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Abstract An effort was made in the present study to
identify the main effect and epistatic quantitative trait
locus (QTL) for the morphological and yield-related
traits in peanut. A recombinant inbred line (RIL) popu-
lation derived from TAG 24 × GPBD 4 was phenotyped
in seven environments at two locations. QTL analysis
with available genetic map identified 62 main-effect

QTLs (M-QTLs) for ten morphological and yield-
related traits with the phenotypic variance explained
(PVE) of 3.84–15.06%. Six major QTLs (PVE > 10%)
were detected for PLHT, PPP, YPP, and SLNG. Stable
M-QTLs appearing in at least two environments were
detected for PLHT, LLN, YPP, YKGH, and HSW. Five
M-QTLs governed two traits each, and 16 genomic
regions showed co-localization of two to four M-QTLs.
Intriguingly, a major QTL reported to be linked to rust
resistance showed pleiotropic effect for yield-attributing
traits like YPP (15.06%, PVE) and SLNG (13.40%,
PVE). Of the 24 epistatic interactions identified across
the traits, five interactions involved six M-QTLs. Three
interactions were additive × additive and remaining two
involved QTL × environment (QE) interactions. Only
one major M-QTL governing PLHT showed epistatic
interaction. Overall, this study identified the major M-
QTLs for the important productivity traits and also
described the lack of epistatic interactions for majority
of them so that they can be conveniently employed in
peanut breeding.
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Introduction

Peanut (Arachis hypogaea L.) is a legume and oilseed
crop with high protein content. Globally, it is grown in
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an area of 25.7 million ha with the production of 42.3
million tons (FAOSTAT 2016). Enhancing the overall
productivity by improving the traits like resistance to
diseases, tolerance to drought, enhanced oil content, and
improved quality traits is the main objective in peanut
breeding. However, many of these traits are genetically
complex, and achieving significant gains therefore re-
quires the applications of genomics-assisted breeding
(GAB) (Varshney et al. 2013).

There has been a tremendous advancement over the
last decade in understanding the peanut genome. The
genomes of the diploid progenitor species of cultivated
peanut have been sequenced (Bertioli et al. 2016; Chen
et al. 2016b). Recently, the chloroplast genomes of
seven species have also been sequenced (Yin et al.
2017) to understand the genetic relationships of the
wild species with the cultivated peanut. A molecular
phylogeny based on the complete chloroplast genome
sequences provided the best resolution of the seven
Arachis species. A large number of different types of
markers have been developed (Zhao et al. 2017), and a
high-throughput genotyping assay with 58 K informa-
tive single nucleotide polymorphism (SNP) markers
was developed (Pandey et al. 2017a). With these
markers, the genetic maps of varying saturation levels
have been developed and employed for mapping vari-
ous traits (Vishwakarma et al. 2017). Genome-wide
association studies were also conducted to map the traits
like disease resistance, quality, drought tolerance and
yield components (Pandey et al. 2014a) and agronomic
traits (Zhang et al. 2017). Further, QTL-Seq has identi-
fied the candidate genes for LLS and rust resistance
(Pandey et al. 2017b). Also, the RNA-Seq study has
revealed the transcripts that are differentially expressed
under LLS infection (Han et al. 2017).

The markers identified for foliar disease resistance
were validated (Sujay et al. 2012; Yeri et al. 2014;
Sukruth et al. 2015) and employed for molecular breed-
ing (Varshney et al. 2014; Yeri and Bhat 2016). Marker-
assisted breeding has also been successful in enhancing
the oleic acid content and resistance to nematode.
However, the molecular breeding for other traits in
peanut demands a thorough detection and analysis of
QTL and markers. Identification of QTL with main
effects (or individual effects), epistatic effects, and G ×
E interactions is very useful in genomics (Carlborg and
Haley 2004). In peanut, many researchers have reported
additive, non-additive (including epistatic genetic) effects
for traits like pod yield, number of pods and seeds per

plant, hundred seed weight, pod length, and shelling out-
turn based on the genetic analysis (Layrisse et al. 1980;
Dwivedi et al. 1989; Upadhyaya and Nigam 1998).
However, identification of M-QTLs, E-QTLs, and G ×
E interactions for the agro-morphological and productivity
traits will be useful for molecular breeding in peanut.

Availability of an appropriate mapping population
with a large number of recombinants, phenotyping over
multi-environments, and multi-seasons would allow
precise detection of reliable (consistent) QTLs for the
target traits. Therefore, the present study employed the
RILmapping population derived from TAG 24 × GPBD
4 for identifying the M-QTLs, epistatic-QTLs, and QTL
× environment (QE) interactions for the important agro-
morphological and yield traits in peanut.

Materials and methods

Plant materials

This study used a mapping population consisting of 268
RILs of TAG 24 × GPBD 4 developed at the University
of Agricultural Sciences (UAS), Dharwad, India. GPBD
4 is a very popular and high-yielding Spanish bunch
cultivar with resistance to foliar fungal diseases, early
maturity, desirable pod and kernel features, and high oil
content (Gowda et al. 2002). TAG 24 is a Spanish bunch
cultivar (Patil et al. 1995) which suffers significant yield
loss under severe foliar disease infection.

Phenotyping and statistical analysis of mapping
populations

The RIL-4mapping population of F9–12 generations was
phenotyped for three environments namely post-rainy
2007 (R4EI), rainy 2007 (R4EII), and post-rainy 2008
(R4EIII) at ICRISAT, Patancheru, India (17°30'39.8"N
78°16'30.8"E), and four environments at UAS-
Dharwad, India (15°29'30.1"N 74°59'00.9"E), viz.,
rainy 2007 (R4EIV), rainy 2008 (R4EV), rainy 2009
(R4EVI), and post-rainy 2009 (R4EVII). The RILs were
planted in augmented plot design with parents as checks
in 15 blocks of 20 rows in R4EI; Alpha design with
three replications in R4EII and two replications in
R4EIII, and randomized block design (RBD) with two
replications in R4EIV, R4EV, R4EVI, and R4EVII.
Observations on 14 agro-morphological traits, namely,
days to flowering (DF), plant height (PLHT), leaf length
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(LLN), leaf width (LWD), pod length (PLN), pod width
(PWD), seed length (SLN), number of primary branches
(PBR), pods per plant (PPP), yield per plant (YPP),
yield in kg per hectare (YKGH), hundred seed weight
(HSW), shelling percentage (SLNG), and days to matu-
rity (DM) were recorded at ICRISAT-Patancheru. The
RILs were phenotyped for 12 yield-contributing traits at
R4EI and all 14 traits measured in R4EII and R4EIII. A
total of eight traits viz., PLHT, LLN, LWD, PBR, PPP,
YPP, HSW, and SLNG were phenotyped at R4EIVand
R4EV; four traits, PLHT, PBR, LLN, and LWD at
R4EVI and five yield-contributing traits, PLHT, PPP,
YPP, HSW, and SLNG at R4EVII.

Restricted Maximum Likelihood (REML) analysis
was performed using GenStat version 12.0 (GenStat
Committee 2010) to estimate the variance components
for the data collected at ICRISAT, Patancheru. Analysis
of variance (ANOVA) was performed using
WindowStat, version 8.5 (IndostatServices, Hyderabad,
India, http://members.fortunecity.com/indostat/) for the
data collected from each season at Dharwad location.
The parameters like genetic variance (σ2g) and broad
sense heritability (h2b.s.) were estimated using GenStat
version 12.0 and WindowStat version 8.5 for the data
collected at Patancheru and Dharwad location,
respectively. Broad sense heritability was calculated as
h2b.s. = (σ2G/σ

2
P) for each environment where, σ2G

represented the genotypic variance, σ2
P is the

pheno typ ic va r i ance (σ 2
G + (σ 2e or e r ro r

residual/number of replications). The correlation coeffi-
cients (r) among the traits were estimated in each season
using an R software (R Core Team 2013).

QTL analysis

The genetic map, carrying 188 mapped markers, con-
structed previously by Sujay et al. (2012), was used for
QTL analysis. Candidate interval selection, putative
QTL detection, and QTL effects were estimated from
each environment (three from ICRISAT and four from
Dharwad) separately. The normalized predicted mean
from the REML estimates in Patancheru location and
mean phenotypic data across replications in Dharwad
location were used to map QTLs by BComposite Inter-
val Mapping (CIM)^ approach (Zeng 1994) using
WinQTL Cartographer 2.5 (Wang et al. 2007). CIM
was carried out using Model 6 with a moving window
size of 10 cM and a walking speed of 2 cM. The
forward-backward stepwise regression method was

used to select number of marker cofactors for the back-
ground selection. To define QTL region automatically,
BLocate QTLs^ option was used with a minimum dis-
tance of 5 cM between QTLs. The highest peak was
considered to locate QTLs if the peak distance between
the QTL is less than 5 cM. For each trait, a 500-
permutation test with a significance level of 0.05 was
performed to detect an appropriate LR. Based on signif-
icant LR peak for map position under consideration,
QTL position, additive effects, favorable allele contribu-
tion, and phenotypic variation explained (PVE) were
estimated. An estimate of epistatic QTL was studied by
mixed linear composite interval mapping (MCIM) using
software QTL Network Version 2.0 (Yang et al. 2008).
The 2D Genome Scan option was used to map epistatic
QTLs. A 1000 permutation was applied to calculate
critical F value and the QTL effects were estimated using
Monte Carlo Markov chain method with 20,000 Gibs
sample size. The genome scan configuration was per-
formed using testing window size of 10 cM, walk speed
of 1 cM, and filtration window size of 10 cM.

Results

Phenotypic variability

REML analysis for the data collected from Patancheru
and ANOVA for the data collected from Dharwad
showed significant differences among the RILs for ma-
jority of the traits except LLN, LWD, YPP, and YKGH
in R4EI; DF, SWD, and DM in R4EII; LWD, PBR,
SWD, and DM in R4EIII; PBR and LWD in R4EIV;
PBR and LWD in R4EV; PBR in R4EVI (Supplemen-
tary Table S1). The mean values for all the traits, except
PBR in R4EII, were normally distributed (Fig. 1). The
phenotypic range of variation was high for all the traits,
except for DF in R4EI and R4EIII, PBR in R4EI and
R4EII, LWD in R4EII, and PWD and SLN in R4EII and
R4EIII. Transgressive segregants were observed for all
the traits in all the seven environments at both
(Patancheru and Dharwad) the locations. The broad-
sense heritability estimates (h2b.s.) ranged from low
(0.18, YPP in R4EIV), moderate (0.26, HSW in
R4EII; 0.30, LWD in R4EII), high to very high (0.91,
PPP in R4EV). Briefly, the heritability estimates were
observed for DF (0.36–0.85), PLHT (0.43–0.86), LLN
(0.38–0.85), LWD (0.30–0.42), PBR (0.38–0.66), PLN
(0.54–0.70), PPP (0.32–0.91), PWD (0.38–0.53), SLN
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Fig. 1 Boxplot showing the distribution of the means for agro-morphological traits among the RILs over different environments
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(0.66–0.77), YPP (0.18–0.51), YKGH (0.63–0.81),
HSW (0.26–0.85), SLNG (0.47–0.82), and DM (0.61).

Phenotypic correlations

We studied the degree of relationship between the traits
in each season by estimating the Pearson’s (r) pairwise
correlation coefficients (Supplementary Fig. S1). Across
all the seasons, PLHT was found positively correlated
with LLN, LWD, PWD, PBR, and YPP (r = 0.13 to
0.27), however, it was negatively correlated with SLN
and SLNG (r = − 0.12 to − 0.15). LLN was positively
correlated with pod-attributing traits, namely, PLN,
PWD, and SLN (r = 0.12 to 0.33). Among yield-
contributing traits, PPP showed strong positive correla-
tions with PBR, YPP, and YKGH (r = 0.37 to 0.78) in
Patancheru location and low correlations (r = 0.17 to
0.22) in Dharwad location. However, PPPwas negatively
correlated with pod-attributing traits, PLN, PWD, and
SLN (r = − 0.18 to − 0.24). Among kernel traits, SLNG
was positively correlated with HSW, YPP, and YKGH
(r = 0.13 to 0.36), while it was negatively correlated with
many agronomic traits, for instance, DF, PLHT (r = −
0.12 to − 0.15), SLN, PWD, PLN (r = − 0.14 to − 0.29),
and LLN (r = − 0.14 to − 0.30). HSW showed low to
strong positive correlations with SLN, PWD, and PLN
(r = 0.26 to 0.61).

Main effect QTLs (M-QTLs) for agro-morphological
traits

The QTL analysis revealed a total of 62 M-QTLs at 39
genomic regions across ten traits, scattered on 15 different
LGs. (Table 1; Supplementary Table S2; Fig. 2).M-QTLs
could not be detected for LWD, PLN, PWD, and DM. A
maximum of 20 M-QTLs were detected for PLHT
followed by nine for YPP, eight for HSW, and seven
each for PPP and SLNG. DF and YKGH had three M-
QTLs each, while LLN and SLN had twoM-QTLs each.
PBR was detected with a solitary M-QTL. Five M-QTLs
controlled two traits each. For instance, a M-QTL
mapped at 65.21 cM at GM1955-GM1007 on AhV
governed PPP and HSW. M-QTL at 0.01 cM in
PM377-TC1A01 region on AhVI governed YPP and
YKGH. Similarly, a M-QTL at 7.61 cM within
TC1A01-S108 contributed for SLN and HSW.
PPP and YPP were governed by a single M-QTL
(22.11 cM) in the region GM1097-TC7C06 on AhVI.

PPP and YKGH were governed by an M-QTL at
12.51 cM within GM1536-GM2301 on AhXV.

Contribution of M-QTLs in terms of PVE ranged
from 3.84–15.06%. Six M-QTLs were considered to
be major since the PVE was more than 10%
(Supplementary Fig. S2). The highest PVE of 15.06%
was recorded by a M-QTL at 14.51 cM within
IPAHM103-GM1954 on AhXV for YPP. Another M-
QTL at 20.51 cM with the same marker interval had
13.40% PVE towards SLNG, which was also governed
by single M-QTL at 10.01 cM with GM2009-GM1536
on AhXV with 14.04% PVE. YPP was governed by a
major M-QTL at 15.11 cM within GM1386-GM1162
on AhXIV with PVE of 13.56%. One M-QTL at
61.71 cM within TC3A12-GM1955 on AhV recorded
a PVE of 11.57% for PLHT. Another M-QTL at
60.71 cM within GM1076-Seq5D05 on AhXVIII
governed PPP with a PVE of 10.48%. These M-QTLs
were detected with high LOD (more than 5.0). Interestingly,
the favorable alleles at all the major M-QTLs were
contributed by GPBD 4.

The M-QTL at 71.51–73.51 cM within GM633-
PM179 on AhV with a maximum PVE and LOD of
9.67 and 7.09%, respectively towards PLHTwas detected
in five different environments. PLHTwas also governed
by a stable M-QTL at 0.01–1.91 cM within Seq7H06-
IPAHM176 on AhXII with a maximum PVE and LOD
of 7.12 and 5.03%, respectively which appeared across
four environments. One M-QTL at 63.21–65.21 cM
within GM1955-GM1007 on AhV also controlling
PLHT appeared in three environments with a maximum
PVE and LOD of 6.18 and 3.49%, respectively. The
favorable allele at this stable M-QTL was contributed
by GPBD 4. Stable M-QTLs appearing in two environ-
ments were detected for LLN, (7.61–12.71 cM, TC1A01-
S108, AhVI), YPP (56.11–60.11 cM, GM1062-
GM2638, AhVII), YKGH (0.01 cM, PM377-TC1A01,
AhVI), and HSW (70.51–71.51 cM, GM633-PM179,
AhV). GPBD 4 contributed for the favorable allele at
the stableM-QTL for LLN,YPP, andYKGH,while TAG
24 contributed the favorable allele at the stable M-QTL
for HSW. However, the major M-QTLs appeared in
any one environment.

Co-localization of M-QTLs

It was interesting to notice that 16 genomic regions
consisted of co-localized M-QTLs for various traits
(Supplementary Fig. S3). Four genomic regions/
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clusters were identified where QTLs were detected for
more than three traits in the linkage groups AhV, AhVI,
AhXV, and AhXVIII. For instance, a 4.9-cM region
(GM633-PM179) on AhV mapped at position 70.41–
70.51 cM carried four co-localized M-QTLs contribut-
ing for PLHT, YKGH, HSW, and SLNG, and was
detected in six environments (R4EI, R4EII, R4EIII,

R4EIV, R4EV, and R4EVI) explaining 5.97–9.67%
PVE. Similarly, the M-QTL with flanking markers
TC1A01-S108 in the LG AhVI (7.61–12.71 cM) was
found to be clustered for traits LLN, SLN, and HSW in
R4EII, R4EIII, R4EIV, and R4EVand it explained 5.34–
8.65% PVE. Another co-mapped M-QTL (GM1536-
GM2301) for PPP, YKGH, and HSW detected on

Table 1 Main effect QTLs (M-QTLs) detected in composite interval mapping (CIM) analysis for 14 agro-morphological traits in RIL-4
population

Trait Number of M-QTLs PVE % Environment Source of favorable allele

Days to flowering (DF) (days) 3 4.92–6.82 R4EI TAG 24, GPBD 4

Plant height (PLHT) (cm) 20 3.84–11.57 R4EI–R4EVII GPBD 4, TAG 24,

Leaf length (LLN) (mm) 2 4.14–8.65 R4EIII, R4EIV, R4EV GPBD 4

Leaf width (LWD) (mm) – – – –

Primary branching (PBR) 1 5.94 R4EI GPBD 4

Pods per plant (PPP) (mm) 7 3.91–10.48 R4EI, R4EII, R4EIV, R4EV GPBD 4, TAG 24

Pod length (PLN) (mm) – – – –

Pod width (PWD) (mm) – – – –

Seed length (SLN) (mm) 2 4.30–5.34 R4EII GPBD 4, TAG 24

Yield per plant (YPP) (gm) 9 5.06–15.06 R4EII, R4EIV, R4EV, R4EVII GPBD 4, TAG 24

Yield Kg per hectare (YKGH) (kg) 3 4.17–8.20 R4EII, R4EIII GPBD 4

Hundred seed weight (HSW) (gm) 8 5.68–9.14 R4EI, R4EIII, R4EIV, R4EV, R4EVII TAG 24, GPBD 4

Shelling percentage (SLNG) (%) 7 5.03–14.04 R4EI, R4EIV GPBD 4, TAG 24

Days to maturity (DM) (days) –

AhXIII

TC1E010.0
PM7311.3
Seq2D12B32.0
TC9F0448.2
TC1B0267.0
Seq18E0773.3

AhII

TC7E040.0
GM269127.2
Seq19D0957.7
Seq19G0782.2
GM171791.8
Seq18A05 Seq18A05b
GM74592.5
Ah-4-0494.0
AC3D0794.5
PM397.7
PM434100.2
TC2C07118.0
TC4F02135.4
GM2215143.7
Seq13E06158.2
GM2206165.8

AhIII

PM4180.0
PM18314.2
PM5018.3
TC11B0430.8
GM155547.9
IPAHM27262.8
Seq19D0666.9
GM164177.0
GM208487.3

AhIV

GM18780.0
IPAHM35627.0
GM157743.2
TC3A1255.7
GM195563.2
GM100768.5
GM63371.5
PM17975.4
seq11C0881.8
TC6E0196.9
GM1988118.8
GM1989139.2

AhV

PM3770.0
TC1A017.6
S10810.7
GM109722.1
TC7C0626.5

AhVI

IPAHM3950.0
TC5A079.6
GM224613.0
GM258920.6
GM248030.5
GM131142.6
GM106254.1
GM263860.1
GM263761.8
GM231378.7

AhVII

GM25360.0
GM198624.5
IPAHM60632.2
GM250433.0
GM2746 GM2689
GM2690 GM66033.3
Ah-4-10135.2
TC9F10 TC6H0341.5
GM176050.5

AhVIII

GM14830.0
GM197921.5
TC2D0831.8
GM160343.0
TC5A0645.9
Seq14H0651.3
PM43653.4
Lec-1 gi110756.8
Seq7G0265.7
GM212074.6
GM189391.8
Seq17C09104.8
GM2584127.6

AhIX

IPAHM407c0.0
GM242520.6
GM244439.8
GM88459.6
GM199162.0
PM13766.8
GM67068.9
Seq19A0572.1
TC1A0274.3
IPAHM52477.8
TC3H0789.2
TC4D09109.4

AhX

Seq7H060.0
IPAHM1761.9
Seq3E109.8
TC3E0519.4
TC7H1123.2
GM253130.0
PM67545.5
GM157364.7
GM100987.8
Seq8D09117.9

AhXII

GM26870.0
GM138615.1
GM116234.5
GM102151.5
GM273073.6
GM174098.5
GM1846118.2

GM1773158.1
GM840174.1
GM912192.4

AhXIV

Seq15C120.0
GM24829.2
GM248113.2
IPAHM10820.8
GM226534.5
TC4E0943.9
GM195947.2
IPAHM12148.5
GM144556.9
Seq17F0674.7
TC11H0693.0
GM1089114.6

AhXVII

TC11F120.0
TC2G0521.3
TC4G1032.8
GM62434.3
TC9H0936.1
GM100042.8
GM107648.7
Seq5D0562.9
GM206768.7

AhXVIII

GM20090.0
GM153610.5
GM2301 GM207912.8
IPAHM10314.5
GM195431.9
TC4G0239.7
Seq2B1055.9
GM205377.0
GM199689.3
GM188399.8
GM1502116.5

AhXV

R4EVI 

R4EI R4EII R4EIII 

R4EIV 

R4EVII 

R4EV 

ahFAD2A0.00
TC5D0635.00
GM191152.50
pPGSseq17E0361.70
TC1D0267.30
GM225993.90
pPGSseq18G01105.30
pPGSseq19B01123.10
GM2407137.20
TC3E02152.00

PLHT DF 

YPP YKGH HSW 

SLNG 

SLN 

LLN 

PPP PBR 

Fig. 2 Genetic linkage map showing the location of main effect QTLs identified using composite interval mapping (CIM) for agro-
morphological traits among the RILs of peanut
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AhXV at 10.51–12.51 cM appeared in two (R4EI and
R4EII) of the seven environments, which explained
4.17–8.82% PVE. One of the major M-QTL
(IPAHM103-Seq19D6/IPAHM103-GM1954) was
mapped on AhXV (14.51–20.51 cM), responsible for
rust resistance exhibited pleiotropic effects for two
yield-contributing traits such as YPP and SLNG
explaining 15.06 and 13.40% PVE, respectively. A M-
QTL on AhXVIII flanked by markers GM1076-
Seq5D05 mapped at position 58.71–62.91 cM was co-
localized for the traits like PLHT (R4EIII), PBR (R4EI),
PPP (R4EI), and SLN (R4EII) with 4.30–10.48% PVE
(Supplementary Table S2). Apart from these clusters,
M-QTLs for PLHT, PPP, and HSW were tagged with
markers GM1955-GM1007 on LG AhV (63.21–
65.21 cM) and were detected in four (R4EIII, R4EIV,
R4EV, and R4EVI) of the seven environments that
accounted for 5.11–8.06% PVE. A co-localized M-
QTL for PLHT and SLNG in the marker interval of
TC3A12-GM1955 on LG AhV was detected only in
R4EI and accounted for 5.52–11.57% PVE. This M-
QTL was detected at high LOD (6.37) and had a major
effect on PLHT (11.57% PVE). The M-QTL flanked by
GM2009-GM1536 mapped on AhXV (2.01–10.01 cM)
co-segregated with HSWand SLNG accounted for 6.17
and 14.04% PVE, respectively.

Of the 16 co-mappedM-QTLs, eight minor effect M-
QTLs co-segregated with a combination of two traits
with PVE ranged from 3.84–9.73%. These QTL regions
included PM137-GM670 (PLHT and YPP),
IPAHM356-GM1577 (PLHT and HSW), PM377-
TC1A01 (YPP and YKGH), Seq7H06-IPAHM176
(PLHT and LLN), TC2G05-TC4G10 (PLHT and
PPP), TC3H07-TC4D09 (DF and YPP), GM1097-
TC7C06 (PPP and YPP), and gi1107-Seq7G02 (DF
and SLN).

Epistatic QTLs

An effort was made to check theM-QTLs that interacted
with each other and to measure the nature and the extent
of interaction. In total, 24 E-QTLs were mapped for all
traits except LWD, PBR, and PPP (Table 2; Supplemen-
tary Table S3; Fig. 3). Of these, 16 E-QTLs showed
significant additive × additive epistasis × environment
(AAE) interactions (0.01–2.81% PVE) for ten traits
whereas other eight E-QTLs showed only additive ×
additive (AA) effects (0.03–4.49% PVE). Among 24
E-QTLs, one E-QTL pair was mapped for DM and

PWD, two each for DF, PLN, SLN, YPP, YKGH, and
SLNG, three for LLN and PLHT, and four for HSW
were identified. In general, PVE by E-QTLs was very
low due to epistatic interactions. The PVE for E-QTL
was observed for SLN (4.28–4.49% PVE) followed by
PLN (1.21–3.34% PVE), SLNG (1.75–3.03% PVE),
PLHT (1.71–2.91% PVE), YKGH (1.55–2.41% PVE),
and HSW (0.36–2.41% PVE).

Of the 16 E-QTLs, only five of them involved theM-
QTLs. For instance, anM-QTL at TC3A12-GM1955 on
AhV showed an epistatic (additive × additive) interac-
tion with the M-QTL at GM670-Seq19A05 on AhX
governing PLHT with a PVE of 1.21%. Such epistatic
interactions were also observed for TC5A06-Seq14H06
(AhIX) × GM1536-GM2301 (AhXV) influencing
PLHT × PPP, PLHT × YKGH, and PLHT × HSW,
and TC9F04-TC1B02 (AhII) × GM1555-IPAHM272
(AhIV) influencing SLNG × DF. TC3A12-GM1955 ×
GM670-Seq19A05 and TC9F04-TC1B02 × GM1555-
IPAHM272 also showed QE (additive × additive ×
environment) interactions. It was interesting to note that
the M-QTL at TC3A12-GM1955 which showed epi-
static interaction was a major M-QTL.

Discussion

Yield and yield-contributing traits are quantitative in
nature and show complex inheritance because their phe-
notypic expression is dependent on a combination of
minor genes, modifiers, and environments (Kover et al.
2009). Genetic dissection of potential genomic regions
harboring QTLs associated with these traits is expected
to reveal the genetic control of the trait. Identification of
QTLs with main effects and epistatic effects is essential
for the efficient marker-assisted selection (MAS) aimed
at improving breeding efficiency (Bocianowski 2013).
An epistatic QTL implies that the effects of single-locus
QTLs are mostly dependent on the genotypes of other
loci. Thus, breeding programs have to take into account
the epistatic effects while employing QTLs.

The classic example for identifying the main-effect
QTLs in peanut are for resistance to rust and late leaf
spot and high oleic acid which were successfully de-
ployed in developing molecular breeding products in
peanut (see Vishwakarma et al. 2017). There have been
some reports of using epistatic QTLs in plant breeding
to confirm the universality and the importance of epis-
tasis between QTLs and provide useful information for
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Table 2 Epistatic QTL pairs detected for agronomic traits in RIL-4 mapping population

Trait Number of E-QTLs AA (PVE %) Environments (AAE)

Days to flowering (DF) (days) 2 1.20–1.27 R4EI, R4EIII

Plant height (PLHT) (cm) 3 1.71–2.91 R4EIV, R4EV

Leaf length (LLN) (mm) 3 0.03–1.12 R4EIV

Leaf width (LWD) (mm) – – –

Primary branching (PBR) – – –

Pods per plant (PPP) (mm) – – –

Pod length (PLN) (mm) 2 1.21–3.34 R4EIII

Pod width (PWD) (mm) 1 3.34 –

Seed length (SLN) (mm) 2 4.28–4.49 R4EIII

Yield per plant (YPP) (gm) 2 0.64–0.88 R4EV

Yield Kg per hectare (YKGH) (kg) 2 1.55–2.41 R4EIII

Hundred seed weight (HSW) (gm) 4 0.36–2.02 R4EIV

Shelling percentage (SLNG) (%) 2 1.75–3.03 R4EIV

Days to maturity (DM) (days) 1 1.81 R4EI

AA additive × additive interactions, AAE additive × additive epistasis × environment

Fig. 3 Epistatic (E-QTLs) QTLs identified for agro-morphologi-
cal traits among the RILs of peanut. In this figure, the brown
circumference of the circus are linkage groups (LGs) with marker

positions depicted as black cross lines within LGs. The interacting
QTL pairs are represented with network lines inside the circus plot
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improving plant height via heterosis and QTL
pyramiding in rice (Zhu et al. 2015).

Most of the QTL analysis conducted for agronomic
traits in peanut till date reported just M-QTLs and there-
fore provided no idea on environment interactions
(Kolekar et al. 2016; Hake et al. 2017; Luo et al. 2017a;
Luo et al. 2017b). However, few studies provided infor-
mation on both type of QTLs (M-QTLs and E-QTLs) for
traits such as drought-related traits (Ravi et al. 2011;
Gautami et al. 2012), fatty acids (Pandey et al. 2014b;
Wang et al. 2015), and pod- and kernel-related traits
(Chen et al. 2016a). The detailed information on main
effect and environment interactions for the loci associated
with traits provide better understanding on their contribu-
tion towards trait development, which helps in devising
strategy for improving the studied trait through different
available GAB approaches.

In this study, M-QTLs and E-QTLs were identified
for the important agro-morphological and productivity
traits from a RIL mapping population which was
phenotyped for multi-seasons at multiple environments.
In general, phenotypic and genotypic variability and
heritability estimates were high for majority of the traits
indicating to low G × E interactions. Nevertheless, low
heritability (for YPP in R4EIV and HSW in R4EII)
indicated low genetic variability due to the influence
of environment on these traits. Strong positive correla-
tions between most of the yield-related traits indicated
the possibility of common genes/pathways operating at
molecular level, thus sharing common genomic regions
whereas negative correlation among PLHT with PLN,
SLN, and SLNG; PPP with PLN, PWD, and SLN;
SLNG with DF, PLHT, SLN, PWD, PLN, and PBR
indicates the possibility of independent inheritance of
these traits. In addition, the strong positive correlations
among traits can help in simultaneous improvement of
traits through modern breeding approaches.

The RIL population with high variability and normal
distribution of means was considered for QTL analysis
using a genetic map reported by our group (Sujay et al.
2012). One or more M-QTLs were detected for ten
traits, while noM-QTLs could be detected for four traits
(LWD, PLN, PWD, and DM) probably due to non-
significant differences among the RILs and skewed
distribution of means. FiveM-QTLs governed two traits
each, and these traits (PPP, SLN, YPP, YKGH, and
HSW) were significantly and positively correlated in
many environments. Of these 62 M-QTLs, only six
were major (PVE > 10%) and they governed YPP

(13.56 and 15.06%), SLNG (13.40 and 14.04%), PLHT
(11.57%), and PPP (10.48%). These M-QTLs were
detected with at least 5.0 LOD. GPBD 4 contributed
the favorable alleles at all the major M-QTLs, indicating
a possibility of using this parent as donor in the
breeding programs.

Stability of the M-QTL is an important parameter
deciding the utility of QTLs. Though none of the major
M-QTLs were stable across the environments, a few
with relatively high PVE were stable. For PLHT, a M-
QTL (71.51–73.51 cM) on AhV with a maximum PVE
and LOD of 9.67 and 7.09%, respectively was found
stable across five environments. Another M-QTL on
AhXII for PLHT with a maximum PVE and LOD of
7.12 and 5.03%, respectively appeared across four en-
vironments. Likewise, stable M-QTLs were observed
for LLN (7.61–12.71 cM, TC1A01-S108, AhVI), YPP
(56.11–60.11 cM, GM1062-GM2638, AhVII), YKGH
(0.01 cM, PM377-TC1A01, AhVI), and HSW (70.51–
71.51 cM, GM633-PM179, AhV).

Pleiotropic M-QTLs (QTLs governing multiple
traits) and co-localized M-QTLs (QTLs located in adja-
cent genomic regions) are important for the simulta-
neous improvement of multiple traits. In this study, five
pleiotropic M-QTLs governing PPP + HSW, YPP +
YKGH, SLN + HSW, PPP + YPP, and PPP + YKGH
were identified. At sixteen genomic regions, the M-
QTLs governing two to four productivity traits were
co-localized. Marker-assisted breeding for these traits
could be favored due to pleiotropy and co-localization
of the M-QTLs. Such co-localized QTLs were also
observed in the previous studies (Ravi et al. 2011;
Gautami et al. 2012; Sujay et al. 2012; Pandey et al.
2014b; Wang et al. 2015) for traits like drought, foliar
diseases, and fatty acid contents.

A previously identified marker linked to rust resis-
tance (Khedikar et al. 2010; Sujay et al. 2012) was found
to be associated with YPP (15.60% PVE) and SLNG
(13.40% PVE) in R4EIV in this study. The introgression
of this genomic region in the elite peanut varieties has
not only enhanced rust resistance but increased the yield
by 30–70% (Varshney et al. 2014; Yeri and Bhat 2016;
Kolekar et al. 2017). This genomic region was dissected
to identify genes (Pandey et al. 2017b), and the
transcriptomic analysis showed differential expression
of these genes among the genotypes differing for LLS
resistance (Han et al. 2017).

Inter-allelic interactions among two QTLs/genes lead
to E-QTLs, which play a key role in controlling trait
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expression, and are considered major components con-
trolling qualitative and quantitative traits (Yu et al.
1997). In the present study, 24 E-QTLs were identified
by two-locus analysis accounting for small effects (<
5%) compared to single locus main effect QTLs.
This showed that E-QTLs associated with agro-
morphological traits encompass QTL interactions QTL
× environment (QE) interactions. QTL with more than
one digenic interactions was observed in the present
study; of which, 16 also showed QE interactions. Five
epistatic QTLs involved the M-QTLs identified in this
study, and they influenced PLHT × PLHT, PLHT × PPP,
PLHT × YKGH, PLHT × HSW, and SLNG × DF.
However, in all these cases, the PVE was relatively
low (0.64–15.5% PVE), and the major M-QTLs were
not involved in any epistatic interactions, indicating that
they can be considered for marker-assisted breeding
without considering the need for transferring their
interacting QTLs, which could simplify the breeding
program.

Conclusions

The present study identified several major and mi-
nor effect M-QTLs for various economically impor-
tant agro-morphological and productivity traits. Six
major QTLs were detected for yield-attributing
traits that can be validated using either mapping
populations with different genetic background or
germplasm lines and later can be utilized in peanut
improvement programs using marker-assisted selec-
tion (MAS). In the present study, the favorable
alleles at most of the M-QTLs and E-QTLs were
contributed by GPBD 4, thereby easing the process
of their transfer to the elite genotypes. The epistatic
effects were not very high for the small effect M-
QTLs and major effect M-QTLs, which again
would suggest a relatively simple backcross breed-
ing scheme. With the current next generation se-
quencing (NGS) and next generation mapping
(NGM), the genomic regions contributing signifi-
cantly for the productivity traits can be dissected
for the candidate gene(s).
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