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Abstract 

Objective:  In peanut, the DNA polymorphism is very low despite enormous phenotypic variations. This limits the 
use of genomics-assisted breeding to enhance peanut productivity. This study aimed to develop and validate new 
AhMITE1 and cleaved amplified polymorphic sequences (CAPS) markers.

Results:  In total, 2957 new AhMITE1 markers were developed in addition to identifying 465 already reported markers 
from the whole genome re-sequencing data (WGRS) of 33 diverse genotypes of peanut. The B sub-genome (1620) 
showed more number of markers than the A sub-genome (1337). Distribution also varied among the chromosomes 
of both the sub-genomes. Further, 52.6% of the markers were from genic regions; where 31.0% were from intronic 
regions and 5.2% were from exonic regions. Of the 343 randomly selected markers, 82.2% showed amplification 
validation, with up to 35.5% polymorphism. From the SNPs on the A03, B01, B02 and B03 chromosomes, 11,730 
snip-SNPs (potential CAPS sites) were identified, and 500 CAPS markers were developed from chromosome A03. Of 
these markers, 30.0% showed validation and high polymorphism. This study demonstrated the potential of the WGRS 
data to develop AhMITE1 and CAPS markers, which showed high level of validation and polymorphism. These marker 
resources will be useful for various genetic studies and mapping in peanut.
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Introduction
High resolution trait mapping in peanut (Arachis 
hypogaea L. 2n = 4x = 40) demands a considerably large 
number of evenly distributed genome-wide markers to 
identify marker-trait associations. The fact that the gen-
otypic polymorphism is very limited despite enormous 
phenotypic differences among peanut genotypes signifies 
the requirement for a large number of markers. Differ-
ent types of markers have been developed and employed 
for diversity analysis, DNA finger-printing, trait map-
ping and genomics-assisted breeding (GAB). The promi-
nent markers were RFLP, AFLP, DAF, SSR, DArT etc. 
These DNA markers and other protein markers showed 
low polymorphism among the peanut genotypes [1–3]. 

Though single nucleotide polymorphism (SNP) markers 
are abundant and highly polymorphic in different sys-
tems, they showed low polymorphism (14.0%) in culti-
vated peanut [4].

Transposons are widely distributed in genomes, and 
their polymorphic insertions allowed development of 
transposon-based markers [5, 6]. Both class I and class II 
transposon-based markers have been developed and used 
for various genetic analysis and mapping [7, 8]. In pea-
nut, use of DNA transposon markers was proposed [9], 
and one such marker was developed to track the activity 
of A. hypogaea miniature inverted-repeat transposable 
element (AhMITE1) to associate its transposition with 
high-frequency origin of late leaf spot disease resistant 
mutants [10], and differentiation of two subspecies [11]. 
Subsequently, 1039 AhMITE1 markers were developed 
[12, 13], and used for mapping [14–16].

Use of diverse genotypes including the genetically 
unstable peanut mutants which show hyperactivity of 
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AhMITE1 for marker discovery might detect a large 
number of AhMITE1 insertion polymorphic sites (AIPs), 
which could be employed to develop new markers. In 
the past, transposon markers were developed using 
transposon display [5, 17–21], transposon-enriched 
library [12, 13] and in silico analysis [22]. But, analysis 
of whole genome re-sequencing (WGRS) data from a 
large number of diverse genotypes is expected to cap-
ture all AIPs when the short reads are analyzed using 
the computational method polymorphic TEs and their 
movement detection (PTEMD) [23] for the de novo dis-
covery of AIPs. This study reports the development of 
new AhMITE1 markers using diverse genotypes, and 
their validation using the parents of various mapping 
populations and backcross populations. SNPs discovered 
from the WGRS data were also used to develop cleaved 
amplified polymorphic sequences (CAPS) markers from 
selected chromosomes (A03, B01, B02 and B03), harbor-
ing quantitative trait loci (QTL) for the important agro-
nomical and productivity traits [15, 24, 25].

Main text
Methods
A total of 33 genotypes were employed for AhMITE1 
marker development. Details on the genotypes [10, 26–
31] used for WGRS are given in Additional file 1: Table 
S1. WGRS reads were generated using Illumina HiSeq 
2000 for six genotypes and obtained from public DNA 
sequence databases for the remaining 27 genotypes 
(DRA004503–DRA004506 and SRA459965) (https://
www.ncbi.nlm.nih.gov/pubmed/27902796 and https://
www.ncbi.nlm.nih.gov/pubmed/27993622) (Additional 
file 1: Table S1), and used to detect AIPs using PTEMD 
[23] without replication since the results were subjected 
for confirmation (validation) using wet-lab experiment 
through PCR, and detection in multiple genotypes to 
support the results. The sequences flanking the AIPs 
were retrieved, and primers were designed using default 
parameters of BatchPrimer3 [32]. AhMITE1 markers 
were validated by checking the amplicons from DER, 
VL 1, 110 and 110(S) for the expected size. The seeds of 
these genotypes were collected from the Department of 
Genetics and Plant Breeding, University of Agricultural 
Sciences, Dharwad, India. DNA was isolated from the 
young leaves of the plants following the modified cetyl 
trimethyl ammonium bromide (CTAB) method [33]. The 
cells were lysed with CTAB buffer, and the debris were 
removed by centrifugation. Proteins were removed from 
the extract by phenol:chloroform extraction and the 
RNA was removed by RNase treatment. The DNA was 
washed with ethanol and finally dissolved in Tris–EDTA 
(TE) buffer. Polymerase chain reaction (PCR) for the 
AhMITE1 markers was carried out in a reaction volume 

of 10  µl with the standard ingredients and PCR pro-
file (Additional file  2: Table S2a and S2b) [12, 15] using 
eppendorf Mastercycler® pro. The PCR products were 
resolved on 2% agarose gel. The markers amplifying the 
expected product, depending on the presence or absence 
of AhMITE1 at those marker loci, were considered to be 
validated. The validated markers were checked for poly-
morphic information content (PIC) using PowerMarker 
V3.25 [34]. For this, additional ten genotypes constituting 
the recombinant inbred line (RIL) populations [35] and 
backcross populations [36, 37] were employed. The seeds 
of these genotypes were collected from the Department 
of Genetics and Plant Breeding, University of Agricul-
tural Sciences, Dharwad, India.

Single nucleotide polymorphism identification from 
the WGRS data was performed as described earlier [38]. 
A 1001 bp sequence was obtained for each SNP (500 bp 
on left and right), and they were analyzed for snip-SNPs 
(SNP sites which modify restriction enzyme recognition 
sites) using CLC Sequence Viewer 7 (CLC Bio: http://
www.clcbio.com) for 25 restriction enzymes. Prim-
ers were designed for those sequences which contained 
snip-SNP using GeneTool Lite [39]. Preference was 
given to those primers which could amplify 200–900 bp 
amplicons, and generate restriction fragments of at least 
100 bp.

Cleaved amplified polymorphic sequences mark-
ers were validated by PCR amplification and restric-
tion digestion with the respective restriction enzyme 
(Additional file  2: Tables S2c–S2e and Additional file  7: 
Table S6). A reaction volume of 12 µl containing Emer-
ald Amp® GT PCR Master Mix (Catalog No. RR310A, 
Clontech), 5 pmol of each primer and 50 ng of genomic 
DNA was amplified, and used for restriction digestion. 
The restriction fragments were separated on 2% agarose 
gel, and checked for the products of expected size (Addi-
tional file 7: Table S6). Those markers producing the PCR 
and restriction fragments of expected size were consid-
ered to be validated. PIC was calculated for the CAPS 
markers as described for AhMITE1 markers.

Results and discussion
Large copy number [40, 41], enormous genome-wide 
insertion variation [12] and association with genes to 
alter the function makes AhMITE1 a target for marker 
development [42]. A total of 3546 AIPs were identified 
from a total reads of 9.9 billion across 33 genotypes, of 
which 3081 were new and 465 were already reported [12, 
13]. This high success rate of marker discovery could 
be attributed to the diverse genotypes and the software 
(PTEMD) used in this study. Primers could be designed 
for 2957 AIPs to amplify 100–405 bp amplicons depict-
ing the presence or absence of AhMITE1 at each marker 
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locus. Genotype-specific alleles were observed for all 
the genotypes at varying number of markers (Additional 
file 3: Table S3). At least two genotypes showed the same 
type of allele at 1342 marker loci.

B sub-genome (1620) had marginally more number of 
AhMITE1 markers than the A sub-genome (1337). An 
unequal distribution of markers was observed across 
the chromosomes of both the sub-genomes (Table 1). A 
general correlation was observed between the number of 
markers and the length of the chromosome [40]. In the A 
sub-genome, the number of markers varied from 84 (A02 
chromosome) to 210 (A03 chromosome); while it ranged 
from 124 (B02 chromosome) to 269 (B03 chromosome) 
in the B sub-genome. The recent efforts on sequencing 
of the diploid progenitors of peanut, Arachis duranen-
sis (A genome) and Arachis ipaensis (B genome) showed 
that transposable elements occupy larger space (68.5%) in 
the B genome than in the A genome (61.7%), and DNA 
transposons make about 10% of both A and B genome 
[40]. Unequal distribution of DNA transposons was also 
observed in rice [43], Brassica [44] and foxtail millet [45].

Analyzing the genomic location of these 2957 mark-
ers revealed that 1555 were genic and 1402 were inter-
genic. A maximum of 562 (36.1%) marker loci had 
AhMITE1 insertion at upstream regions (within 1  kb) 

followed by 482 (31.0%) in intronic, 250 in downstream 
regions (within 1 kb), 180 (11.6%) in UTRs and 81 (5.1%) 
in exonic regions. Insertion of MITE in the genic region 
as well as intergenic region is known to affect the gene 
expression [46]. Thus, the AhMITE1 markers developed 
in this study could have functional role as well. A sample 
of 343 markers (Additional file 4: Table S4) was employed 
for validation, and as high as 282 markers produced the 
amplicons of expected size (Fig.  1) in all the four geno-
types (DER, VL 1, 110 and 110(S), indicating 82.2% 
marker validation.

Table 1  Chromosome-wise distribution of AhMITE1 markers in peanut

Chromosome Total Inter-genic Exon Intron UTR Upstream Downstream

A01 140 82 5 20 5 20 8

A02 84 42 2 12 4 17 7

A03 210 100 5 30 16 41 18

A04 116 55 3 20 9 21 8

A05 190 80 5 33 13 40 19

A06 138 73 1 18 11 21 14

A07 94 38 5 18 7 19 7

A08 122 61 0 22 7 20 12

A09 117 59 6 28 2 14 8

A10 126 61 4 16 6 29 10

Sub-total 1337 651 36 217 80 242 111

B01 135 71 3 15 8 27 11

B02 124 56 4 16 5 32 11

B03 269 116 7 44 26 50 26

B04 140 67 3 26 7 27 10

B05 196 94 5 29 18 39 11

B06 159 76 4 24 14 30 11

B07 153 74 7 32 6 19 15

B08 154 74 0 22 4 37 17

B09 162 68 9 33 6 31 15

B10 128 55 3 24 6 28 12

Sub-total 1620 751 45 265 100 320 139

Total 2957 1402 81 482 180 562 250

Fig. 1  Validation of selected AhMITE1 markers in peanut. M 100 bp 
ladder, 1 DER, 2 VL 1, 3 110 and 4 110(S)
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The validated markers (282) were tested for their PIC 
using additional ten genotypes of cultivated peanut. 
The PIC ranged from zero to 0.375 with an average of 
0.155. In total, 221 and 61 markers were classified as low 
(≤ 0.25) and moderate (0.26–0.50) for PIC. A maximum 
of 35.5% polymorphism was observed between VL 1 and 
110 (Table  2, Additional file  5: Figure S1), followed by 
26.2% (TMV 2 and TMV 2-NLM), 23.1% (TMV 2 and 
ICGV 86699), 22.3% (TMV 2 and ICGV 99005; TG 26 
and GPBD 4) and 16.7% (TAG 24 and GPBD 4). High rate 
of TE marker validation was also reported from foxtail 
millet (Setaria italica) [45] and Caenorhabditis elegans 
[47].

In total, 5,36,072 SNPs were identified when the WGRS 
data from four peanut genotypes [DER, VL 1, 110 and 
110(s)] were compared to the reference genomes [40]. 
Considering the mapped QTL for resistance to bacterial 
wilt, late leaf spot and rust, and other important produc-
tivity traits [15, 24, 25], the SNPs on A03, B01, B02 and 
B03 were selected for identifying the snip-SNPs. Screen-
ing of 64,416 SNPs from these four chromosomes iden-
tified 11,730 (potential CAPS sites) for 25 restriction 
enzymes (Additional file 6: Table S5). No significant dif-
ferences were found between the chromosomes for the 
snip-SNPs. Further, 500 snip-SNPs on A03 chromosome 
were used to develop CAPS markers. Currently, only two 
CAPS markers are available in peanut [48]. They were 
developed to detect specific mutations in AhFAD2A and 
AhFAD2B leading to high oleic acid content [49].

Of the 500 CAPS markers identified, 30 were checked 
for PCR amplification and restriction digestion 

(Additional file  7: Table S6). Twenty markers showed 
PCR amplification, and 10 amplicons showed restriction 
digestion; of which nine showed restriction fragments 
of expected size (Additional file  8: Figure S2), and one 
(CAPS0100) failed to show the fragments of expected 
size with the enzyme BstKTI, indicating 30.0% validation 
for CAPS markers. The CAPS sites for AluI and BamHI 
showed maximum validation (100%) followed by AseI 
with 57.1% validation. On the other hand, CAPS for AclI, 
BglII and BstKTI showed no validation.

Polymorphic information content was calculated for 
the nine markers showing the expected PCR product and 
restriction products. PIC ranged from 0.195 (CAPS0072) 
to 0.305 (CAPS0002, CAPS0043, CAPS0047, CAPS0050, 
CAPS0053, CAPS0054, CAPS0058 and CAPS0059) with 
a mean PIC of 0.293 (Additional file 7: Table S6). Parents 
of the RILs and backcross populations like TAG 24 versus 
GPBD 4, JL 24 versus GPBD 4, TMV 2 versus GPBD 4, 
TMV 2 versus ICGV 86699, TMV 2 versus ICGV 99005, 
TMV 2 versus IL 1 and TMV 2 versus IL 2 showed the 
same level of polymorphism (88.9%), whereas VL 1 versus 
110 failed to show any polymorphism for these markers.

The number of CAPS markers was more as compared 
to AhMITE1 markers in peanut genome. However, differ-
ent families of class I and class II elements can be con-
sidered to develop more AhMITE1 markers. Handling of 
AhMITE1 markers in the laboratory is easy and requires 
fewer resources. The transposition of the element from a 
“donor” site can be validated by sequencing the empty-
site-related PCR, and searching for footprints (duplicated 
regions). Thus, AhMITE1 markers can give an indication 
not only of the genetic divergence that was caused by 
AhMITE1 transposition, but also of the history of trans-
position in each species [22]. Further, AhMITE1 markers 
offer a DNA tag (AhMITE1) for gene discovery and clon-
ing [20].

Limitations
In this study, a large number of AhMITE1 and CAPS 
markers were developed in peanut, where marker 
polymorphism is a major limitation. In future, retro-
transposons and other DNA transposons can also be 
considered for marker development. Similarly, snip-
SNPs can be identified for the whole genome for the 
development of CAPS markers. The major limitation 
could be the fact that these markers are applicable only 
for peanut. Currently, the new AhMITE1 markers are 
being extensively used for trait mapping [15, 16] and 
backcross breeding [37, 50] to develop foliar disease 
resistant genotypes in our laboratory. It is necessary to 
test more number of CAPS markers to assess their true 
rate of polymorphism.

Table 2  Percent polymorphism exhibited by  AhMITE1 
markers among  the parents of  RIL and  backcross popula-
tions in peanut

a  out of 282 markers screened

Parents No. of polymorphic 
markersa

Polymorphism (%)

VL 1 × 110 100 35.5

TAG 24 × GPBD 4 47 16.7

TG 26 × GPBD 4 63 22.3

GPBD 4 × JL 24 36 12.8

GPBD 4 × TMV 2 41 14.5

JL 24 × IL 1 41 14.5

JL 24 × IL 2 42 14.9

TMV 2 × ICGV 86699 65 23.1

TMV 2 × ICGV 99005 63 22.3

TMV 2 × IL 1 44 15.6

TMV 2 × IL 2 45 16.0

TMV 2 × TMV 2-NLM 74 26.2

Mean 19.5
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