kompetitive allele-specific polymerase chain
reaction (KASP) assay markers appear as a good
choice and cost effective. In this context, KASP
assay for 90 SNPs were developed and deployed
for genetic diversity in a very diverse germplasm
panel, i.e. ‘Reference Set’ (Khera et al. 2013).
Likewise, at the University of California-Davis,
768-SNP Illumina GoldenGate array was devel-
oped (see Varshney et al. 2013). Also, robustness
of KASP assays was validated for SNPs in peanut
(Chopra et al. 2015). A high-resolution melting,
also used for an alternative SNP assay to validate
SNPs in peanut (Hong et al. 2015). Nonetheless,
Genotyping-by-sequencing (GBS) is another
approach based on NGS technology which led
one step forward to mine SNP markers for use in
genetic analyses and genotyping (Beissinger et al.
2013). It is a low cost technology where there is

less sample handling, PCR and purification steps
and multiplexed based on precise barcoding
(Davey et al. 2011). In peanut, GBS has been well
demonstrated where the SNP markers developed
were used to construct linkage map and QTL
analysis in cultivated peanut (Zhou et al. 2014;
Zhao et al. 2016). Completion of genome
sequencing in 2016 for both the diploid progeni-
tors will now facilitate SNP discovery in large
scale. Recently, ICRISAT together with Univer-
sity of Georgia has developed SNP array with
58,000 informative SNPs (Pandey et al. 2017a).
Development of such array will now facilitate
generation of high-density genotyping data and
high-resolution genetic mapping for trait discov-
ery and diagnostic marker development for trait of
interest. Such high throughput genotyping system
will also facilitate deployment of modern breed-
ing approaches in peanut wherein genome-wide
SNP-based genotyping is essential for achieving
higher genetic gains with more precision.

7.4 Genetic Linkage Maps
for Diploid and Tetraploid
Peanuts

Identification of molecular markers leads to
construction of genetic maps and detection of
genes/QTLs. Since last decennary, numbers of
mapping populations and linkage maps have
been developed for diploids (A and B
sub-genome) and tetraploid (AABB-genome)
peanut (Pandey et al. 2012a). Notwithstanding,
these genetic maps were not up to mark as they
had less number of markers and low density.
Now, NGS-based techniques are available to
identifying SNPs to enrich these maps with more
number of markers and density (Table 7.1).

7.4.1 Diploid Genetic Maps

Genetic map construction was first initiated for the
diploid (AA) genome leading to development of
five separate maps using F2 population by
deploying a range of markers such as RFLP,
AFLP andRAPD, and later SNPmarkers in peanut
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(Halward et al. 1993; Milla 2003; Moretzsohn
et al. 2005; Nagy et al. 2012). These maps had 10–
12 linkage groups (LGs) with map distance rang-
ing from 1063 to 1231 cM, and 3.88 to 10.47 cM
inter-marker distance. Subsequently, by using
BC1F1 population for the diploid (AA genome), a
genetic map was developed with 206 RFLP and
RAPDmarker loci spanning 800 cM distance and
3.88 cM inter-marker distance (Garcia et al.
2005). Later, two more genetic maps were con-
structed using the F5 generation with the AFLP,
RFLP, SSR, SCAR, SNP and SSCP markers and
achieved 544–705.10 cM map distance and 1.24
to 1.84 cM inter-marker distance (Shirasawa et al.
2013; Bertioli et al. 2014). These genetic maps
played an important role in several genetic studies
including development of peanut A-genome
assembly.

For the diploid (BB genome), initially F2
population was used to construct SSR-based
genetic map with 10–16 LGs which covered the
map distance ranging from 1278.6 to 1294 cM
and inter-marker distances 2.84 to 8.68 cM,
respectively (Moretzsohn et al. 2009; Guo et al.
2012). Later in F6 generation map was con-
structed with the 461 SSR and transposon
markers and inter-marker distance was reduced
up to 0.68 cM (Shirasawa et al. 2013).

7.4.2 Tetraploid Genetic Maps

Most of the linkage map construction work was
done for the tetraploid genome by considering
various mapping populations such as F2, BC1F1
and recombinant inbred lines (RILs). In the F2
population, severalmarker systemswere deployed
to construct maps viz. AFLP, SRAP, SSR, DArT,
DArTseq and transposon, and achieved map dis-
tance up to 3526 cM with the inter-marker dis-
tance of 1.7–11.6 cM (Herselman et al. 2004;
Wang et al. 2012, 2013; Shirasawa et al. 2012b;
Chen et al. 2016b, Vishwakarma et al. 2016).
Using BC1F1 population, two genetic maps were
constructed with 298 RFLP and 370 SSR marker
loci spread over 1844 and 2210 cM, respectively
(Burow et al. 2001; Foncéka et al. 2009). Con-
sidering the importance of immortal population for

high-resolution mapping, several maps were pre-
pared in the RIL populations. With the SSR,
CAPS, SNP and transposon markers, 29 to 1685
loci were mapped on 8–26 LGs, map density and
inter-marker distance of these map were 402–
2208 cM and 0.8–18.5 cM, respectively (Jiang
et al. 2007; Hong et al. 2008, 2009; Varshney et al.
2009b; Peng et al., 2010; Ravi et al. 2011; Sarva-
mangala et al. 2011; Hong et al. 2010; Khedikar
et al. 2010; Sujay et al. 2012;Gautami et al. 2012b;
Qin et al. 2012; Mondal et al. 2012; Zhou et al.
2014; Zhao et al. 2016). Recently, using
NGS-based ddRADseq technique, Zhou et al.
(2014) provided a well-saturated map for the tet-
raploid peanut and mapped 1685 marker loci,
including 1621 SNPs and 64 SSR markers span-
ning a distance of 1447 cM with the average dis-
tance of 0.9 cM. Use of DArT and DArTseq based
genotyping resulted in development of three
genetic maps using F2 populations with 854 loci
(ICGV 07368 � ICGV 06420; Shasidhar et al.
2017), 1152 loci (ICGV 00350 � ICGV 97045;
Vishwakarma et al. 2016) and 1435 loci (ICGV
06420 � SunOleic 95R; Shasidhar et al. 2017).

The first SSR-based genetic map was devel-
oped using a RIL population (TAG 24 � ICGV
86031) with 135 loci covering 1270.5 cM map
distance (Varshney et al. 2009b). This genetic
map was then further saturated to 191 SSR map-
ped loci covering 1785.4 cM genome distance
(Ravi et al. 2011). Subsequently, other two
SSR-based genetic maps were prepared with 56
(462.24 cM; TAG 24 � GPBD 4; Khedikar et al.
2010), and 45 marker loci (657.9 cM; TG 26 �
GPBD 4; Sarvamangala et al. 2011). Later, these
maps were saturated to 188 (1922.4 cM) and 181
(1963 cM) marker loci, respectively (Sujay et al.
2012). Two more RIL populations derived from
the cross ICGS 44 � ICGS 76 and ICGS 76 �
CSMG 84–1 were used for genetic map con-
struction with 82 (831.4 cM) and 119
(2208.2 cM) marker loci, respectively (Gautami
et al. 2012a). In addition to individual genetic
maps, different maps were combined to construct
integrated or consensus genetic maps. Genetic
mapping information from two RIL mapping
populations (TAG 24 � GPBD 4 and TG 26 �
GPBD 4) segregating for foliar disease resistance
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were used for constructing the first consensus map
with 225 SSR loci covering total map distance of
1152.9 cM (Sujay et al. 2012). The second con-
sensus map was developed using three RIL pop-
ulations (TAG 24 � ICGV 86031, ICGS
44 � ICGS 76 and ICGS 76 � CSMG 84-1)
segregating for drought tolerance related traits,
and mapped 293 marker loci LGs (2840.8 cM)
(Gautami et al. 2012a). In an international effort,
reference consensus genetic map was prepared by
using 10 RILs and one backcross (BC) popula-
tions with 897 marker loci on 20 LGs spanning a
map distance of 3863.6 cM with an average map
density of 4.4 cM (Gautami et al. 2012b). This
consensus map was further improved by adding
five more populations and achieved a dense con-
sensus genetic map with 3693 marker loci cov-
ering 2651 cM distance (Shirasawa et al. 2013).

7.5 Trait Mapping Through Linkage
Mapping

Initial trait mapping work started with the RAPD
markers to identifying linked markers with the
root-knot nematode resistance (Garcia et al.
1996; Burow et al. 1996). The RAPD markers
were not preferred due to several technical
problems. Nevertheless, few of these were later
converted to sequence characterized amplified
region (SCAR) markers for deploying in genetic
and breeding studies (Chu et al. 2007). Other
studies included AFLP, SSR and SNP markers
for establishing an association with resistance to
groundnut rosette disease and Sclerotinia blight,
and oil quality traits namely oleic acid and
linoleic acid (Herselman et al. 2004; Chenault
and Maas 2006 and Lopez et al. 2000). More
efforts were initiated to dissect important agro-
nomic traits with latest NGS-based technology
like GBS and array-based genotyping in peanut.
Nonetheless, to achieve the sustainable yield of
crop breeding for several biotic and abiotic
stresses is mandatory. Handful genomics tools
and techniques provided breeders a new way to
dissect useful QTLs/genes leading to their
deployment in breeding (Janila et al. 2016b;
Pandey et al. 2016a). In total, 46 major QTLs

were identified for several biotic stresses with the
phenotypic variation explained (PVE) 10.05–
82.96%, 59 for the abiotic stresses and their
related traits with the PVE range of 10.0–
22.24%, 50 major QTLs for agronomic and yield
component traits with the PVE range of 10.1–
33.36% and 50 major QTLs for other morpho-
logical traits with 10.0–28.2% PVE and 60 major
QTLs for seed and oil quality traits with the PVE
range of 10.2–45.63% (Table 7.2).

In case of peanut, several biotic stresses affect
yield and quality adversely including rust, ELS
and LLS, nematode, GRD, TSWV, bacterial wilt,
Sclerotinia minor, Aspergillus and aflatoxin
contamination. For rust resistance, 18 major
QTLs were reported with 10.68–82.96% PVE
(Khedikar et al. 2010; Sujay et al. 2012; Mondal
et al. 2014a; Leal-Bertioli et al. 2015). Similarly,
15 major QTLs for LLS resistance with the PVE
range of 10.27–67.98%, 4 major QTLs for GRV
resistance with the PVE range of 10.05–76.1%, 5
major QTLs for TSWV with the PVE range of
10.64–35.8%, 2 major QTLs for bacterial wilt
resistance with the PVE range of 12–22% and 13
major QTLs for nematode resistance with the
PVE range of 11.9–22.1% (Herselman et al.
2004; Liang et al. 2009; Sujay et al. 2012; Qin
et al. 2012; Wang et al. 2013; Burow et al. 2014;
Zhao et al. 2016; Leal-Bertioli et al. 2016). For
aflatoxin contamination (AC), so far only three
major QTLs were identified with 10.5–22.7%
PVE (Liang et al. 2009). In addition to this,
Mondal et al. (2014b) identified QTLs for the
Bruchid resistance component traits.

Among the abiotic stresses, heat and terminal
drought are the two major stress factors causing
severe yield loss and quality deterioration of the
produce in peanut in addition to other factors such
as sodic and acidic nature of soil, micronutrients
deficiency (Zinc, Iron) and aluminium toxicity
(Janila and Nigam 2013). In peanut, ICRISAT
with the research partners has done pioneer work
to identify linked markers for drought tolerance
related traits. In this context, major QTLs were
identified successfully for transpiration (5 QTLs),
transpiration efficiency (4 QTLs), carbon dis-
crimination ratio (1 QTL), specific leaf area (6
QTLs), leaf area (1 QTL), SPAD chlorophyll
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Table 7.2 List of major QTLs identified for important traits in peanut

S. N. Traits studied Major QTLs
identified

Phenotypic variation
explained (%)

References

Biotic stress resistance

1 Late leaf spot (LLS) 20 10.3–68.0 Sujay et al. (2012), Wang et al.
(2013), Pandey et al. (2016b,
2017b)

2 Leaf rust 18 10.7–83.0 Khedikar et al. (2010), Sujay
et al. (2012), Mondal et al.
(2014a), Leal-Bertioli et al.
(2015), Pandey et al. (2016b)

3 Resistance to
Aspergillus flavus
invasion

3 10.5–22.7 Liang et al. (2009)

4 Aphid vector of
groundnut rosette
disease

4 10.1–76.1 Herselman et al. (2004)

5 Resistance to tomato
spotted wilt virus
(TSWV)

6 10.6–35.8 Qin et al. (2012), Wang et al.
(2013), Pandey et al. (2017b)

6 Root-knot nematode 13 11.9–22.1 Burow et al. (2014),
Leal-Bertioli et al. (2016)

7 Bacterial wilt (BW) 4 12.0–22.0 Peng et al. (2010), Zhao et al.
(2016)

8 Bruchid resistance
component traits

10 Mondal et al. (2014b)

Abiotic stress tolerance

9 Transpiration (T) 5 10.3–18.2 Varshney et al. (2009b), Ravi
et al. (2011), Gautami et al.
(2012a)

10 Transpiration efficiency
(TE)

4 12.3 Ravi et al. (2011), Gautami
et al. (2012a)

11 Specific leaf area (SLA) 9 11.0–20.3 Varshney et al. (2009b), Ravi
et al. (2011)

12 Leaf area (LA) 1 11.5 Ravi et al. (2011)

13 SPAD chlorophyll
metre reading (SCMR)

17 10.6–31.2 Varshney et al. (2009b), Ravi
et al. (2011)

14 Biomass 3 15.6–20.3 Ravi et al. (2011)

15 Canopy conductance
(ISC)

3 11.9–22.2 Ravi et al. (2011)

16 Total dry matter (TDM) 1 22.4 Gautami et al. (2012a)

17 Harvest index 1 18.1 Fonceka et al. (2012)

18 Hundred pod weight 2 15.0–17.0 Fonceka et al. (2012)

19 Hundred seed weight 2 12.4–14.9 Fonceka et al. (2012)

20 Haulm weight 2 13.5–17.5 Fonceka et al. (2012)

21 Pod number 2 9.6–12.6 Fonceka et al. (2012)

22 Total biomass 2 11.0–16.6 Fonceka et al. (2012)

(continued)
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Table 7.2 (continued)

S. N. Traits studied Major QTLs
identified

Phenotypic variation
explained (%)

References

23 Stress tolerance indices
(STI)—Hundred pod
weight

2 13.9–16.8 Fonceka et al. (2012)

24 STI—Hundred seed
weight

2 15.5–16.2 Fonceka et al. (2012)

25 STI—Haulm weight 2 16.4–17.1 Fonceka et al. (2012)

26 STI—Pod number 2 10.4–19.4 Fonceka et al. (2012)

27 STI—Pod weight 1 12.3 Fonceka et al. (2012)

28 STI—Seed number 6 11.0–26.0 Fonceka et al. (2012)

29 STI—Seed weight 5 11.5–15.2 Fonceka et al. (2012)

30 STI—Total biomass 2 10.8–20.1 Fonceka et al. (2012)

Agronomic and yield component traits

31 Shoot dry weight
(ShDW)

2 14.4–22.1 Gautami et al. (2012a)

32 Haulm weight 2 10.4–36.1 Ravi et al. 2011, Fonceka et al.
(2012)

33 Harvest index 2 11.0–40.1 Gautami et al. (2012a), Fonceka
et al. (2012)

34 Pod mass/plant 3 13.1–18.3 Liang et al. (2009)

35 Mature pods/plant 2 11.9–12.3 Liang et al. (2009)

36 Pod number 1 14.2 Fonceka et al. (2012)

37 Number of branches 3 10.2–17.3 Liang et al. (2009)

38 Number of fruit
branches

1 17.5 Liang et al. (2009)

39 Height of main axis 3 10.3–12.8 Liang et al. (2009)

40 Stem diameter 2 10.4–24.1 Liang et al. (2009)

41 Leaf length, width and
length/width ratio

7 12.4–18.9 Liang et al. (2009)

42 Length of main stem 2 15.7–19.2 Shirasawa et al. (2012b)

43 Length of the longest
branch

2 14.2–21.1 Shirasawa et al. (2012b)

44 Number of branches 1 15.6 Shirasawa et al. (2012b)

45 Weight of plant 1 11.8 Shirasawa et al. (2012b)

46 Weight of mature pod
per a plant

1 28.1 Shirasawa et al. (2012b)

47 Weight of seeds 1 19.1 Shirasawa et al. (2012b)

48 Yield parameters 5 10.1–17.7 Selvaraj et al. (2009)

49 Hundred pod weight 2 15.1–20.6 Fonceka et al. (2012)

50 Hundred seed weight 2 15.7–16.3 Fonceka et al. (2012)

51 Pod weight 1 11.7 Fonceka et al. (2012)

52 Shell weight 1 12.6 Fonceka et al. (2012)

(continued)
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Table 7.2 (continued)

S. N. Traits studied Major QTLs
identified

Phenotypic variation
explained (%)

References

53 Seed number 1 14.5 Fonceka et al., 2012

54 Seed weight 1 11.0 Fonceka et al. (2012)

55 Total biomass 1 13.2 Fonceka et al. (2012)

Other morphological traits

56 Flowering date 1 19.5 Shirasawa et al. (2012a, b)

57 Angle of branch 2 11.9–23.2 Shirasawa et al. (2012a, b)

58 Constriction of pod 7 10.0–23.9 Shirasawa et al. (2012a, b),
Fonceka et al. (2012)

59 Pod beak 5 11.6–17.4 Fonceka et al. (2012)

60 Pod length 5 20.5–28.2 Shirasawa et al. (2012b),
Chen et al. (2016b)

61 Thickness of pod 1 21.7 Shirasawa et al. (2012a, b)

62 Pod width 8 15.2–25.5 Shirasawa et al. (2012a, b),
Fonceka et al. (2012),
Chen et al. (2016b)

63 Seed length 8 11.2–20.8 Fonceka et al. (2012), Chen
et al. (2016b)

64 Seed width 4 14.2–23.7 Fonceka et al. (2012), Chen
et al. (2016b)

65 Growth habit 5 13.9–17.3 Fonceka et al. (2012)

66 Main stem height 4 10.0–26.7 Fonceka et al. (2012)

Seed and oil quality

67 Oil content 6 10.2–14.2 Selvaraj et al. (2009),
Sarvamangala et al. (2011),
Pandey et al. (2014c)

68 Protein content 3 10.2–13.4 Liang et al. (2009),
Sarvamangala et al. (2011)

69 Carbon discrimination
ratio

1 12.2 Ravi et al. (2011)

70 Oleic acid 9 10.7–38.4 Pandey et al. (2014c)

71 Linoleic acid 8 12.0–39.5 Pandey et al. (2014c)

72 Oleic/linoleic (O/L)
acid ratio

3 10.8–45.6 Pandey et al. (2014c)

73 Palmitic acid 6 10.6–37.4 Wang et al. (2014)

74 Stearic acid 6 17.8–40.57 Wang et al. (2014)

75 Arachidic acid 4 28.3–36.9 Wang et al. (2014)

76 Gadoleic acid 9 11.2–26.1 Wang et al. (2014)

77 Behenic acid 2 12.4–13.6 Wang et al. (2014)

78 Lignoceric acid 3 10.0–12.6 Wang et al. (2014)

79 Total phenolics 1 12.5 Mondal et al. (2015)

80 Total flavonoids 5 25.0–67.0 Mondal et al. (2015)

81 DPPH radical
scavenging

4 11.5–33.0 Mondal et al. (2015)
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metre reading (SCMR) (12 QTLs), biomass (3
QTLs), shoot dry weight (2 QTLs), haulm weight
(1 QTL), harvest index (1 QTL), canopy con-
ductance (3 QTLs) and total dry matter (1 QTL)
(Varshney et al. 2009b; Ravi et al. 2011; Gautami
et al. 2012a). The another study while dissecting
drought tolerance traits Fonceka et al. (2012)
identified two major QTLs each for 100 pod
weight, 100 seed weight, haulm weight, pod
number, total biomass, STI-100 pod weight,
STI-100 seed weight, STI-haulm weight, STI-pod
number, STI-total biomass, one major QTL each
for STI-pod weight, STI-seed number and
STI-seed weight. Although, above-mentioned
studies provided preliminary idea on the proba-
ble genomic regions showing association with
drought tolerance related traits, but still no linked
marker has been validated so far which can be
deployed in breeding. Nevertheless, lots of
genetic populations have been developed while
conducting above studies. Generation of
multi-location and multi-replicated phenotyping
and high throughput genotyping data on these
genetic populations will facilitate high-resolution
trait mapping and identification of linked markers
for drought tolerance related traits.

7.6 Oil and Nutritional Quality

In most populated countries like China and India,
peanut is mainly crushed for oil extraction while
it mainly serve as table purpose and preferred for
low oil content in other countries like United
States of America. For oil content, 6 major QTLs
were identified with the PVE ranging from 10.2
to 14.18% (Selvaraj et al. 2009; Sarvamangala
et al. 2011; Pandey et al. 2014b). For protein
content, to date only two workers namely Liang
et al. (2009) and Sarvamangala et al. (2011)
separately reported three major QTLs with PVE
ranging from 10.7% to 13.4%.

Peanut oil contains unsaturated fatty acids
(UFA), i.e. oleic and linoleic acid and saturated
fatty acids (SFA), i.e. palmitic acid, stearic acid,

arachidic acid, behenic acid, lignoceric acid and
gadoleic acid. The UFAs were further categorized
into monounsaturated fatty acid (MUFA) such as
oleic acid (C18:1), and polyunsaturated fatty acid
(PUFA), i.e. linoleic acid (C18:2). Oleic acid is
known to diminish the risk of cardiovascular
disease (CVD) by decreasing the levels of serum
low-density lipoproteins (LDL) cholesterol and
preserving the levels of high-density lipoproteins
(HDL). The ratio of UFAs in peanut oil comprises
80% while remaining 20% accounted by SFAs,
apart from this UFA is also very high in peanut oil
in comparison to the butter, coconut oil and palm
oil that bestow peanut oil as a healthier food as a
consuming oil (Johnson et al. 2009). With the
addition of a double bond to C18:1 (oleic acid),
oleic acid converts into linoleic acid, and this
reaction is catalyzed by the fatty acid desaturase
(FAD) enzyme (Ray et al. 1993). Genetics studies
revealed that the high oleic acid is controlled by
two homozygous recessive mutant alleles of
FAD2A and FAD2B genes. The first study of
reporting QTLs for oleic acid, linoleic acid and
oleic/linoleic (O/L) ratio other than FAD2A and
FAD2B reported 20 major QTLs with the PVE
range 10.71–45.63 (Pandey et al. 2014b). Another
study reported 30 major QTLs for saturated fatty
acids (Wang et al. 2015). In addition to this, ten
major QTLs were reported with the PVE% range
12.5, 25–67 and 11.5–33 for the total phenolics,
total flavonoids and DPPH radical scavenging,
respectively by the Mondal et al. (2015). The
linked markers are available for use in breeding to
improve the fatty acid profiles in peanut.

7.7 Agronomic and Morphological
Traits

Enhancing the pod yield has been the main goal
since the first day of breeding and will remain the
main goal even in future seeing the unprecedented
population growth globally. In this context, efforts
were made to identify the QTLs associated with
yield and yield component traits. So far, a total 50
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QTLs were reported for yield and yield compo-
nent traits with PVE range 10.1–40.1% (Selvaraj
et al. 2009; Liang et al. 2009; Fonceka et al. 2012;
Shirasawa et al. 2012b). Major QTLs for flower-
ing date, angle of branch, pod characteristics such
as constriction, beak, length, thickness and width,
seed width and length, pod width and length,
growth habit and main stem height were identified
in three separate studies (Fonceka et al. 2012;
Shirasawa et al. 2012b; Chen et al. 2016b). In
addition to bi-parental populations, genetic pop-
ulations involving multiple parents (such as
MAGIC and NAM) have been developed by
ICRISAT for conducting high-resolution map-
ping using multi-location and multi-replicated
phenotyping and high throughput genotyping data
on these genetic populations.

7.8 Trait Mapping Through Linkage
Disequilibrium/Association
Mapping

Bi-parental populations have limitations for
being able to provide allelic variation for few
traits and enable to dissect a small fraction of the
probable alleles through linkage mapping. Fur-
thermore, genetic resolution of QTL mapping
often remains limited in a range of 10–30 cM
due to confined number of meiotic events that are
captured in a bi-parental mapping population
(Zhu et al. 2008). Globally, availability of large
number of peanut germplasm provided opportu-
nity to think out of box and utilize this germ-
plasm in trait mapping using association
mapping approach. To exploit these available set
of germplasm, association mapping approach for
trait mapping is very promising (Gupta et al.
2014). Association mapping can be categorized
in two categories candidate gene-based associa-
tion (CGAS) and genome-wide association
mapping (GWAS) (Zhu et al. 2008).

Phenotyping for quality traits and genotyping
of the US ‘Mini Core Collection’ with 81 SSR
markers identified two functional SNP markers
for two fatty acid desaturase (FAD2 for oleic acid,
linoleic acid and oleic-to-linoleic ratio (Wang
et al. 2011). Subsequently in another study,

marker-trait associations (MTAs) with low phe-
notypic variation (1.05–4.81% PVE) for 15
agronomic traits were identified in in Chinese
‘Mini-Core Collection’ (Jiang et al. 2014).
Recently, at ICRISAT in order to identify MTAs,
phenotyping and genotyping data (4597 poly-
morphic DArT loci and 154 SSR loci) generated
on ‘Reference Set’ developed by ICRISAT
comprising of 300 accessions were used for
association analysis and identified 524 highly
significant markers with 5.8–90.1% PVE for 36
traits (Pandey et al. 2014b). Recently, ‘Reference
Set’ with 300 accessions, US ‘Mini Core Col-
lection’ containing 112 accessions, and Chinese
‘Mini Core Collection’ with 298 accessions, an
endeavour has been initiated at International level
to generate high throughput genotyping data in
addition to precise phenotyping to conduct
high-resolution association analysis for identify-
ing linked markers and accessions with superior
alleles for use in the breeding programmes.

7.9 Advanced Backcross (AB) QTL
Mapping

Wild species of peanut is a reservoir of useful
genes and alleles for biotic and abiotic stresses
(Upadhyaya et al. 2012). These genes were
untouched and unexploited throughout the course
of evolution and domestication. Despite owns
boastful wild germplasm, just few (1.1%) were
used to develop advanced breeding lines (Sharma
et al. 2013). Recently, through remarkable
attempts, some elite cultivars with multiple dis-
ease resistance were released from ICRISAT and
USA (Sharma et al. 2013; Burow et al. 2013).
Similar to other polyploid species, continuous
domestication of cultivated peanut narrowed the
genetic diversity which impose a genetic bottle-
neck. Since direct introgression of the useful
genes from the wild species to cultivated gene
pool is very difficult, the synthetic amphidiploid
were used as bridge species to defeat the repro-
ductive barriers between the wild diploids and
the cultivated species. At ICRISAT, 17 new
synthetic amphiploids and autotetraploids popu-
lations were developed to broadening genetic
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base (Mallikarjuna et al. 2012; Shilpa et al.
2013). These new synthetics were also reported
as resistance to late leaf spot and peanut bud
necrosis disease.

To save the time and enhance the accuracy
during identification and introgression of useful
alleles from wild to cultivated genotypes,
molecular markers proved as a very handful tool.
In this context, strategy like advanced-backcross
QTL (AB-QTL) has been suggested by the
Tanksley et al. (1996). In this strategy, identifi-
cation of linked markers as well as introgression
of trait of interest can be done simultaneously. In
this direction, 110 QTLs were identified for
several traits including physiological, agronomic,
morphological traits and resistance to the
root-knot nematode (Fonceka et al. 2012; Burow
et al. 2014). Further, at ICRISAT, two AB-QTL
populations were developed and phenotyped for
several disease resistance traits. The genotyping
data (DArT markers) and phenotyping data were
analysed leading to identification of QTLs for
rust and LLS resistance (Varshney et al. 2013).
Two of the above-mentioned synthetics namely
ISATGR 278-18 (A. duranesis � A. batizocoi)
and ISATGR 5B (A. magna � A. batizocoi)
were used to introgress foliar disease resistance
in five elite Indian peanut varieties namely ICGV
91114, ICGS 76, ICGV 91278, JL 24, and DH
86 using backcross breeding approach (Kumari
et al. 2014). In addition to disease resistance,
these lines have also shown range of variation for
other important morphological and agronomic
traits.

7.10 Next-Generation Genetic
Populations
for High-Resolution Trait
Mapping

With the advancements in the NGS technology
which can generate huge genomic sequence data
in very short time. Several analysis
softwares/tools have become available in public
domain for analysing large data sets. These
developments have allowed us to develop even
more complex and larger genetic populations to

perform high-resolution trait mapping. Some of
these important populations include MAGIC,
NAM and recombinant inbred advanced inter-
cross line (RIAIL) populations (Morrell et al.
2012). It is important to note that MAGIC pop-
ulation facilitate increased recombination events
by making multiple crosses using multiple par-
ents to create highly diverse genetic population
for conducting high-resolution genetic mapping
(Cavanagh et al. 2008). Analysis of such popu-
lation has remained challenge due to presence of
multiple alleles coming from different founder
parental genotypes in the population. Neverthe-
less, a whole-genome average interval mapping
(WGAIM) approach has been developed recently
for conducting QTL analysis (Verbyla et al.
2014). This approach is very promising for con-
ducting high-resolution trait mapping for several
traits simultaneously. Recently, at ICRISAT two
MAGIC populations for (aflatoxin resistance and
drought tolerance) and two MAGIC population
for agronomic traits have been developed. NAM
is another promising approach to dissect the
genetic basis of complex traits by capturing
genetic diversity of selected diverse parents
(founders). Most importantly, the NAM popula-
tion has higher power QTL detection as compared
with bi-parental mapping populations (Yu et al.
2008; McMullen et al. 2009). In peanut, two
NAM populations, i.e. one each for Spanish
(ICGV 91114 and 22 testers) and Virginia type
(ICGS 76 and 21 testers) were developed
(Varshney 2016; Pandey et al. 2016a). The
development of MAGIC and NAM populations
have given birth to a new method of trait mapping
called joint linkage-association mapping (JLAM).
These populations can be used to conduct linkage
as well as association mapping and are very
useful for conducting high-resolution mapping
(Gupta et al. 2014).

7.11 Emerging NGS-Based Trait
Mapping Strategies

It has been discovered that a high level of reso-
lution can be achieved with the help of
high-density genotyping by using NGS methods
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(Huang et al. 2009) and mapping by sequencing
(Schneeberger and Weigel 2011). Recently, few
trait mapping approaches demonstrated speedy
detection of genomic regions and candidate
genes controlling the targeted traits such as
MutMap, QTL-seq and BSR-seq.

Abe et al. (2012) identified successfully cau-
sal mutations for pale green leaves and
semi-dwarfism in rice using MutMap approach.
In this approach, whole-genome re-sequencing
(WGRS) is performed for the pooled DNA
samples from a F2 segregating progeny of a cross
between a mutant and its wild type (WT). The
concept of SNP identification is based on the
SNP index and the sequence data of bulked DNA
is aligned with the reference sequence. The SNPs
with sequence reads containing only of the
mutant sequences (SNP index = 1) are consid-
ered to be linked to the causal SNP for the mutant
phenotype. The MutMap is theoretically similar
to some of other related methods such as
SHOREmap (Schneeberger et al. 2009) and
next-generation mapping (Austin et al. 2011).
The same group has updated MutMap to Mut-
Map plus where the same concept of identifica-
tion of causative SNP for the mutant phenotype
can be achieved without crossing the mutant with
WT line. Therefore, the DNA of M3 progenies
with extreme phenotypes are bulked to get the
SNP index (Fekih et al. 2013). To overcome the
difficulty of mutations in the missing genomic
regions from the reference (gap) genome when
the reference genome is aligned to the
re-sequenced lines, Takagi et al. (2013a) has
proposed MutMap-Gap strategy where MutMap
is used to identify the causal SNP followed by de
novo assembly, alignment, and identification of
the causal mutation within the genome gaps. In
peanut, this strategy can be implemented too for
the identification of agronomic traits of interest.

In the QTL-seq technique, MutMap strategy
was conceptually integrated to the normal F2 and
RIL population (Takagi et al. 2013b). The prin-
ciple involves a combination of bulked segregant
analysis and whole genome re-sequencing for
rapid identification of agronomically important
QTLs. After alignment of the sequence with

reference sequence, SNP index is derived to
narrow down to the causal SNP (Takagi et al.
2013b). This strategy has been used to identify
an early flowering QTL in cucumber (Lu et al.
2014). In peanut, by using QTL-seq approach
three for rust resistance and one for LLS resis-
tance allele-specific diagnostic markers were
identified (Pandey et al. 2016b). These results
prove the usefulness of QTL-seq approach for
the rapid and precise and identification of can-
didate genomic regions and development of
diagnostic markers for breeding applications.

BSR-sequencing is one of the potential
methods where the candidate genes/markers
associated with the trait can be identified at the
expression level. DNA-based BSA requires
access to quantitative genetic markers that are
polymorphic in the mapping population. The
modification over BSA method, BSR-Seq makes
use of RNA-Seq reads to efficiently map genes
even in populations for which no polymorphic
markers have been previously identified (Liu
et al. 2012). In this approach, it is possible to
conduct de novo SNP discovery and quantita-
tively genotype the bulks from extreme pheno-
type or mutants using appropriate computational
tools. This is relatively new technique that is less
explored in plants and there are no published
reports yet in peanut. As this approach uses the
expression data into consideration, there is
advantage of identifying probable candidate
genes to dissect important traits.

7.12 Molecular Breeding
for the Disease Resistance
and Oil Content and Quality
Traits

The identification of molecular markers linked to
desirable traits in peanut has provided the pace to
the peanut improvement programs using molec-
ular breeding. Two molecular breeding approa-
ches namely marker-assisted backcrossing
(MABC) and marker-assisted selection
(MAS) facilitate transfer QTLs/gene from source
genotype to elite recipient cultivars. The MABC
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and MAS approaches are very precise in selec-
tion at very initial stage of the plant through the
trait linked markers. Additionally, MABC
approach shortens the generation to achieve
higher recurrent parent genome recovery as
compared to conventional breeding methods.
Some of the successful examples of
MABC/MAS application and their output have
been discussed below.

At the earliest through MABC approach,
Simpson et al. (2003) developed Nematode
resistance lines and registered as ‘NemaTAM’
variety. Chu et al. (2011) pyramided high oleic
acid and nematode resistance in cultivated peanut
and also developed the CAPS markers for
ahFAD2A and ahFAD2B mutant alleles respon-
sible for oil quality traits. The South African
peanut cultivars were improved for the high oleic
acid trait through MAS (Mienie and Pretorius,
2013). In Indian continent, rust and LLS are the
major foliar fungal diseases of peanut causing
40–70% losses in pod yield. Most of the popular
cultivars in major growing state viz. Maharash-
tra, Karnataka, Tamil Nadu and Andhra Pradesh
have been reported susceptible to rust and LLS.
With an objective to breed resistant varieties for
foliar disease resistance, Varshney et al. (2014)
introgressed one major QTL each for rust resis-
tance and LLS resistance conferring >80% and
67.98% PVE, respectively, in the popular vari-
eties namely ICGV 91114, JL 24 and TAG 24.
Furthermore recently, Janila et al. (2016c) eval-
uated these selected introgression lines at three
locations including disease hot spots regions of
India. The reason was to assure the expression of
resistance governed by the QTL region, as dif-
ferent factors viz. genotype background, envi-
ronment and genotype � environment
interactions work behind this. Resultantly, six
best ILs namely ICGV 13192, ICGV 13193,
ICGV 13200, ICGV 13206, ICGV 13228 and
ICGV 13229 were picked with 39–79% higher
mean pod yield and 25–89% higher mean haulm
yield in comparison to their respective recurrent
parents. Pod yield increase was contributed by
increase in seed mass and number of pods per

plant. The most interesting result was combining
short maturity duration together with foliar dis-
ease resistance through MABC approach which
was not earlier achieved through conventional
breeding approaches. Similarly, for improving
quality traits, MABC/MAS approaches were
used to improve three major fatty acids namely
oleic, linoleic and palmitic acids by transferring
two mutant alleles from donor ‘SunOleic 95R’ in
three Indian elite varieties namely ICGV 06110,
ICGV 06142 and ICGV 06420 (Janila et al.
2016a). Now the efforts are underway to combine
foliar disease resistance and oil quality through
marker-assisted gene pyramiding approach.

7.13 Conclusion

Peanut is a crop of global importance and is an
essential component of human food basket. This
crop has been lacking optimal genomic resources
to improve the breeding efficiency for achieving
higher genetic gain in less time. The year ‘2016’
has been very good as genome assemblies for
both the diploid ancestors of cultivated peanut
were made available. Last couple of years were
also good in the context of developing several
genetic populations and preliminary genetic
mapping and trait mapping. It is equally impor-
tant that now peanut is also witnessing devel-
opment of high throughput genotyping platforms
and high-resolution multi-parent mapping popu-
lations. The availability of such resources will
further accelerate development and deployment
of genomic resources targeting peanut genetic
improvement.
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