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Abstract 



ABSTRACT 

MAPPING AND MODELING GROUNDNUT GROWTH AND PRODUCTIVITY IN 

RAINFED AREAS OF TAMILNADU 

By 

M. DEIVEEGAN 

Degree : Doctor of Philosophy (Agriculture) in Agronomy 

Chairman :   Dr. S. Pazhanivelan, Ph. D., 

Professor  and Head  

Department of Remote Sensing and GIS, 

Tamil Nadu Agricultural University, 

Coimbatore – 641 003, Tamil Nadu 

Year : 2017 

 

A research study was conducted at Tamil Nadu Agricultural University, Coimbatore 

during kharif and rabi 2015 to estimate groundnut area, model growth and productivity and 

assess the vulnerability of groundnut to drought using remote sensing techniques. 

Multi temporal Sentinel 1A satellite data at VV and VH polarization with 20 m spatial 

resolution was acquired from May, 2015 to January, 2016 at 12 days interval and processed 

using MAPscape-RICE software. Continuous monitoring was done for ground truth on crop 

parameters in twenty monitoring sites and validation exercise was done for accuracy 

assessment. Input files on soil, weather and management practices were generated and crop 

coefficients pertaining to varieties were developed to assess growth and productivity of 

groundnut using DSSAT CROPGRO-Peanut model. Outputs from remote sensing and 

DSSAT model were assimilated to generate LAI thereby groundnut yield spatially and 

validated against observed yields. Being a rainfed crop, vulnerability of groundnut to drought 

was assessed integrating different meteorological and spectral indices viz., Standardized 

Precipitation Index (SPI), Normalized Difference Vegetation Index (NDVI) and Water 

Requirement Satisfaction Index (WRSI). 

Spectral dB curve of groundnut was generated using temporal multi date Sentinel 1A 

data.  A detailed analysis of temporal signatures of groundnut showed a minimum at sowing 

and a peak at pod development stage and decreasing thereafter towards maturity. Groundnut 



crop expressed a significant temporal behaviour and large dynamic range (-11.74 to -5.31 in 

VV polarization and -20.04 to -13.05 in VH polarization) during its growth period. 

Groundnut area map was generated using maximum likelihood classifier integrating 

multi temporal features with a classification accuracy of 87.2 per cent and a kappa score of 

0.74. The total classified groundnut area in the study districts was 88023 ha covering 17817 

and 22582 ha in Salem and Namakkal districts during kharif 2015 while Villupuram and 

Tiruvannamalai districts accounted for 22722 and 24903 ha respectively during rabi 2015. 

Blockwise statistics on groundnut area during both seasons were also generated. 

To model growth and productivity of groundnut in DSSAT, weather and soil input 

files were generated using weatherman and ‘S’ build respectively besides deriving genetic 

coefficients for CO 6, TMV 7 and VRI 2 varieties of groundnut. 

Growth and development variables of groundnut were simulated using CROPGRO-

Peanut model i.e., days to emergence (7-9 days) and anthesis (25-32 days), canopy height  

(63 to 70 cm), maximum LAI (1.12 to 3.07) and biomass (4176 to 9576 kg ha-1 across twenty 

monitoring locations spatially. The resultant pod yield was simulated to be 1796 to 3060 kg 

ha-1 with a harvest index of 0.28 to 0.43. 

On comparison of LAI between observed (2.01 to 4.05) and simulated values  

(1.12 to 3.07) the CROPGRO-Peanut model was found to under estimate the values with R2, 

RMSE and NRMSE of 0.82, 1.10 and 34 per cent. However, the model predicted the biomass 

of groundnut with an agreement of 89 per cent through the simulated values of 4176 to9576 

kg ha-1 as against the observed biomass to 4620 to 9959 kg ha-1. 

The simulated pod yields of groundnut in the study area were 1796 to 3060 kg ha-1 as 

compared to the observed yields of 2115 to 2750 kg ha-1. The overall agreement between 

simulated and observed yields was 84 per cent with the average errors of 0.81, 342 kg ha-1 

and 16 percent for R2, RMSE and NRMSE respectively. 

LAI values of groundnut, generated spatially through suitable regression models using 

dB from satellite images and LAI from DSSAT, ranged from 1.31 to 3.23 with R2, RMSE 

and NRMSE of 0.86, 0.78 and 24 per cent respectively on comparison with observed values. 

Remote sensing based spatial estimation resulted in groundnut pod yields of 1570 to 3102 kg 

ha-1 across the study districts of Salem, Namakkal, Tiruvannamalai and Villupuram. In the  

20 monitoring locations, the pod yields were estimated to be 1912 to 2975 kg ha-1 as against 

the observed pod yields of 1450 to 2750 kg ha-1 with a fairly good agreement of 80 per cent. 



The vulnerability of groundnut was assessed using different drought indices viz., SPI, 

NDVI and WRSI. Considering SPI, out of the total groundnut area of 88023 ha, an area of 

86607 ha was found to be under near normal condition based on deviation of rainfall received 

during cropping season from historical precipitation. Similarly NDVI, an indicator of 

vegetation condition during the cropping season, showed that 14272 ha of groundnut area 

were under stressed condition during 2015. 

 An area of 40981 ha in Villupuram and Tiruvannamalai districts was found to be 

under chances of crop failure based on Water Requirement Satisfaction index (WRSI). Major 

groundnut areas of Salem district (14188 ha) was under medium risk zone. 

Considering overall vulnerability, whole district of Villupuram was adjudged as 

highly vulnerable to drought with regard to groundnut cultivation whereas four blocks of 

Salem, eight blocks of Namakkal and all the blocks of Tiruvannamalai were found to be 

moderately vulnerable to drought.  
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 Introduction 



CHAPTER I 

INTRODUCTION 

Groundnut (Arachis hypogaea L.) is one of the major oilseed crops grown in subtropical 

and tropical regions of the world. It is grown in different rainfall and temperature regimes on a 

variety of soils. Being a C3 crop, higher temperatures and other climatic factors may affect its 

productivity and distribution. Groundnut is grown in an area of 23.95 million ha worldwide with the 

total production of 36.45 million tonnes and an average yield of 1520 kg ha-1 (FAOSTAT, 2016). 

The major groundnut producing countries of the world are India, China, Nigeria, Senegal, Sudan, 

Myanmar and the USA.  

India occupied the second position in acreage and production of groundnut with an area 

of 4.77 million hectares and a production of 7.40 million tonnes during 2014-15. The average 

productivity was 1552 kg ha-1 (Directorate of Economics and Statistics, 2015). Seventy per cent 

of the groundnut area and production is concentrated in the four states viz., Gujarat, Andhra 

Pradesh, Tamil Nadu and Karnataka. In Tamil Nadu, it is the major oilseed crop grown under 

rainfed and irrigated condition accounting for 5.7% of the total cropped area. Groundnut is 

grown in an area of 3.3 lakh hectares with a production of 9.20 lakh tonnes during 2014-15 in the 

state. The average productivity was 2753 kg ha-1 (Directorate of Economics and Statistics, 2015). 

The districts viz., Tiruvannamalai, Vellore, Villupuram, Namakkal, Erode and Salem constituted 

54.9 per cent of the area under groundnut in Tamilnadu (Season and Crop report, 2014). 

In general, crop cultivated area is estimated through agricultural statistics acquired 

through field visits and interviewing the farmers which is extremely tedious, time-consuming, 

less precise, costly, inconsistent, too generalized and labour-intensive (Prasad et al., 2006). 

However, it is unable to provide timely information on geographical spatial distribution of areas 

under crop cultivation. 

 Remote sensing and crop modeling are two advanced tools that have been developed to 

address diverse agronomic issues at field-level and regional scales (Xie et al., 2008) to estimate 

crop area and yields. Remote sensing technique has the potential to provide information on 

agricultural crops quantitatively, instantaneously and above all, non-destructively over large 

areas. Remote sensing can also be used to derive crop phenological information (Karnieli, 2003 



and Xin et al., 2002). Remote sensing data are used to infer canopy biophysical variables like LAI 

(Leaf Area Index), Chlorophyll ‘a’ and ‘b’, which are involved in the important physiological 

processes governing crop growth and development. Monitoring of plants using remote sensing has 

many advantages such as detection of very large areas and easy derivation of vegetation indices. 

Vegetation indices have direct relation with the condition of the plants, so that they can be used for 

the purpose of yield estimation and creation of crop maps (Doraiswamy et al., (2003), Prasad et al., 

(2006) and Curnel and Oger (2007)). Doraiswamy et al., (2007) used MODIS data to predict yield 

of soybean with less than 20% standard deviation from official estimates. 

Precise estimation of groundnut yield at regional scale depends on accurate assessment of 

groundnut area and phenological development. The recent advancement of Synthetic Aperture 

Radar (SAR) sensors coupled with state-of-the-art automated processing, can provide sustainable 

solutions to this challenge by creating map and monitor one of the world’s most important 

oilseed crops. Different classification and crop detection approaches are available for crop 

mapping in which the rules and parameters are derived from agronomic knowledge of the 

groundnut crop and its management. SAR-based operational mapping of groundnut across a 

diverse range of environments is possible with the increasing availability of multi-temporal 

satellite data from SAR sensors viz., RISAT, Cosmoskymed, TerraSAR-X and Sentinel 1A. 

Crop models involve the mathematical function of various crop physiological factors 

such as photosynthesis, respiration, and relative growth rate to describe the crop growth changes 

under various climatic and environmental conditions. Crop models provide accurate estimation 

for small and homogenous fields but are less reliable for estimating yields of areas with 

heterogeneous soil and different agro climatic zones. In this context model becomes complicated 

as it needs several detailed inputs for simulation and makes the calibration process tedious 

(Sivarajan, 2011). 

Crop yield information is required for sustainable agriculture management and national 

food security assessment, and it is very difficult to collect those data on a regional scale at right 

time with accuracy. Traditional approaches to obtain the regional crop yields typically suffer 

from the limitations of cost, timeliness, accuracy and suitability on a regional scale. Recently, the 

rapid advancements of crop growth simulation and observation technologies have provided the 

ability to improve regional crop yield monitoring and forecasting (Luo et al., 2013).  



By making better use of crop growth models, crop growth processes can be effectively 

simulated under different environmental and management conditions while accounting for 

various limiting factors (e.g., soil, weather, water and nitrogen) in a dynamic manner. 

Nevertheless, improvements in simulation accuracy are often challenging when a crop model is 

used on a regional scale due to difficulties in obtaining regional model input and large uncertainties 

in regional parameters, including weather, soil, field management, crop cultivars, and other 

variables. The initial crop simulation models of Decision Support System for Agrotechnology 

Transfer (DSSAT) included the CERES-Wheat, CERES-Maize, SOYGRO, and PNUTGRO 

models (Hoogenboom et al., 2012). The CROPGRO module uses a daily time step for integration, 

starting at planting and ending at crop maturity or on the user-specified harvest date. 

Driven by input data on weather, soil, field management and genetic information, the 

DSSAT CROPGRO-PEANUT model can simulate daily phenological development, vegetative 

and reproductive plant development stages as well as assimilate partitioning, growth of leaves 

and stems, senescence, biomass accumulation and root system dynamics under stressed 

environments involving light, temperature, water, nitrogen, carbon and field management 

interventions. This model has been widely applied to field sites to assess potential productivity of 

groundnut and the influence of climate change on pod yields for better water and fertilizer 

management. Spatial simulation of groundnut growth and yield through CROPGRO-PEANUT 

model poses the option for regional scale yield estimation at varying soil, climate and 

management conditions. The use of crop growth models on large areas for diagnosing crop 

growing conditions or predicting crop production is hampered by the lack of sufficient spatial 

information about model inputs. Therefore, studies were focused on the integration of remote 

sensing and crop growth simulation models for crop growth monitoring and yield estimation 

(Thorp et al., 2012).  

Extreme climatic events such as severe drought can often cause devastating damages to 

agriculture and consequently to rural farmers. Rainfall is the primary driver of meteorological 

drought and there are numerous indicators based on rainfall that are being used for drought 

monitoring (Smakhtin and Hughes, 2007). Deviation of rainfall from normal i.e. long term mean 

is the most commonly used indicator for drought monitoring.  



Agricultural vulnerability to drought for any crop can then be understood as the potential loss 

of growth and yield to dry climatic conditions. Spectral vegetation and drought indices viz., 

NDVI, WRSI and SPI can effectively be used to assess vulnerability to agricultural drought in 

general and risk zones for crops in specific. 

Keeping the above points in view, a research study on ‘Mapping and modeling groundnut 

growth and productivity in rainfed areas of Tamilnadu’ was conducted in Namakkal, Salem, 

Villupuram and Tiruvannamalai districts using Sentinel 1A SAR satellite data, MODIS NDVI 

and DSSAT Crop Simulation Model with the following objectives: 

1. To map groundnut areas under rainfed condition using Remote Sensing. 

2. To model growth and productivity of groundnut under rainfed condition using DSSAT. 

3. To integrate Remote Sensing products with DSSAT for yield estimation at spatial level. 

4. To assess vulnerability of groundnut to drought in rainfed districts. 
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CHAPTER II 

REVIEW OF LITERATURE 

Groundnut is called as the ‘King’ of oilseeds. Groundnut is an important oilseed crop 

cultivated around the globe for its nutritional and trade values. Nearly, 80 per cent of the 

groundnut area in India is under rainfed condition. High variability in the onset of monsoons, 

rainfall distribution and intensity of rainfall over the growing season was observed for the last 

two decades. Crop yield information is highly essential for sustainable agriculture management 

and national food security assessment. Rapid advancements of crop growth simulation and 

remote sensing based earth observation technologies have provided the ability to improve 

regional crop yield monitoring and forecasting. Spatial estimation of groundnut area and yield, 

besides assessing its vulnerability to drought, will ensure sustained production on regional scale. 

The literature on various aspects related to the study on ‘Mapping and modeling groundnut 

growth and productivity in rainfed areas of Tamilnadu’ was collected and presented hereunder. 

2.1. Groundnut 

Groundnut is an annual herbaceous plant growing 30 to 50 cm tall. The leaves are 

opposite, pinnate with four leaflets (two opposite pairs; no terminal leaflet), each leaflet 1 to 7 

cm long and 1 to 3 cm broad. Groundnuts are known by many other local names such as 

earthnuts, peanuts, goober peas, monkey nuts, pygmy nuts and pignuts (APEDA, 2016). 

Groundnut have a rich nutty flavor, sweet taste, crunchy texture and over and above a relatively 

longer shelf life. 

The rainfall in most of the groundnut growing regions is low and erratic. Moreover, such 

high variability in precipitation is generally associated with a high probability of an early season 

drought (Virmani and Shurpali, 1999). 

2.1.1. Area and Production of Groundnut Crop 

The major groundnut producing countries in the world are India, China, Nigeria, Senegal, 

Sudan, Burma and the United States of America. In India 5.0 million hectares were cultivated 

with groundnut annually and the production was about 7.4 million tonnes (Season and crop 

report, 2015). Seventy percent of the area and seventy five percent of the production has been 

concentrated in the four states of Gujarat, Andhra Pradesh, Tamil Nadu and Karnataka. Andhra 



Pradesh, Karnataka, Tamil Nadu and Orissa have irrigated areas primarily during the rabi 

season. In these states groundnut production is mainly depends on rainfall. The irrigated areas 

form about six percent of the groundnut area in India. In Tamil Nadu, Tiruvannamalai district 

has the largest area under groundnut (Karunakaran et al., 2013). 

The area under groundnut in Tamil Nadu reduced by 45% from 6.56 Lakh hectares 

during 2000-01 to 3.4 lakh hectares during 2014-15 (Season and crop report, 2015).  

The productivity of groundnut varied widely and was dependent on factors such as soil fertility, 

season and the irrigation potential. The instability indices computed for decadal sub-periods at 

the state level also suggested that the variability was greater in case of productivity of groundnut 

than area because the bulk of the area was under rainfed condition. (Karunakaran et al., 2013). 

2.2. Remote sensing for Crop identification and acreage estimation 

2.2.1. Remote sensing in Agriculture 

 Remote sensing application in precision agriculture can be direct but most likely, is 

indirect. Rapid response is required to provide information about the condition of the current 

crop in time to make management input corrections to accomplish maximum yield  

(Basso et al., 2004). Ground based remote sensing for variable rate N management relies on  

real-time, sensor-based spectral measurement of crop nitrogen assessment and management  

(Link et al., 2005). 

 During the last two decades, development in remote sensing data acquisition capabilities, 

data processing and interpretation of airborne and satellite observations have made it possible to 

couple remote sensing technologies and precision crop management systems. With the advances 

in hyperspectral and multispectral remote sensing techniques and widespread interest in site-

specific farming applications, remote sensing technology could enable farmers to diagnose crop 

deficiencies in real time and rectify yield threatening problems immediately. Moreover, remote 

sensing techniques could significantly reduce input costs by allowing farmers to provide 

fertilizers, pesticides and water strictly on an "as needed, where needed" basis (Waheed, 2005). 

 New technological advances in high resolution and multispectral and hyperspectral 

sensors for ground, airborne and satellite platforms are helping to make precision crop 

management a reality. These sensors are designed to cover a wide range of the electromagnetic 

spectrum and are generating enormous amounts of data that must be processed, stored and made 



available to the user community. Capability of detection of plant stresses at the early growth 

stage whether by satellite, airborne observation or a land-based system is the next step in farming 

evolution (Waheed, 2005).  

 Airborne, space-borne and hand held remote sensing technologies are commonly 

used to investigate the spectral responses of vegetation to plant stress. Earlier studies utilized 

multispectral sensors which commonly collect four to seven spectral bands in the visible and 

near-infrared region of the electromagnetic spectrum. Advances in sensor and image processor 

technology over the past three decades now allow for the simultaneous collection of several 

hundred narrow spectral bands resulting in more detailed hyperspectral data. The availability of 

hyperspectral data has led to the identification of several spectral indices that have been shown to 

be useful in identifying plant stress (Govender et al., 2009).  

Geographic Information System (GIS) and remote sensing-based methods have been 

developed for mapping the crop cultivated areas (Gumma et al., 2011a, 2011b; Salam and 

Rahman, 2014) and forecasting crop production (Huang et al., 2013). Remote sensing platforms 

are able to acquire cropping season dynamics over a large geographic extent on timely in the 

form of images. These images, in general depict the crop-specific characteristics; which could be 

important in mapping crop areas and developing pre-harvest yield forecasting models. In 

addition, most of these methods were developed on the basis of exploiting spectral vegetation 

indices. 

 Multi-temporal hyperspectral and multi-spectral remote sensing data were used to 

estimate corn aboveground dry biomass accumulation and yields (Liu et al., 2010). The use of 

remote sensing for irrigation practices, water resource management, disease and insect 

management has been largely investigated (Elmetwalli et al., 2012). 

 

2.2.2. Synthetic Aperture Radar Data (SAR)   

Multi-temporal X-band SAR Single Look Complex (SLC) data are available from the 

Italian Space Agency (ASI/e-GEOS) and GISTDA (Geo-informatics and Space Technology 

Development Agency) for COSMO-SkyMed (CSK) data and from Info-Terra GmbH for Terra 

SAR-X (TSX) data. In all cases, data can be obtained in HH polarization with consistent 

incidence angles in each multi-temporal stack, ranging from 39o to 48o across sites. A large 



incidence angle is preferred, because (i) wind effects on water (in particular, during land 

preparation prior to transplanting) are significantly decreased (ii) the dynamic of the radar 

backscatter is larger and (iii) the spatial resolution is higher. CSK data are available from four  

X-band HH-SAR satellites with a 3.12 cm wavelength and a 16-day revisit period for the same 

satellite with the same observation angle. TSX is provided by one X-band HH SAR satellite with 

a 3.11 cm wavelength and 11 day revisit period with the same observation angle at Strip map 

mode (3 m resolution) with a footprint of 30 × 50 km and Scan SAR mode (10 m resolution) 

with a footprint of 100 × 150 km (Pazhanivelan et al., 2015). With the latest launches, Sentinel 

1A and 1B data is available from European Space Agency (ESA) at C band with spatial 

resolution of 5m and 20m with a temporal resolution of 12 days individually and 6 days in 

combination. 

2.2.3. Basic Processing of SAR Data for Multi-Temporal Analysis 

A fully automated processing chain was developed to convert the multi-temporal space-

borne SAR SLC data into terrain-geocoded σ° values. The processing chain is a module within 

the MAPscape-RICE software (Holecz et al., 2013). The basic processing chain included strip 

mosaicking, coregistration of images acquired with the same geometry and mode and time-series 

speckle filtering to balance differences in reflectivity between images at different times  

(De Grandi et al., 1997) and terrain geocoding, radiometric calibration and normalization. 

Further Anisotropic non-linear diffusion (ANLD) filtering was done to smoothen homogeneous 

targets, while enhancing the difference between neighboring areas. The filter uses the diffusion 

equation, in which the diffusion coefficient, instead of being a constant scalar, is a function of 

image position and assumes a tensor value (Aspert et al., 2007).  

2.2.4. Crop identification 

 Identification of crop types is the first step of crop monitoring system and crop 

yield forecasting. The traditional ground survey methods are difficult to acquire annual crop 

information due to the less economic efficiency and some features of agricultural production,  

viz. ,the large coverage, the strong seasonal, strong spatial heterogeneity, using remote sensing 

technology is feasible and effective way to solve this problem. The achievements are remarkable, 

since remote sensing was used for crop identification and area extraction, the technology and 

theory have been in continuous improvement (Shewalkar et al., 2014). The final outputs from 



remote sensing based observations are crop maps identifying crop types, delivered during the 

early growing season by using best performing input features with overall accuracy greater than 

86% reported by Villa et al. (2015).  

2.2.5. Crop acreage estimation 

 Crop acreage is the determining factor in crop production. Monitoring and estimating 

crop acreage at national scale is required in order to determine the national or regional food 

demand and supply balance, and to gauge social security. The information on acreage estimation 

is the backbone of Agricultural statistical system, if area has stronger inter annual variability 

while yield remains relatively stable.  

 Crop acreage estimation using remote sensing provides timely and reliable information 

(Potgieter et al., 2007). In the recent past, Department of Agriculture and Cooperation (DAC) 

and Department of Space (DOS) has taken active role in crop acreage estimation and crop yield 

forecast under FASAL project by integrating technological advancement and adoption of 

emerging methodologies, in particular, those of remote sensing and geographical information 

system. Weather data and real time crop information along with the remote sensing (RS) data 

were used to predict the crop yield at national and district level efficiently. Crop acreage 

estimation procedure broadly consists of identifying representative sites of various crops/land 

cover classes on the image based on the ground truth collected, generation of signatures for 

different training sites and classifying the image using training statistics. During the Kharif 

season, potential of microwave sensors operated in C-band was utilized for acreage estimation 

and crop monitoring, since the availability of cloud free data of optical sensors was difficult 

(Sellers, 1987). 

2.3. SAR Data on crop acreage estimation 

Crop discrimination is a critical first step for most agricultural monitoring systems. 

Optical remote sensing for crop monitoring has increased over the past several years and become 

one of the major civilian operational applications. However, several images acquired at specific 

times during the crop growth cycle are required to reach a suitable accuracy. This temporal 

constraint limits the use of optical data for operational applications because cloud cover may  

 



prevent or delay image acquisitions in many places. Space borne SAR imagery is able to observe 

the Earth’s surface independently under cloud cover and guarantees a temporal frequency of 

images throughout the growing period (Boerner et al., 1987). 

Bouman and Kasteren (1990) reported that the geometrical architecture of the crop 

canopy was a major factor that influenced the X band radar backscattering of wheat, barley, oats, 

sugar beets and potatoes. Row spacing, crop variety, lodging and ear orientation of barley had a 

large effect on radar backscattering. The architecture of the canopy also influenced the impact of 

soil background on radar backscattering from the whole crop. Even stubble and straw, which are 

theoretically relatively transparent to microwave, largely determine the radar backscattering of 

harvested fields. 

Yakam-Simen et al. (1999) discriminated and estimated the cultivated area of winter 

wheat, spring barley, potato, sugar beets, maize, peas, rapeseed and other crops using the isodata 

cluster (statistically objective technique to identify natural data grouping) method applied with 

ERS SAR data. 

Dirk et al. (2010) inferred the utility of a full polarization classification approach 

evaluated using airborne radar data. The data was collected in the growing season at two 

agricultural sites in Europe. Supervised approach was applied in the first and last step of the 

classification. The overall classification results ranged between 84.3% and 98% depending on 

number of observations dates and radar bands used for the supervised approach and substantially 

more thematic detail for the unsupervised approach. 

Moran et al., (2011) studied the sensitivity of synthetic aperture radar (SAR) backscatter 

(σo) to crop and soil conditions using RADARSAT-2 C-band quad-polarized SAR images  for 

larger fields viz., wheat, barley, oat, corn, onion and alfalfa in Barrax region of Spain. The results 

showed that the cross-polarized σo HV was particularly useful for monitoring both the crop and 

soil conditions and were the least sensitive to differences in beam incidence angle. The time series 

of σo offered reliable information about crop growth stage, such as jointing and heading in grain 

crops and leaf growth and reproduction in corn and onion. Pei et al., (2011) monitored the small 

rice fields of Southern China using TerraSAR-X data and achieved the accuracy of 90 per cent. 



Satalino et al., (2012) used the time-series Cosmo-Skymed SAR images of  

HH and HV polarization for land cover classification and soil moisture retrieval over an 

agricultural area located in Southern Australia. The classification accuracy has been assessed as a 

function of the polarization and the number of images analyzed. The results confirmed that the 

temporal information is crucial to improve the classification results. An overall accuracy of 

approximately 82 per cent was achieved. 

Jia et al., (2012) preferred C-band (ASAR) over X-band (Terra SAR-X) for separating 

winter wheat from cotton. Gong et al., (2013) conducted a study to classify different vital types 

of crops in Baden Wurttemberg, from the backscattered value of temporal TerraSAR-X data.  

Two different test sites were considered whose harvesting and sowing season were same. The 

main purpose of this study was to check whether a backscattered value of one crop  

(wheat and rapeseed) is same in both of the test sites or not. The rules based and object oriented 

classification was done in e-cognition software and the overall accuracy of 90.62 per cent and 

78.43 per cent was reported for the upper part and lower part of study area respectively. 

Haldar et al., (2014) focused on the utility of multi dimension SAR data for crop 

condition assessment of various important tropical crops in India. The VV/VH polarization was 

found to be better for discrimination of wheat, mustard and cotton as compared to HH/HV 

polarization. Result showed that the backscatter values increased with biomass in early to mid-

crop stages of cotton and mustard but extrapolation of trend indicated saturation at higher level 

of biomass in C-band. 

Asilo et al., (2014) generated complementary and comprehensive rice crop information 

from hyper temporal optical (MODIS) and multi-temporal high-resolution SAR imagery (Terra 

SAR-X). MODIS was used to generate cropping calendar, cropping intensity, cropping pattern 

and rice ecosystem information. Results showed that the multi-temporal high spatial resolution 

SAR data was effective for mapping rice areas and reported an overall accuracy of 90 per cent. 

Schuster et al., (2015) investigated the usefulness of multispectral (Rapid eye) and a SAR 

(Terra SAR-X) data to classify grassland habitats of reserved area in North Eastern Germany. 

The SVM approach was used to differentiate seven grassland classes. The result of the 

classification showed that the time series data could achieve very high classification accuracy. 

The highest accuracies were obtained using the Rapid Eye NDVI-NIR-RE stack, closely 

followed by the Terra SAR-X stack. 



The potential of multi-temporal ALOS PALSAR images was demonstrated for the 

classification of beans, beets, grasses, maize, potato, and winter wheat using k-nearest neighbor 

algorithm (k-NN) and traditional supervised classification method by Sonobe et al., (2015).  

The result showed that the traditional supervised classification method was superior to that of  

k-NN. Villa et al., (2015) utilized the classification tree approach for in-season crop mapping by 

integrating optical (Landsat 8 OLI) and X-band SAR (COSMO-SkyMed) data acquired over a 

test site in Northern Italy. Results highlighted the contribution of the X band backscatter (σ°) in 

improving mapping accuracy when compared to using the optical features only. 

2.3.1. Classification methods 

Image classification is a particular case of pattern recognition. The overall objective of 

the classification process is to automatically classify all pixels in an image into land cover 

classes based on the predefined classification model (Moran et al., 2011). A standard method of 

pixel-based classification involves supervised and unsupervised extrapolation from training sites 

to classify the images. Unsupervised classifications are performed based on the number of 

classes the user wishes to classify. The unsupervised classifications generally achieve lower 

accuracy results than supervised classification (Kavzoglu, 2009). Pixel values are then plotted 

and grouped to different characteristics or features belonging to a pixel set (Lu and Weng, 2007).  

Supervised classification is the technique most often used for the quantitative analysis of 

remote sensing image data with the concept of segmenting the spectral domain into regions  

that can be associated with the ground cover classes of interest to a particular application  

(McDermid et al., 2005). Under this supervised classification, various algorithms can be used to 

assign an unknown pixel classes. This algorithm can be divided into two general subgroups 

according to the assumption of whether each class is normally distributed or not. 

2.3.2. Maximum likelihood classification 

Maximum likelihood classification (MLC) method has been one of the most traditional 

classification methods in remote sensing. The MLC quantitatively evaluates both the variance 

and covariance of spectral response pattern while classifying an unknown pattern.  

An assumption is made that the distribution of the training set is Gaussian. Under this  

 

 



assumption, the distribution of a training set of a class can be completely described by the mean 

vector and covariance matrix. Given these parameters, we may compute the statistical probability 

of a given pixel being a member of a particular class. 

Chen et al. (2007) evaluated Wishart distribution using multi-temporal ENVISAT ASAR 

data for rice mapping. The Wishart Maximum Likelihood classifier recorded higher 

classification accuracy as compared to Maximum Likelihood classifier and Minimum Euclidean 

classifier. 

Panigrahy et al. (2009) used multi-date data AWIFS data for classifying crops based on 

their growing phenology and their difference in crop calendar. The bands providing the highest 

minimum Transformed Divergence (TD) were considered as the best bands for discriminating 

the crop classes. Based on this criteria , it was found that incorporating Red, Near Infrared (NIR) 

and Short Wave Infrared (SWIR) bands in maximum likelihood classification increased the 

overall accuracy in discrimination of winter crops like winter rice, groundnut, vegetables and 

other vegetation. Ying et al. (2010) utilized multi-temporal MODIS NDVI images to create a 

winter wheat mask on Landsat TM image to distinguish wheat from other crops. By using the 

class separability criteria, a set of selected 5 bands of Landsat TM image was used for winter 

wheat classification using Maximum Likelihood Classification technique. The study concluded 

that the selection of proper band and the application of a wheat mask increased the accuracy for 

winter wheat classification to 94 per cent. 

Bargiel and Herrman (2011) investigated the multi-temporal classification of agricultural 

land use based on high resolution spotlight Terra SAR-X images. A stack of l4 dual-polarized 

radar images acquired during the vegetation season have been used for two different study areas 

(North of Germany and South East Poland). The Maximum Likelihood classification was based 

on a high amount of ground truth samples. Overall accuracy for all classes was 61.78 per cent 

and 39.25 per cent for German and Polish region, respectively.  

Data acquired by Synthetic Aperture Radar (SAR) active sensors have also been 

exploited for crop mapping and monitoring, especially during the last two decades. C-band data 

have been used for mapping multiple crops (Moran et al., 2011). L-band data have been used 

too, although with generally poorer performance (Larranaga et al., 2012). More recently, with 

the launch of the TerraSAR-X and COSMO-SkyMed satellites, the use of X-band SAR data has 



largely expanded, mainly to the higher spatial and temporal resolutions and theoretical flexibility 

of these platforms (Bargiel et al., 2011). Concerning X-band SAR data, different polarimetric 

configurations have been tested for crop mapping, from vertical-based in (McNairn et al. ,2014) 

to horizontal-based polarization in (Satalino et al., 2012). 

The increasing demand for information on crop acreage for agricultural monitoring in 

support of private and public decision makers requires the production of reliable crop maps    

(Hao et al., 2015). Up-to-date information on agricultural land use is necessary for crop planning 

and management: e.g., for estimating biomass and yield, analyzing agronomic practices, 

assessing soil productivity, monitoring crop phenology and stress. Earth Observation (EO) 

techniques have been widely exploited in agriculture and agronomy for the advantages offered 

when compared to in situ and statistical surveys: frequency of acquisitions, synoptic view, and 

multi-dimensional content. Shama (2016) used Sentinel 1A VH SAR data for estimation of area 

under cotton and maize and reported that Maximum likelihood classifier was found to give 

higher accuracy (83.4%).  

2.4. Crop Simulation Model 

2.4.1. Crop weather relationship of Groundnut 

 Temperature in the range of 25 to 30oC is optimum for plant development of groundnut.  

The lower limit for germination of groundnut is  around 18oC. Temperature between 20 and 30oC 

resulted in 95 per cent germination. Flower formation is favoured when the variation between 

day and night temperature did not exceed 20oC.  Most of the flowers formed at a day temperature 

of 27oC, while a warm day (29oC) and a cool night (23oC) resulted the highest pod formation 

(Prasad et al., 2000). 

 Yield attributes like number of effective pegs, pod numbers and pod dry weight per plant 

of groundnut grown under semi-arid tropical conditions of India were positively influenced by 

minimum temperature and relative humidity during the crop growing period (Sindagi and Reddy 

1972). Bailey (1999) developed weather based advisories using temperature and relative 

humidity for determining conditions favorable for early leaf spot development in North Carolina, 

USA. Johnson et al., (1999) used leaf wetness counting for predicting the occurrence of late leaf 

spot in groundnut in Anantapur region of India. 



In India, groundnut yields were reported to be vulnerable from year to year because of 

large inter-annual variation in rainfall (Sindagi and Reddy, 1972).  Bhargava et al., (1974) 

reported that 89 per cent of yield variation over four regions of India could be attributed to 

rainfall variability from August to December. Challinor et al., (2003), analyzing 25 years of 

historical groundnut yields of India in relation to seasonal rainfall, concluded that, rainfall 

accounts for over 50 per cent of variation  in yield.  The favorable climate for groundnut is a well 

distributed rainfall of at least 500 mm during the crop-growing season with abundance of 

sunshine and relatively warm temperature.  A rainfall of 500 to 1000 mm will allow commercial 

production, although crop can be produced with 300 to 400 mm of rainfall. However  in many 

regions of the world, distances between meteorological stations mean that it is difficult to assess 

the likely weather conditions at intermediate locations (Azam-Ali et al., 2001). 

2.4.2. Crop simulation models 

Agricultural simulation models are a key component to test advances in agricultural 

technology and to predict crop responses to current and future climate forcing. Simulation 

models are robust tools to guide our understanding of how a system responds to a given set of 

conditions. Crop simulation models are increasingly being used in agriculture to estimate 

production potentials, design plant ideotypes, transfer agro technologies, assist strategic and 

tactical decisions, forecast real time yields and establish research priorities (Uehera and Tsuji, 

1993; Bannayan and Crout, 1999). International Benchmark Sites Network for Agrotechnology 

Transfer (IBSNAT) has integrated the process oriented dynamic crop simulation models into a 

single computer software package known as DSSAT(Decision Support System for 

Agrotechnology Transfer), is developed through the internationally collaboration work carried 

out under IBSNAT, U.S.A., across the globe (Jones et al. 2003). 

Since DSSAT crop models use daily weather data as input, this allows for using current 

weather conditions for evaluation of the models with experimental data. However, it also allows 

for scenario testing using long-term historical and future data for scenario evaluation which  

includes climate variability as well as climate change using future climate change scenarios. 

DSSAT integrates the soil, crop phenotype, weather and management options to simulate 

crop growth and development and to predict crop yield. The crop models require daily minimum 

and maximum air temperatures, precipitation and solar radiation, in addition to the crop 



management data (such as planting date, seed cultivar, soil type and nutrient loading).The output 

is end-of-season crop yield as well as nutrient, soil moisture and plant stress variables (Jones      

et al., 2003). Crop simulation models have been evaluated and used for many soil and 

environmental conditions across the world and have been successfully used in yield predictions 

(Jagtap and Jones, 2002). The use of crop growth models on large areas for diagnosing crop 

growing conditions or predicting crop production is hampered by the lack of sufficient spatial 

information about model inputs. Therefore, different studies have attempted to estimate crop 

yield by assimilating crop growth model and satellite data.  

Remote sensing and cropping systems modeling are two distinct technologies that  

have been developed to address diverse agronomic issues at field-level and regional scales  

(Batchelor et al., 2002; Xie et al., 2008). Although these technologies have often been studied 

independently, there is a growing interest in utilizing  information derived from remote sensing 

to update or drive cropping systems model simulations because these two technologies are 

naturally complementary (Inoue, 2003; Dorigo et al., 2007). These models involve the 

mathematical function of various crop physiological factors such as photosynthesis, respiration 

and relative growth rate to describe the crop growth changes under various climatic and 

environmental conditions. The model at times becomes complicated as it needs several detailed 

inputs for simulation and makes the calibration process tedious to perform (Sivarajan, 2011). 

Thorp et al., (2008) reported  that DSSAT has modules that allow the user to build model 

input files for spatial simulations across predefined management zones, calibrate the models to 

simulate historic spatial yield variability, validate the models for seasons not used for calibration 

and estimate the crop response and environmental impacts of nitrogen, plant population, cultivar, 

and irrigation prescriptions. 

The daily time-step simulation capabilities of cropping systems models are excellent for 

crop growth analyses in the temporal domain, whereas remote sensing images offer greater 

opportunity to understand spatial crop growth patterns. Conversely, detailed model input 

requirements have limited the use of cropping systems models for spatial crop growth analysis. 

With the integration of these technologies, the problems associated with one can be compensated 

by the benefits of the other. Remote sensing techniques have the potential to provide information 

on agricultural crops quantitatively on crop phenology (Karnieli, 2003; Xin et al., 2002). 



Knowledge of plant phenology is essential for most agro ecosystem models since it governs the 

partitioning of assimilate. Therefore, a precise knowledge of the phenological status of the plants 

will improve the results obtained by agro ecosystem models (Delecolle et al., 1992).  

Mishra et al., (2013) used a two source energy balance model i.e., Atmospheric Land 

Exchange Inverse (ALEXI) and the results indicated that the data were available at sufficient 

temporal resolution to drive the crop model in a realistic manner as compared to the rainfed 

model and observed corn yields with RMSE of 28%. In general, maize yield simulation by 

DSSAT under Guinea savanna agro-ecological conditions was good. Average predicted harvest 

maturity yields were very close to measured values with mean deviation of 336.0, RMSE of 

498.77, NRSME of 0.181 and simulated and observed mean yields of 3096 and 2750 kg ha-1 for 

the entire treatments, respectively. The mean difference between predicted and observed yield 

was not significant.  

2.4.3. DSSAT - CROPGRO-Peanut model 

Within the DSSAT crop growth model, CROPGRO-Peanut is a generic grain legume 

model that computes crop growth processes viz., phenology, photosynthesis, plant nitrogen, 

carbon demand and growth partitioning. In addition, the plant development and growth module 

is linked to soil-plant-atmosphere modules. Hence, the model has the potential for large area 

yield estimation by input of soil and daily weather data (Gracia et al., 2006). 

Boote et al. (1986) in a review article on modeling growth and yield of groundnuts 

described improvements to the ‘PNUTGRO’ model including addition of a hedgerow 

photosynthesis sub model to improve response to row spacing, seed rate and growth habit. They 

also included the Penman equation to incorporate vapour pressure deficit and wind speed to 

estimate evpotranspiration for arid regions; modification of functions for prediction of crop 

development; and modification of the effects of stress environments such as high temperature 

and vapour pressure deficit effect on partitioning. (Nokes and Young, 1991) showed that the 

‘PNUTGRO’ model efficiently simulate the groundnut growth and development. They perfectly 

predicted defoliation of leaf, which was in good agreement with the observed data. 

The CROPGRO-Peanut model was able to simulate and estimate yield in large area for 

the four major peanut producing provinces in China. To study the potential yield of peanut with 



regard to water demand, the approach was useful in comparing possible constrains. Further on, 

the model setting could be used for additional scenario and sensitivity analysis. The model 

showed a good fit between observed and simulated yield after the cross evaluation and validation 

procedure. Overall cross validation had a RMSE of 252 (model error = 7.37 %). Mean  

observed yield of all provinces was 3420 kg ha-1 with a mean simulated yield of 3422 kg ha-1  

(Knorzer et al., 2010). 

 Singh et al. (1994) has reported that in ICRISAT, Hyderabad in a collaborative research 

project at Anand, Anantapur, Bhavanisagar, Hissar and Ludhiana modified the functions for 

prediction of crop development in ‘PNUTGRO’ model and simulated the effect of stress 

environments such as high temperature and vapour pressure deficit on partitioning of 

photosynthates. They have used this model for predicting phenological development, light 

interception, canopy growth, dry matter production and yield of groundnut as influenced by row 

spacing and plant population.  

The peanut simulation model (Hammer et al., 1995) predicted peanut yield for given soil 

moisture and climate. The model used daily meteorological data (i.e. maximum and minimum 

temperature, solar radiation and rainfall) for predicting the yield. Leaf area index determined as a 

function of mean daily temperature and daily biomass accumulation was calculated as a linear 

function of the intercepted solar radiation. Both leaf area and biomass production were sensitive 

to the amount of soil-water available for transpiration. A simple soil-water balance took into 

account of rainfall, evaporation and transpiration throughout the year. Yield was calculated as a 

function of biomass production and growing conditions during yield formation. 

Kaur and Hundal (1999) at Ludhiana studied ‘PNUTGRO’ model to predict groundnut 

growth and yield in Punjab. They revealed that the simulated phenologic events showed 

deviations of only -3 to +3 days for flowering, -3 to +2 days for pegging and -4 to +2 days for 

physiological maturity of the crop. The model estimated the LAI to be within 95–108%  

(mean 101·5%) and shelling percentage to be within 93–108% (mean 100·5%) of the actual 

values. The model predicted the pod yields from 89 to 111% (mean 100%) and seed yield from 

90 to 110% (mean 100%) of the observed yields. (Gadgil et al. 1999) used the ‘PNUTGRO’ 

model, to study the growth and development of groundnut at ARS Anantapur. Heuristic model 

for pests/diseases was also used in conjunction with the ‘PNUTGRO’ model. The simulated 



variation for the period 1970-90 was found to be close to the observed district yield.  

This suggested that such models incorporated the direct impact of climate on growth and 

development as well as the indirect impact via triggering of pests and diseases. This model could 

be used for understanding the response of the groundnut yield to climate variability and in 

decision support systems for the region. 

Rao et al. (2000) suggested the optimum sowing window for rain-fed groundnut in the 

Anantapur (AP) region using the model ‘PNUTGRO’ which was validated for the region.  

The variation in the model yield had shown that the broad sowing window of 22 June – 17 

August presently used by the farmers minimizes the risk of failure. Within this broad window, 

sowing after mid - July enhanced the yields considerably. (Pandey et al. 2001) validated the 

‘CROPGRO’ model for groundnut under kharif seasons of 1997-2000 at Anand (Gujarat).  

The results revealed that the observed phenological dates were closely associated with the 

simulated ones. The decrease in pod yield with delayed sowing as observed in experiment was well 

depicted by the model. However, under high rainfall situations, the model simulated higher pod 

and haulm yield for both the varieties and these were not in agreement with the observed yields. 

CROPGRO peanut model was used by Parmar et al. (2013) to simulate the phenological 

events, yield and yield attributing characters of groundnut cultivars GG 2 and GG 20 in Gujarat. 

They found per cent error were between ± 13.2% for phenological stages and between ± 14% for 

yield and yield attributing characters of groundnut cultivars. 

 Singh et al., (2014) suggested that CROPGRO- Peanut model could be used to quantify 

the impact of climate change on groundnut productivity in different regions of India. It could 

also be used to quantify the possible benefits and prioritization of various agronomic adaptation 

options, individually or in combinations, to enhance and sustain groundnut productivity under 

climate change.  

Kumar et al. (2014) reported that CROPGRO-urid model satisfactorily simulated 

phenological events like anthesis, first pod day, physiological maturity and harvest maturity at 

Pantnagar with percent error between ± 1 to 5, while grain yield was simulated with per cent 

error between ± 0.44 to 3.72 %. 



The CROPGRO-Peanut model, calibrated and validated for many groundnut growing 

regions of the world, was used to study the spatial responses to various genetic and agronomic 

management practices under both baseline and climate change scenarios by using GIS and crop 

model based interface. Simulated crop yield and other maps generated under different 

management scenarios were used to communicate model predictions to various stakeholders 

(Kadiyala et al., 2015). He developed a methodology to spatial modeling of crop productivity for 

any crop in any region or country. The output of this methodology could aid scientists in 

prioritizing research and decision makers to understand the extent and status of climate change 

and its potential impacts on the productivity of various crops.  

CROPGRO-Peanut model was also used to quantify the impact of climate change on 

groundnut productivity and to evaluate various agronomic management practices for increasing 

its productivity at the target sites. The major components of the model were vegetative and 

reproductive development, carbon balance, water balance and nitrogen balance (Boote et al., 

1998). It simulated groundnut growth and development using a daily time step from sowing to 

maturity and ultimately predicted yield. The simulated physiological processes described crop 

response to the major weather factors including temperature, precipitation and solar radiation and 

included the effect of soil characteristics on water availability for crop growth. The minimum 

data set required to simulate a crop included site characteristics, daily weather data (solar 

radiation, maximum and minimum air temperatures and precipitation), physical and chemical 

properties of the soil profile and crop management data. The cultivar data included the genetic 

coefficients (quantified traits) which distinguished one cultivar from another in terms of crop 

development and growth (Singh et al., 2014). 

Biswal et al., (2014) observed that district average yield of wheat was close to the 

simulated grain yield over the years though the model under estimate LAI values. The temporal 

course of simulated LAI was given importance in order to evaluate the model performance. These 

simulated parameters were correlated with the spectral vegetation indices like NDVI and NDWI.  



2.4.4. Calibration and Validation of CROPGRO-Peanut and comparison of predicted and 

observed yield 

 The evaluation of model adequacy is an essential step of the modeling process because it 

indicates the level of accuracy of the model estimations (how closely model estimated values are to 

the actual values).  This is an important phase either to build up confidence on the current model or 

to allow selection of alternative models (Konikow and Bredehoeft, 1992; Oreskes, 1998). 

 Validation is a more robust, reliable method of measuring prediction accuracy.  It is the 

process of determining whether the conceptual model is an accurate representation of the actual 

system being analyzed and deals with building the right model.  Validation is the task of 

demonstrating that the model is a reasonable representation of the actual system, that it 

reproduces system behavior with enough fidelity to satisfy analysis objectives. In practice, model 

validation aims at increasing confidence in model accuracy as much as possible, which is 

partially determined by the intended uses of a specific model and project objectives 

(Confalonieri et al., 2005). 

 Evaluation of simulated versus observed outputs by means of numerical indices and test 

statistics is an accepted action of the modeling practice. Mean bias (MB), the mean difference 

between model estimates and observations, is likely to be the oldest statistic to assess model 

accuracy (Cochran and Cox, 1957). Mean bias is quite used in model validation, but one 

statistics that normally takes precedence over the others is the mean square error (MSE) or 

equivalently its square root, the root mean square error (RMSE or derived statistics such as the 

relative root mean square error RRMSE). This is also the statistic whose value is usually 

minimized during the parameter calibration process (Wallach, 1999).  Mean absolute error 

(MAE) measures the mean absolute. 

2.5. Remote sensing based crop monitoring and yield mapping 

Remote sensing based crop yield estimation technique has been widely used in recent 

years. Unlike the ground-based method, it is very easy to handle, not laborious, and most of all it 

results in spatial crop yield estimation. The yield can be achieved in two ways depending on the 

crop type, viz., peak vegetation index based yield models and area under the vegetation index  

 

 



curve based yield models. Remote sensing of crop yields can be broadly grouped into two classes 

(Moulin, et al., 1998) viz., crop process or simulation models, and spectral vegetation  

index-based statistical yield models.  

Standardized and possibly cheaper/faster methods that can be used for crop growth 

monitoring and early crop yield estimation are imperative. Many empirical models have been 

developed to try and estimate yield before harvesting. However, most of the methods demand 

data that are not easily available. The models complexity, their data demand, and methods of 

analysis, render these models unpractical, especially at field level. With the development of 

satellites, remote sensing images provide access to spatial information of features and 

phenomena on earth on an almost real-time basis at global scale. They have the potential not 

only in identifying crop classes but also in estimating crop yield (Mohd et al., 1994); they can 

identify and provide information on spatial variability and permit more efficiency in field 

scouting (Schuler, 2002).  

The crop yields are of essential benefit for the economy of each country, especially if 

they are estimated early. Satellite remote sensing data in combination with existing public data 

from government statistics agencies, represents a viable solution for early assessment of yield. 

Doraiswamy et al., (2007) used MODIS data to predict yield for soybean and corn and they 

compared the results with official results. The predictions were within a 20% standard deviation 

of the official estimates. Prasad et al., (2005) used AVHRR (Advanced very high resolution 

radiometer) NDVI with 8x8 km spatial resolution together with rainfall data (RF),  Land Surface 

temperature (LST) and soil moisture (SM) in order to estimate yield for corn and soya bean 

involving  non-linear regression (Quasi-Newton method).  

Recent studies have used NDVI as the phenology indicator. Some case studies were 

based on Enhanced Vegetation Index or EVI from MODIS (Son et al., 2013). Besides 

monitoring phenology, several studies dealt with methods of determining exact phenophases of 

crops (Curnel and Oger, 2007, White et al., 2002). 

In order to monitor vegetation growth, predict yield and assess the crop yield, NDVI data 

has been widely used (Quarmby et al., 1993). Murthy et al., (1994) studied the relationship of 

rice yield and NDVI at different growth stages of the crop. The results revels that heading stage  

 



of rice evinced good correlation with NDVI and also with time composite NDVI. Various studies 

have been done on the spatial interactions in the CROPGRO-Soybean and CERES-Maize models 

and also on the comparison of estimated and measured data (Batchelor et al., 2002). 

MODIS Normalized Difference Vegetation Index (NDVI) was used as an indicator of 

specific crop condition whereas Land Surface Temperature (LST), was used to indicate the 

amount of crop moisture. Multiple linear regressions were used for crop yield estimation in 

Vojvodina, where the NDVI and LST were independent variables and the average yield for 

specific crop was dependent variable (Jovanovic et al., 2014) 

Haig (2003) used NDVI to predict crop yield at field level in Nizamabad district, India 

and assessed the relationship between satellite based NDVI and rice yield in irrigated fields with 

the combination of NDVI along with management and land factors. The results of the study also 

showed that there was a significant correlation between the remotely-sensed NDVI and field 

level rice yield with r =0.52 and p =0.0. It was also found that 25 per cent of the yield variability 

at field level was explained by NDVI, 38.1 per cent of yield variability by land and management 

factors whereas the combination of all the factors including the NDVI accounted for 45.5 per 

cent of the yield variability.  

Prasad et al. (2006) considered parameters such as soil moisture, NDVI, surface 

temperature, rainfall data of Iowa state for 19 years for crop yield assessment and prediction 

using piecewise linear regression method with breakpoint. A non-linear Quasi-Newton  

multi-variate optimization was utilized that minimizes inconsistency and errors in yield 

prediction. They suggested that crop yield prediction model would improve further with the use 

of long period dataset. 

NDVI has an asymptotic non-linear relationship with the green Leaf Area Index (LAI) of 

some crops (Breunig et al., 2011). A variation in LAI implies different intercepted radiation that, 

according to the Radiation Use Efficiency (RUE), is directly related to the production of biomass 

that will determine the possible yield. Balaghi et al., (2008) used NDVI and weather data to 

estimate wheat yield, and found that the NDVI appeared to contain most of the information on 

rainfall and explained most of the grain yield variability.  

Advances in agricultural technology have led to the development of active remote 

sensing equipment that can potentially estimate components of crop production; however, this 



assessment is still in its early stages for the peanut crop. The Normalized Difference Vegetation 

Index (NDVI) composites that were derived from the Advanced Very High Resolution 

Radiometer (AVHRR) satellite data were averaged for the reproductive phase of peanut and 

were examined for their relationship with the annual peanut yield, an indicator of drought and 

aflatoxin (Boken et al., 2008). 

The NDVI is one of the most popular and surely one of the most used indices in remote 

sensing. Theoretically the NDVI values range from -1 to +1, in practice this range is narrower. 

Barren rock, sandy areas have very low NDVI values of around 0.1. Areas with rare vegetation 

have greater NDVI values, from 0.2 to 0.5. High NDVI values are reserved for dense vegetation 

areas, forests and cultivated plants in peak of their season (Jovanovic et al., 2014). 

Using satellite remote sensing to differentiate crops is a demanding task, as different crop 

types have similar reflection properties in remote sensing images for some periods of the year 

(Waldhoff et al., 2012). Those crops can only be separated from each other by a multi temporal 

analysis, which considers the phenology of the investigated crops (Gomez-Chova et al., 2015). 

Multi temporal and multispectral optical and infrared remote sensing has proved to be an effective 

approach to discriminate different crops (Pinter et al., 2003). However, the availability of optical 

satellite-borne imagery is sometimes limited due to cloud cover in the region of interest. Therefore, 

for many agricultural regions it is a coincidence whether optical images from the right time are 

available or not, which makes crop classifications based on optical imagery unreliable. 

The key advantage of satellite-borne SAR imaging is the independence from cloud cover, 

and as it is an active sensing system, also from sun-induced reflection. Consequently, SAR 

imagery has become an important tool to distinguish agricultural crops (Blaes et al., 2005, 

Hoogeboom, 1983 and McNairn et al., 2014). Such systems are already in application to deliver 

annual crop inventories on regional levels (McNairn et al., 2009).  

Process based dynamic crop growth simulation models are useful tools for estimating crop 

growth condition and yield on large spatial domains if their parameters and initial conditions are 

known for each point. Therefore, combined approaches integrating remote sensing and dynamic crop 

growth models for regional yield prediction have been developed by several studies. In these models  

 

 



the vegetation state variables, e.g., development phase, dry mass, LAI are linked to driving variables, 

e.g., weather condition, nutrient availability and management practices. Output of these models is 

usually final yield or accumulated biomass (Biswal et al., 2014). 

2.6. Use of Remote Sensing parameters as proxies for LAI and biomass production 

 Proxies for yield and biomass production have been developed over the years from 

remote sensing derived spectral measurements. The products involve different spectral bands, 

various retrieval algorithms and corrections. These parameters can be extracted from a variety of 

satellite platforms. The most frequently used parameter is LAI (Leaf Area Index). The satellite-

based LAI products are generally not the same variables as the LAI in crop growth models or the 

LAI measured in a field. The main reason for this discrepancy is that available satellite LAI are 

produced from reflectance obtained from coarse spatial resolution pixels, in which various 

different types of vegetation covers are present. Several workers proved that the satellite based 

LAI can differ considerably from field measured LAI (Duveiller et al., 2011). Fang and 

Hoogenboom (2011) have integrated spatially distributed MODIS vegetation indices with 

DSSAT for corn yield estimation in the mid-western United States. 

Accurate quantification of agricultural biophysical parameters is critical for effective and 

sustainable cropland management operations. Precise monitoring of biophysical quantities, 

specifically biomass and grain yield, allows to optimize crop productivity and adopt the best 

farm management practices. It is now widely accepted that remote sensing data, methods and 

approaches provide the best options for large area agricultural cropland characterization as well 

as information needed for precision agricultural management practices by accurately mapping 

and pin pointing factors such as higher and lower biomass and yield levels within and between 

farm fields (Alchanatis and Cohen, 2011; Thenkabail, 2003). 

Different proxies were used, sensitive to vegetation and soil conditions and able to 

characterize the dynamics of different crop types throughout the growing season viz., Spectral 

Indices (SIs) from optical data and backscatter and interferometric coherence information from 

X-band SAR data. Most of the studies used multi-temporal information for crop  

mapping focusing on the use of temporal profiles of spectral indices derived from optical data 

(Foerster et al., 2012). Recently SAR backscatter profiles for rice mapping have been 

successfully included (Nelson et al., 2014 and Asilo et al., 2014). Villa et al. (2015) highlighted 



the contribution of the X-band SAR backscatter (σ°) in improving mapping accuracy and 

promoting the transferability of the algorithm over a different year, compared to using only 

optical features. 

2.7. Integrating the Remote sensing products with Model 

Integrating remote sensing data and crop model usually has three ways, viz., driving method, 

initialization parameter method and assimilation method (Plummer 2000; Fischer et al. 1997; 

Moulin et al. 1998). The driving method consists of updating at least one state variable in the 

model using remote sensing data. The crop model requires a value for this state variable at each 

time step. Information from remote sensing observations can effectively be integrated into crop 

modeling methodologies and such data have been used in crop models for regional yield 

assessment (Roebeling et al., 2004; Doraiswamy et al., 2005). The use of satellite based inputs 

highly simplifies the process, considering the amount of time and labour that regional level data 

collection requires. The remote sensing images can also be used for aggregation of results of 

crop growth models to regional scales. 

 Agronomic models are traditionally used for point or site-specific applications. Due to 

limitations in data availability. Most process-based models have examined temporal variation 

using point data from specific sites and, again, provide outputs that are site specific. Because 

agriculture is a spatial activity, there is growing interest in placing site specific information into 

spatial and long-term perspectives. GIS facilitates the storage, manipulation, analysis and 

visualization of spatial data (Hartkamp et al., 1999).  

Initialization parameter method consists of minimizing the difference between a derived 

state variable or the radiometric signal and its simulation by the re-parameterization and/or re-

initialization of the crop production model (Pinter et al. 2003). Assimilation method directly uses 

remote sensing data (e.g., spectral reflectance, vegetation index, or radar), which coupled with 

the radiation transmission model and the crop model to directly compare the remote sensing 

observation with coupling model to the spectral reflectance of simulation so as to adjust the key 

parameters or the initial value (Maas 1998).  

Assimilation method consists direct usage of radiometric information to re-parameterize 

and/or re-initialize a crop model. It can be initialized by coupling a radiative transfer model to the 

crop growth model (Moulin et al. 1996; Fischer et al. 1996). Driving method is simple, but the 



prerequisite is that the state variables of the inversion should be accurate and the numbers of 

observations should be  more. It is good for establishing the reasonable state variable statistical 

model, thus ensuring accurate inside interpolation. Initialization parameter method also has 

higher accuracy requirements for parameters inversed by remote sensing for crop model input, 

but assimilation method through direct comparison and optimization of reflectance simulated by 

coupled crop model and radiation transfer model to remote sensing observation, hence there is no 

crop parameter inversion error (Launay and Guerif 2005). Assimilation algorithm is an important 

factor of assimilation accuracy, which plays an important role in data assimilation.  

Assimilation algorithms include statistical methods, variational methods, and methods 

based on machine learning (Mao et al. 2007). Statistical methods mainly set Kalman Filtering 

algorithm whereas variational methods mainly set three-dimensional variational algorithm and 

four-dimensional variational algorithm (Li et al. 2004).  

Linking GIS with agronomic crop models is attractive because it permits the 

simultaneous examination of spatial and temporal phenomena. Spatial visualization of the results 

from models significantly enhanced the understanding and interpretation of simulation results 

(Engle et al., 1997) and provided an opportunity for complex spatial analyses of the model results 

(Stoorvogel, 1995). By analyzing the spatial patterns of simulated yield there is an opportunity to 

improve production estimates and highlight vulnerable areas (Carbone et al., 1996). However, the 

major drawback lies in the limited availability of input climate and soil data that precludes the 

use of the more sophisticated simulation models. 

A model using AVHRR data was developed to determine growth and development of 

groundnut and estimate yields in the Peanut Basin of Senegal. The input variables were the 

integrated NDVI in the period from 69 to 85 days after sowing and in the period from 25 to 31 

days before sowing. In a multiple linear regression model, these variables were able to explain 

64 per cent of the variance in groundnut yields. The RMSE of estimated yields was 176 kg ha-1. 

Yield maps showed a high interannual variability in groundnut yields, and revealed that the 

model is sensitive to persistent cloud cover (Knudby, 2004). 



2.8. Assessing Vulnerability of Groundnut to Drought 

2.8.1. Effect of drought on Groundnut 

Among the environmental stresses, drought stress is the most important factors, which 

limits production of groundnut. The water stress affects the crop at different growth stages 

during growing season. In groundnut, drought stress during flowering and pod filling stage is 

critical for yield and agronomic characters. This would result in drastic reduction in crop yield, 

and the magnitude of reduction would depend on groundnut varieties. The yield of groundnut 

and quality of product decrease under drought stress. Drought-tolerant varieties producing high 

yield are required under drought stress conditions (Shinde and Laware, 2010).  

Rainfall is the most significant climatic factor affecting groundnut production, as 70 per 

cent of the crop area is under semi-arid tropics characterized by low and erratic rainfall. Low 

rainfall and prolonged dry spells during the crop growth period were reported to be main reasons 

for low average yields in most of the regions of Asia and Africa (Reddy et al., 2003).  

Moisture stress during crop growth has been reported to adversely influence water 

relations and thereby the translocation of photosynthates and other nutrients photosynthesis, 

mineral nutrition, metabolism, growth and yield of groundnut (Suther and Patel, 1992).  

The period of maximum sensitivity to drought occurs between 50-80 days after sowing. 

Balasubramanian and Yayock (1981) observed that the adverse effect of moisture deficit was 

more severe on pod and kernel yield than the production of haulm and total dry matter.  

Roy et al., (1988) observed that the period of late flowering and pod formation was most 

sensitive to moisture. Moisture stress during late flowering and pod formation and filling reduced 

yields more than stress in early, full flowering, late flowering and pod formation stages. Several 

studies revealed  that pod development stage is the most sensitive to moisture (Meisner, 1991 

and Ramachandrappa et al., 1992) during which the demand of photosynthetic products for 

active sinks (pods) is higher. 

The soil moisture stress on groundnut during flowering phase extended the days to 75 per cent 

flowering up to six days. The initiation of flowering was not delayed but the rate of flower 

production was reduced by drought stress during flowering. The post-rainy crop also experienced 

the moisture stress during pod development stage that delayed the maturity to an average of  



13 days. As a cumulative effect of soil moisture deficit, the pod yield as an integrative trait was 

affected to an extent of 47.8 per cent. The groundnut strains studied, JL 24 was  reported as 

drought sensitive and ICGV 91114 as drought tolerant (Kambiranda et al., 2011). The drought 

sensitive variety, JL 24 performed equally to drought tolerant ICGV 91114, when there is no soil 

moisture limitation. Under moisture stress, pod yield was reduced to 59 per cent in JL 24. The 

short duration varieties, viz., TMV 7 and Chico were stable in pod yield under moisture stress 

with less DSI and high DTE.  (Arunachalam and Kannan, 2013). 

Sankar et al., (2014) recorded the total leaf area reduced under drought stress compared 

to control in peanut and it was 77.61 per cent over control on 80 DAS. Drought stress with 

paclobutrazol (PBZ) and abscisic acid (ABA) caused an increase in leaf area when compared to 

drought-stressed plants at all the sampling days, and it was 94.46 per cent and 92.49 per cent over 

control on 80 DAS. Drought stress reduced the leaf area as compared to control in A. hypogaea.  

The leaf growth was more sensitive to water stress in maize (Nayyar and Gupta, 2006). 

2.8.2. Assessing Agricultural vulnerability to Drought 

The concept of vulnerability often refers to as “a potential of loss” (Cutter et al., 2003), 

that vulnerability reflects the interaction between the stresses or disturbances, which arise outside 

and/or inside the system and the system’s inherent capacity to respond. Drought is a complex, 

least understood and one of the most expensive natural disaster. Drought impacts many sectors 

of environment and society. Standardized Precipitation Index (SPI) is a useful tool to assess the 

vulnerability to drought. SPI is a transformation of the probability of a given amount of 

precipitation in a set period of months (Anandhi and Knapp, 2016). 

Assessing agricultural vulnerability is fundamental to understand interactions between 

agricultural systems and their external stresses including climatic conditions (Ren et al., 2012).  

It is determined based on Standardized Precipitation Index (SPI), Normalized Difference 

Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI). SPI values of rain 

gauge stations are interpolated to determine the spatial pattern and threshold value of drought for 

agricultural vulnerability. Anomaly of the NDVI and NDWI were classified to determine the 

agricultural drought vulnerability. SPI, NDVI and NDWI were integrated to classify the 

agricultural vulnerability of Virudhunagar district. The resultant map showed the spatial 

distribution of the areas facing agricultural drought conditions. The agricultural vulnerability 



map will help in the preparation of the area for mitigation measures that will in turn reduce the 

impacts of climate variation on agriculture (Nithya and Rose, 2014). 

Monitoring and analysis of drought is based on a given thresholds for forecasting 

precipitation deficit over a specified period of time. Different climate based drought and 

vegetation indices are available. (Gebrehiwot et al., 2011) some of them are Standardized 

Precipitation Index (SPI), percent of normal, Crop Moisture Index (CMI), Reclamation Drought 

Index (RDI) and Water Requirement Satisfaction Index (WRSI). 

In India groundnut yields were reported to be vulnerable from year to year because of 

large inter–annual variation in rainfall. About 89 per cent of yield variation over four regions of 

India could be attributed to rainfall variability in the August to December growing period. 

Challinor et al., (2003) analyzing 25 years of historical groundnut yields of India in relation to 

seasonal rainfall concluded that rainfall accounts for over 50 per cent of variance in yield.  

Gadgil (2000) observed that the variation in groundnut yield of Anantapur district was mainly 

due to the variation in the total rainfall during the growing season. 

Perez et al., (2016) developed a monitoring and forecasting system to assess the extent 

and severity of agricultural droughts in the Philippines at various spatial scales and across 

different time periods. Using Earth observation satellite data, drought index, hazard and 

vulnerability maps were created. The drought index called Standardized Vegetation-Temperature 

Ratio (SVTR), has been derived using the Normalized Difference Vegetation Index (NDVI) and 

Land Surface Temperature (LST). 

Murthy et al. (2014) reported that Agricultural Drought Vulnerability Index (ADVI) was 

generated using the three component indices and beta distribution was included to it. Mandals  

(sub-district level administrative units) of the state were categorised into 5 classes viz.,  Less 

vulnerable, Moderately vulnerable, Vulnerable, Highly vulnerable and Very highly vulnerable. 

Districts dominant with vulnerable Mandals showed considerably larger variability of detrended 

yields of principal crops compared to the other districts, thus validating the index based 

vulnerability status. Current status of agricultural drought vulnerability in the state, based on 

ADVI, indicated that vulnerable to very highly vulnerable group of Mandals represent 54 per 

cent of total Mandals which accounted for about 55 per cent of the agricultural area and 65 per 

cent of the rainfed crop area. The variability in the agricultural drought vulnerability at 



disaggregated level was effectively captured by ADVI. The vulnerability status map is useful for 

diagnostic analysis and for formulating vulnerability reduction plans. 

2.8.3. Normalised Difference Vegetation Index (NDVI) on drought assessment 

The phenology of vegetation closely reflects the seasonal cycle of rainfall, the knowledge 

of which can be very useful towards drought monitoring and assessment using NDVI. Similar 

approaches have been used in forming drought monitoring, assessment and prediction systems 

around various countries. The AVHRR NDVI data was used as primary data for input to 

generate vegetation specific drought information product called as Vegetation Drought Response 

Index (VegDRI) (Brown et al., 2008).  

Another successful use of AVHRR NDVI for drought assessment is done by (National 

Drought Assessment and Monitoring System) NADAMS over India. Discussing at global level, 

FAO have created Global Information and Early Warning System on Food and Agriculture 

(GIEWS), which is primarily based on near real time AVHRR NDVI. 

Tucker and Choudhury (1987) found that NDVI could be used as a response variable to 

identify and quantify drought disturbance in semiarid and arid lands, with low values 

corresponding to stressed vegetation. Ji and Peters, (2003) found that NDVI is an effective 

indicator of vegetation response to drought in the Great Plains of the United States, based on the 

relationships between NDVI and a meteorologically based drought index. 

Drought, like other natural phenomena, has spatial and temporal dimensions. In assessing 

drought, many researchers have used the capability of Geographic Information Systems (GIS) to 

store and analyze large volumes of remotely sensed data. The approaches to drought monitoring 

were based primarily on the use of the Normalized Difference Vegetation Index (NDVI), 

obtained from processing AVHRR data from NOAA satellites (Liu and Kogan, 1996). 

2.8.4. Standardized Precipitation Index (SPI) on drought assessment 

The Standardized Precipitation Index (SPI) is a tool which was developed primarily for 

defining and monitoring drought. It allows an analyst to determine the rarity of a drought at a 

given time scale (temporal resolution) of interest for any rainfall station with historic data. It can 

also be used to determine periods of anomalously wet events. The SPI is not a drought prediction 

tool. Standardized  Precipitation  Index (SPI) expresses the actual rainfall  as  a standardized 



departure  with  respect  to  rainfall  probability  distribution  function and  hence  the  index has 

gained  importance  in  recent  years  as  a  potential  drought  indicator  permitting  comparisons 

across  space  and  time. The  computation  of SPI  requires  long  term  data  on  precipitation  to 

determine  the  probability  distribution  function  which  is  then  transformed  to  a  normal 

distribution  with  mean  zero  and  standard  deviation  of  one. Thus, the  values  of  SPI  are 

expressed  in  standard  deviations,  positive  SPI  indicating  greater  than  median  precipitation 

and  negative  values  indicating  less  than  median  precipitation (Edwards  and  McKee, 1997).  

Guttman, (1998) explained the advantages of SPI being probabilistic in nature and thus, 

its usability in risk and decision analysis over other drought indices. The identification of 

extreme drought with SPI presents a better spatial standardization as compared to the Palmer 

Drought Severity Index (PDSI) (Lloyd‐Hughes and Saunders, 2002). The use of SPI is 

standardized to a variety of time scales i.e. 1, 2, 3, 6, 12 24, 26, 48 months. The positive value of 

SPI represents wet conditions, whereas the negative values show drought conditions. The 

intensity of drought is signified by the standardized numbers ranging from 0 to (-2 and less). 

Since  SPI  values  fit  a  typical  normal  distribution,  these  values  lie  in  one  standard  

deviation approximately 68 per cent of time, within 2 sigma 95 per cent of time and within 3 sigma 

98 per cent of time. In  recent  years, SPI  is  being  used  increasingly  for  assessment  of drought  

intensity in  many countries (Vijendra 2005; Wu et al.,  2006; Vicente-Serrano et al., 2004).  

The drought interpretation at different time scales using SPI is proved to be superior to Palmer 

Drought Index (Guttman, 1998). SPI as a stand-alone indicator needs to be interpreted with 

caution for drought intensity assessment particularly in low rainfall districts which are more 

vulnerable to droughts. 

2.8.5. Water Requirement Satisfaction Index (WRSI) on drought assessment 

The Water requirement satisfaction index (WRSI) is an operational monitoring index, 

which indicates the performance of a crop based on the availability of water during growing 

season (Allen et al., 1998). It is determined as the ratio of seasonal actual crop 

Evapotranspiration (AET) to the crop water requirement (WR), which is the product of reference 

crop evapotranspiration (ET0) and crop coefficient (Kc) value of the specific crop  

(Senay et al., 2011). AET represents the actual amount of water withdrawn from the soil water 

reservoir and can be estimated by energy balance and water balance methods. WRSI acts as a 



tool to evaluate the crop water status in the next decade based on the availability of moisture in 

the soil. Quantitatively it can be represented as percentage and it has four broad categories viz., 

(i) An index value between 80-100 per cent indicates sufficient water in the root zone to support 

the crop without water stress for the next decade; (ii) 70 – 79 per cent indicates that there is 

satisfactory water in the root zone and this shows conditions ranging from smaller degree of 

water stress to sufficient soil moisture; (iii) 50 – 69%, is an indication that the crop is likely to 

experience from severe to moderate water stress and (iv) 0 – 50 per cent indicates that the soil is 

already at very low moisture level which can cause permanent wilting point and crop failure  

(Senay, 2008). 

WRSI model requires a start-of-season (SOS) and end-of-season (EOS) time.  

The threshold used to determine SOS is based on the amount and distribution of rainfall received 

in three consecutive decades. On the other hand, the end of season is estimated by adding length 

of growing period (LGP) and SOS. The determined WRSI value of a given pixel represents the 

seasonal integrated conditions from the start of the growing season until the time of modeling 

(Brown et al., 2008). 

Wilhelmi (2002) indicated that the most vulnerable areas to agricultural drought were 

non-irrigated cropland and range land on sandy soils, located in areas with a very high 

probability of seasonal crop moisture deficiency. The identification of drought vulnerability is an 

essential step in addressing the issue of drought vulnerability in the state and can lead to 

mitigation-oriented drought management. 

Ren et al., (2012) revealed that remote sensing data as well as the associated analytical 

approaches can be useful and powerful in assessing the spatial variability of agricultural 

vulnerability. Since the remotely sensed data are readily available at a relatively lower cost, such 

approaches can be frequently employed to assess the changing relationship between agricultural 

sectors and varying climate conditions in a timely manner. 

Nithya and Rose (2014) concluded that SPI, NDVI and NDWI are very useful for early 

detection of agricultural vulnerability and hence should be a better methodology for remote 

sensing based vulnerability assessment studies. The NDWI also showed a very good and 

consistent relation with current rainfall at regional scale. Rather NDVI showed a lagged 

relationship with rainfall. Ren et al., (2012) concluded that vulnerability of a system or a place 



can be quantified by simplifying a complex system as a pair or pairs of interacting well-being 

and stresses, although a comprehensive quantitative vulnerability assessment is difficult.  

The reviewed works suggest that the empirical regression relationship between NDVI and crop 

yield is valuable for yield estimation modeling at a regional.  

In the present study, an effort has been made to simulate growth and yield of groundnut 

using DSSAT crop growth model and precisely estimate groundnut area and proxies for LAI and 

biomass through micro wave remote sensing using Sentinel 1A SAR data and MODIS NDVI to 

assess groundnut yield on a spatial scale. Coupled with drought indices such as standardized 

precipitation index, an attempt has been made to derive a sound understanding of crop 

production vulnerability to drought at a regional scale.  



 

 

 

 

 

 

 

 

 

 

 

 

Material and Methods 



CHAPTER III 

MATERIALS AND METHODS 

A research study on ‘Mapping and modeling groundnut growth and productivity in 

rainfed districts of Tamilnadu’ was conducted during Kharif, 2015 (Salem and Namakkal 

districts) and Rabi 2015 (Tiruvannamalai and Villupuram districts) seasons to estimate area, 

model growth and productivity and assess vulnerability of groundnut to drought. The details of 

the study area, satellite data, ground truth collection, materials used and experimental methods 

adopted for image classification, map generation, modeling growth and productivity, validation 

of data and drought vulnerability assessment in groundnut are presented in this chapter. 

3.1. Study Area 

Contiguous area of major groundnut growing districts of Tamil Nadu viz., Namakkal, 

Salem, Tiruvannamalai and Villupuram was selected for the study (Fig. 1). These districts 

geographically lies from 11º 0' to 12º 52' North Latitude and from 77º 38' to 80º 0' East 

Longitude. The study area was approximately 2.2 million hectares characterized by multiple 

crops at different seasons under irrigated and rainfed conditions. The dominant land cover types 

were irrigated agriculture, orchards, grasslands and human settlements.  

Salem and Namakkal districts lying in North Western Zone of Tamil Nadu, had a unique 

feature of having semiarid hot climate, undulated topography, red non calcareous coarse shallow 

soil with poor soil fertility and water retention capacity and low rainfall with erratic distribution. 

The annual normal rainfall of the zone was 849 mm. This zone was identified as moderately 

drought prone. Tiruvannamalai and Villupuram districts were part of North Eastern Zone of 

Tamilnadu. Soils in this area varied considerably due to geological, climatic and vegetation 

changes besides human exploitation. 

The climate in the zone is semiarid tropical with an annual rainfall of 800 to 1400 mm 

excluding hills. The South West Monsoon, North East monsoon, winter showers and summer 

rain in Tiruvannamalai districts of the study area contribute 47, 42, 2.0 and 9.0 per cent 

respectively to the annual rainfall and the quantum and distribution varied between seasons and 

places within the zone.  



 

Fig.1. Location map of study area 



 

Fig. 2. Location map of monitoring sites  



In Villupuram, the South West monsoon, North East monsoon and hot weather period 

contributed 39.5, 53.9 and 6.64 per cent of the total rainfall. The major crops were paddy, 

sorghum, pearl millet, finger millet, groundnut, sugarcane and cashewnut. 

3.1.1. Location of study sites 

 Twenty different field locations across the study area were selected as monitoring fields 

to observe groundnut growth and productivity. These fields were continuously monitored 

throughout the season during the cropping period. The details of monitoring fields are given in 

Table 1. and locations of monitoring fields are illustrated in Fig.2. 

3.1.2. Crop calendar of groundnut in Study area 

   

Fig.3. Crop calendar of groundnut in study area 

3.2. Data used 

In the research four main data sets were used. 

3.2.1. Sentinel -1A SAR data 

 Satellite data were downloaded from Sentinel-1A, a synthetic Aperture Radar (SAR) 

satellite from European Space Agency (ESA) from May 2015 to February 2016 covering entire 

cropping season. The study Area was covered in two strips viz., Track 92 and Track 165.  

The satellite data was of 21 m spatial resolution with 12 days temporal resolution. 



Table 1. Details of monitoring fields in the study area  

S.No. District Village Latitude Longitude 

1 Namakkal Palayapuliyampatti 11.3291 77.9241 

2 Namakkal Pudhupuliyampatti 11.3313 77.9223 

3 Namakkal Kakapalayam 11.5467 78.0178 

4 Namakkal Kandarkulamanickam 11.5405 78.0336 

5 Namakkal Velagavundmpatti 11.2684 78.0876 

6 Namakkal Manathi 11.2934 78.0522 

7 Namakkal Morepalayam 11.4413 77.9698 

8 Namakkal Nochokarakadu 11.4264 77.8637 

9 Salem Pudhuchatram 11.3607 78.1664 

10 Salem Pothiyampatti 11.8095 77.9693 

11 Salem Pappambadi 11.6551 77.9573 

12 Salem Moongathur 11.6244 77.9591 

13 Salem Vellapillakovil 11.5105 78.0972 

14 Tiruvannamalai Keelravandavadi 12.1564 78.9361 

15 Tiruvannamalai Manmalai 12.2877 78.8266 

16 Tiruvannamalai Thandrampattu 12.1702 78.941 

17 Villupuram Arkandanallur 11.9875 79.234 

18 Villupuram Padiyandhal 11.8961 79.1264 

19 Villupuram Tindivanam 12.2126 79.6695 

20 Villupuram Melsevalambadi 12.4103 79.3098 

 



3.2.2. Digital Elevation Data 

The Digital Elevation Model tiles (SRTM with 3 arc second resolution) for the study area 

were downloaded from online archives (http://earthexplorer.usgs.gov/.). The resolution of the 

data was approximately 90 m and available as 5×5 degree tiles. No processing was required for 

this data hence used directly. 

3.2.3. MODIS, LST and NDVI products 

Land Surface Temperature products of Moderate Resolution Imaging Spectroradiometer 

(MODIS) are available with 1 km spatial resolution as 8 and 16 days composite. Normalized 

Difference Vegetation Index (NDVI) products are available at 250 m resolution as 8 and 16 days 

composite. These data for the study area were downloaded from the website 

http://earthdata.nasa.gov/. covering a period from May 2015 to February 2016 for further 

processing. 

3.2.4. Landuse Landcover Data 

The landuse landcover data from multi-temporal LISS III (with 23m spatial resolution) at 

a scale of 1:50000 prepared under National Resource Information Systems for during  

2006-07 available with the Department of Remote Sensing and GIS, TNAU, Coimbatore was 

utilized for this study. It was an eight fold classification system comprising; Built up, Stable 

Vegetation, Waste land, Water + Wet lands, Crop land and Miscellaneous land forms.  

3.3. Groundnut area estimation 

3.3.1. Satellite data 

The Sentinel-1 mission is the European Radar Observatory for the Copernicus joint 

initiative of the European Commission (EC) and the European Space Agency (ESA).  

The Sentinel-1 mission includes C-band imaging operating in four exclusive imaging modes with 

different resolution (down to 5 m) and coverage (up to 400 km). It provides dual polarization 

capability, very short revisit times and rapid product delivery. For each observation, precise 

measurements of spacecraft position and altitude are available.  



Synthetic Aperture Radar (SAR) has the advantage of operating at wavelengths not 

impeded by cloud cover or a lack of illumination and can acquire data over a site during day or 

night time under all weather conditions. Sentinel-1A, with its C-SAR instrument, can offer 

reliable, repeated wide area monitoring (Table 2.). 

 

Fig.4. Sentinel-1A Product Modes 

 

Sentinel 1-A, with V-V (Vertical-Vertical) and V-H (Vertical-Horizontal) polarization 

generates imageries at twelve days interval and systematically used for land monitoring.  

Sentinel 1-A has four standard operational modes, designed for interoperability with other 

system (Fig. 4.).  Level-1 ground range (GRD) product obtained by interferometric wide (IW) 

swath mode of 20 m resolution with 12 days of temporal resolution was used for this research 

(Table 3.). 



Table 2. Details of Sentinel-1A (IW-GRD) Data 

Parameters Characteristics 

Pixel value Magnitude detected 

Coordinate system Ground range 

Polarization options 
Single (HH or VV) or Dual (HH+HV or 

VV+VH) 

Resolution (range x azimuth in meters) 20.4x21.7 

Pixel spacing (range x azimuth in 

meters) 
10x10 

Incidence angle (degree) 32.9 

Radiometric resolution 1.7 dB 

Ground range coverage (km) 251.8 

Absolute location accuracy (m) (NRT) 7 

Equivalent Number of Looks (ENL) 4.4 

Number of looks (range x azimuth) 5 x 1 

Range look bandwidth (Hz) 14.1 

Azimuth look bandwidth (Hz) 327 

Look overlap (range, azimuth) 0.250, 0.000 

Bits per pixel 16 

                                                                                                               *Source: DeZan and Guarnieri (2006) 



 

Fig.5. Overview of Sentinel-1A acquisition and coverage on study area 



Table 3. Data acquisition schedule of Sentinel-1A satellite for study area 

Sentinel -1A Data Acquisition for study area 

Track 92 Track 92 Track 165  

28-05-2015 24-11-2015 08-07-2015 

27-07-2015 06-12-2015 20-07-2015 

08-08-2015 18-12-2015 13-08-2015 

20-08-2015 30-12-2015 06-09-2015 

01-09-2015 11-01-2016 30-09-2015 

19-10-2015 23-01-2016 12-10-2015 

31-10-2015 16-02-2016 05-11-2015 

12-11-2015 28-02-2016 17-11-2015 

3.3.2. Basic Processing of Sentinel 1A SAR Data for Multi-Temporal Analysis 

A fully automated processing chain developed by Holecz et al.,(2013) was used to 

convert the multi-temporal space-borne Sentinel 1A SAR IW-GRD data into terrain-geocoded  

σ° values. The processing chain was a module within the MAPscape-RICE software, developed 

by sarmap, Switzerland. The SAR time-series data underwent a series of basic processing steps 

to generate terrain-geocoded σ° values as detailed below. 

1. Strip mosaicking: To facilitate the overall data processing and data handling, single 

frames of the same orbit and acquisition date were mosaicked along their azimuth, generating 

long strips in slant range geometry. This step was performed exclusively when the SAR data 

were zero-Doppler focused. 

2. Co-registration: Images acquired with the same observation geometry and mode were 

co registered in slant range geometry. The co-registration was performed in three steps:  

(i) a gross shift estimation based on the orbital data; (ii) a set of sub windows was automatically 

identified based on a reference image and on the images to be co-registered, and subsequently, 

the shifts between pixels of corresponding sub windows were calculated, including elevation by 

means of cross-correlation; (iii) finally, the shifts to be applied in the azimuth direction and range 

direction were calculated by a polynomial function depending on the pixel position, respectively, 

in the azimuth and range. 



3. Time-series speckle filtering: Within the multi-temporal filtering, an optimum 

weighting filter was applied to balance differences in reflectivity between images at different 

times (De Grandi et al.,1997). Multi-temporal filtering was based on the assumption that the 

same resolution element on the ground was illuminated by the radar beam in the same way and 

corresponds to the same slant range coordinates in all images of the time series. The reflectivity 

could change from one time to the next because of a change in the dielectric and geometrical 

properties of the elementary scatters, but should not change because of a different position of the 

resolution element with respect to the radar.  

4. Terrain geocoding, radiometric calibration and normalization: A backward 

solution by considering a digital elevation model (DEM) was used to convert the positions of the 

σ° elements into slant range image coordinates. A range-Doppler approach was applied to 

convert the two-dimensional row and column coordinates of the slant range image into three 

dimensional object coordinates in a given cartographic reference system. During this step, the 

radiometric calibration was performed by means of the radar equation, in which scattering area, 

antenna gain patterns and range spread loss were considered. Finally, in order to compensate for 

the range dependency, σ° was normalized according to the cosine law of the incidence angle.  

5. Anisotropic non-linear diffusion (ANLD) filtering: This filter significantly smoothened 

homogeneous targets, while enhancing the difference between neighbouring areas. The filter used in 

the diffusion equation, in which the diffusion coefficient, instead of being a constant scalar, was a 

function of image position and assumed a tensor value (Aspert et al., 2007). In this way, it was 

locally adapted to be anisotropic close to linear structures, such as edges or lines.  

6. Removal of atmospheric attenuation: Although microwave signals have the ability 

to penetrate clouds, it is possible that σ° from shorter wavelengths (X- and C-band) can be 

locally attenuated by water vapour in the range of several dB, because of severe (tropical) 

storms. The temporal signature of σ° can be affected by these events in two ways: (i) the thick 

layer of water vapour generates a strong decrease in σ° during the event, followed by a strong 

increase after the event; (ii) the intense rainfall generates a strong increase in σ° during the event, 

followed by a strong decrease after the event. These effects were removed by analyzing the  

 

 



temporal σ° signature: anomalous peaks or troughs were identified, and the σ° values were 

corrected by means of an interpolator. The correct application of this process relied strongly on a 

priori knowledge of the crop calendar and the weather conditions when the image was acquired. 

7. Subsetting: The rectangular extent of the study was extracted from the base map and 

the raster images were subsetted to an extent from 11º 0' to 12º 52' North Latitudes and from  

77º 38' to 80º 0' East Longitudes. Subsetting of raster data reduces the time in further processing.   

3.3.3. Crop area identification (Fig.6) 

Maximum Likelihood Classification 

 The aim of an image classification is to automatically categorize all pixels in an image 

into crop or land cover categories (Lillesand and Kiefer, 1994).  

Maximum likelihood classification (MLC) algorithm was used in this study for crop area 

identification. The MLC quantitatively evaluates both the variance and covariance of the 

category by spectral response pattern when classifying an unknown pixel. An assumption is 

made that the distribution of the training set is Gaussian. Under this assumption, the distribution 

of a training set of a class can be completely described by the mean vector and covariance 

matrix. Given these parameters, we may compute the statistical probability of a given pixel being 

a member of a particular class.  

First of all, the image was classified using MLC with multi-temporal stacked SAR 

images for the identification of groundnut. The training signature for groundnut fields were 

generated based on the training pixels collected at various locations. The classification is also 

performed separately for VV and VH to identify the best polarization type that can be used for 

crop classification.   

The non-agricultural areas like forest, gully land, water body, river, mining land, agro-

forestry etc., were extracted from the Land use and Land Cover map of Tamil Nadu generated at 

1:50,000 scale during year 2010 by National Remote Sensing Centre (NRSC), Hyderabad.  

The non-agricultural areas are used as a mask during classification to avoid misclassification and 

to improve the accuracy and the same mask is also used for all the other classifiers. 

Class mask (containing different classes) generated using multi temporal features of 

groundnut fields for both VH and VV polarization images in study area were used in the 



 

 

Fig.6. Flow chart depicting groundnut area mapping 



classification. Maximum Likelihood Classification was applied on temporal VV polarization 

class mask images of study area during the classification run. The class mask file was used to 

precisely segregate the groundnut pixels from other class pixels. 

 The resulting classification image was measured for accuracy by comparing it to 

groundnut pixels generated from ground truth points. The summary of this was captured for both 

kharif (Salem and Namakkal districts) and rabi (Tiruvannamalai and Villupuram districts) 

seasons and presented in confusion matrix which is a way of displaying the results of 

classification image which considered being ground truth.  

3.3.4. Accuracy Assessment 

This Error matrix and Kappa statistics are used for evaluating the accuracy of the groundnut 

area map. The class allocation of each pixel in classified image is compared with the corresponding 

class allocation on reference data to determine the classification accuracy. Forty per cent of the total 

ground reference data are used for validation. The pixels of agreement and disagreement are 

compiled in the form of an error matrix, where the rows and columns represent the number of all 

classes and the elements of matrix represent the number of pixels in the testing dataset (Lillesand and 

Kiefer, 1994). The accuracy assessment was done for all the classified outputs. 

The accuracy assessment in fields was generally conducted during the pod filling or 

maturity stage before harvesting, but in some cases the field assessment was conducted during 

post-season and groundnut haulms and farmer surveys were used to confirm that the observed 

post-harvest situation reflected the presence of a groundnut crop during the monitored season. 

The accuracy measures, such as overall accuracy, producer’s accuracy and user’s accuracy were 

estimated from the error matrix (Congalton, 1991). The overall accuracy, the percentages of 

correctly classified cases lying along the diagonal, was determined as follows: 

 

The producer’s accuracy (errors of omission) of each class was computed by dividing the 

number of samples that were classified correctly by its total number of reference samples as follows: 

 



The user’s accuracy (errors of commission) of each class was computed by dividing the 

number of correctly classified samples of that class by its total number of samples that were 

verified as belonging to the class as follows: 

 

3.3.5. Kappa Coefficient 

 Another measure of classification accuracy is the kappa coefficient, which is a measure 

of the proportional (or percentage) improvement by the classifier over a purely random 

assignment to classes (Richards, 1993). The kappa coefficient was estimated from the formula 

given below. 

 

For an error matrix with r rows, and hence the same number of columns,  

Where,  

A = the sum of r diagonal elements, which is the numerator in the computation of overall 

accuracy  

B = sum of the r products (row total x column total) 

N = the number of pixels in the error matrix (the sum of all r individual cell values) 

3.4. Crop yield simulation using crop simulation model (DSSAT) 

Decision Support System for Agrotechnology Transfer (DSSAT) is developed through 

the internationally collaboration work carried out under IBSNAT, U.S.A., across the globe  

(Jones et al., 2003). DSSAT is a micro-computer software product that combines crop, soil and 

weather data-bases into standard formats for assessment by crop model and application 

programs. The user can then simulate multi-year outcomes of crop management strategies for 

different crops at any location in the world and hence the DSSAT was used in the present 

investigation. Fig.7. describes components of DSSAT crop simulation model. 



3.4.1. CROPGRO-Peanut model 

The CROPGRO-Peanut model available in DSSAT v 4.5 simulated crop growth and 

development on daily time step. This was a one-dimensional model that computes daily changes 

in soil water content in a soil layer due to infiltration, irrigation, vertical drainage, unsaturated 

flow, soil evaporation, plant transpiration and root water uptake. Infiltration was calculated on 

the difference between rainfall (or irrigation) and runoff. Drainage was assumed to be constant 

throughout the whole day and computed for each layer using the drained upper limit and lower 

limit values of soil water content. It required cultivar coefficients (cultivar-specific parameters) 

as an input to the model in addition to crop-specific coefficients that were considered less 

changeable or more conservative in nature across crop cultivars. The model could also simulate 

the impact of elevated temperatures on groundnut growth and development. For its run it 

required minimal dataset that are mentioned below. 

 

 

Fig.7. Diagram of database, application and support software components and their use 

with crop models for applications in DSSAT 



3.4.2. Weather file 

 The daily weather data on maximum temperature (°C), minimum temperature (°C), solar 

radiation (MJ m-2 day-1) and rainfall (mm) for the year 2015 and 2016 (upto March) for the study 

area were collected from Automatic Weather Stations (AWS) and regular observatories situated 

at the study districts and used to create weather file for running CROPGRO-Peanut model. 

 DSSAT model required weather data for the entire growing season of the crop to predict 

the yield. In this study, yield estimates were done during South West Monsoon (Namakkal and 

Salem districts) and North East Monsoon (Tiruvannamalai and Villupuram districts). The actual 

weather data during the crop growth period was used for simulations. For the missing data, the 

weather data was generated either from the historical mean or using analogue technique, 

wherein, the past years weather that behaved similar to the current season was chosen to fill the 

missing or erroneous data.  

3.4.3. Soil data file 

 Soil information for creating the soil files was obtained from the Department of Remote 

Sensing and Geographical Information system, Tamil Nadu Agricultural University, Coimbatore. 

Digital soil information system containing information on soil characters (1:50000) viz., depth, 

texture, BD, drainage, pH, EC, Organic Carbon, Available P and K, Ca and Mg and CEC was 

used for this purpose. The profile details as required in DSSAT were extracted for the study area 

from the above database using ArcGIS (GIS Tool) and were fed into S-Build tool in DSSAT to 

create soil file. 

3.4.4. Crop management file 

 Crop management file documented the inputs to the model for the twenty fields from the 

study area to be stimulated. Details of fields are listed in Table 1. The details of the experimental 

conditions and field characteristics such as name of the weather station, soil, and field description 

details, initial soil, water and inorganic nitrogen conditions, planting geometries, irrigation and water 

management, fertilizer management details, organic residue application, chemical applications, 

tillage operations, environmental modifications, harvest management, simulation controls 

(specification of simulation options viz., starting dates, on/off options for water and nitrogen 

balances, symbiosis) and output options were included in the crop management file. 



3.4.5. Estimation of genetic co-efficient groundnut  

 Model calibration or parameterization is the adjustment of genetic parameters so that 

simulated values compare well with observed values. Data obtained from the experiments were 

used to estimate genetic parameters. The genetic coefficients that influence the occurrence of 

developmental stages in the CROPGRO-Peanut model embedded in DSSAT model were derived 

iteratively, by manipulating the relevant coefficients to achieve the best possible match between 

the simulated and observed number of days to the phenological events and grain yield at harvest. 

A detailed description of the cultivar coefficients used by CROPGRO-Peanut for  

groundnut varieties of study area viz., Co 6, TVM 7 and VRI 2 is presented in Table 4. 

3.4.6. Output files 

The output file, generated by the model runs gives an overview of input conditions and 

crop performance and yield spatially. 

3.4.6. Model calibration, validation and future yield simulations 

Three input files were created to run the DSSAT model using collected data. 

a. Weather file: ‘Weatherman’ program in DSSAT and collected weather data 

b. Soil file: ‘S Build’ program in DSSAT and soil data 

c. Experimental data file: ‘X Build’ program in DSSAT and crop management 

data   

The model was calibrated using collected data from the experimental trials in kharif and 

rabi season 2015 through determination of genetic coefficient for CO 6, TMV 7 and VRI 2 

varieties with spatial analysis mode in DSSAT. The model was validated using the experimental 

data in kharif and rabi season 2015 by comparing the observed results with simulated results. 

Yields from trials (hereafter referred to as observed) conducted at farmers’ fields in rainfed areas 

of  study districts were considered as observed data. To evaluate the quality of the simulations 

different quality measures were applied. For a quick overview of the modeling quality, graphs of 

the measured against the simulated values were drawn together with the linear regression and the 

correlation coefficient. 



Table 4. Description of Genetic coefficients for groundnut cultivars 

Code Description 

CSDL 
Critical Short Day Length below which reproductive development progresses with no day length 

effect (for short-day plants) (hour) 

PPSEN 
Slope of the relative response of development to photoperiod with time (positive for short day 

plants) (1/hour) 

EM-FL 
Time between plant emergence and flower appearance (R1)  

(photothermal days). 

FL-SH Time between first flower and first pod (R3) (photo thermal days) 

FL- SD Time between first flower and first seed (R5) (photo thermal days) 

SD-PM Time between first seed (R5) and physiological maturity (R7) stages (photothermal days) 

FL-LF 
Time between first flower (R1) and end of leaf expansion  

(photothermal days) 

LFMAX Maximum leaf photosynthesis rate at 300 C, 350 vpm CO2, and high light (mgCO2/m2/s) 

SLAVR Specific leaf area of cultivar under standard growth conditions (cm2/g) 

SIZLF Maximum size of full leaf (three leaflets) (cm2) 

XFRT Maximum fraction of daily growth that is partitioned to seed + shell 

WTPSD Maximum weight per seed (g) 

SFDUR Seed filling duration for pod cohort at standard growth conditions (photothermal days) 

SDPDV Average seed per pod under standard growing conditions (#/pod) 

PODUR Time required for cultivar to reach final pod load under optimal conditions (photothermal days) 

THRSH 
The maximum ratio of (seed/(seed+shell)) at maturity. Causes seed to stop growing as their dry 

weights increase until shells are filled in a cohort.(Threshing percentage) 

SDPRO Fraction protein (g) per g seed 

SDLIP Fraction oil (g) per g seed 

 



3.5. Yield estimation by integrating Remote Sensing and DSSAT Crop growth model (Fig.8.) 

3.5.1. Generation of LAI for groundnut yield estimation 

An ideal method for simulating the development of LAI and crop yields should require a 

minimal amount of input data and be based on the underlying physiological and phenological 

processes that govern these properties in plants. Two approaches to this problem have been 

developed: Methods of estimation generally rely on determining the LAI by remote sensing  

(De Kauwe et al., 2011) or by direct measurement of Leaf Area Index was worked out by 

measuring the length and width of the fully expanded apical leaflet of the third tetra foliate leaf 

at 30 days interval starting from 30 DAS to harvest as suggested by Padalia and Patel (1980). 

L x W x K x Number of Leaves 

LAI = 

Spacing Adopted (cm) 

Where, 

L - Length of the Leaf (cm) 

W - Width of the Leaf (cm) 

K - Constant Factor (0.70)  

From every field, five LAI measurements were collected and the average was recorded. 

At the end of season, yield data was recorded from each field. Finally, the whole dataset was 

completed with 20 points over the study area with groundnut pod yield, LAI measurements so as 

to give input to CROPGRO-Peanut model for simulation and validation purpose. The data of the 

study area were combined in one dataset and regression analysis between observed yield and 

predicted yield was performed.  

An empirical approach was applied to extrapolate the field observed and DSSAT derived 

LAI values to generate yield maps and statistics spatially. The estimated yields were validated 

against observed yields using degree of errors in terms R2, RMSE and NRMSE. 

 



 

Fig.8. Flow chart depicting yield estimation by integrating Remote Sensing and DSSAT 

outputs 



3.5.2. Retrieving LAI from dB images of SAR data 

The dB (back scattering) values of groundnut fields were collected from monitoring fields 

using point sampling tool in QGIS 2.18.4. The Point Sampling tool plugin was used to collect 

polygon attributes and raster values from multiple layers at specified sampling points. In this study, 

the shape file with sampling points (monitoring field points) was placed over the input raster file 

(dB image). The plugin created a new point layer with locations given by the sampling points and 

attributes taken from the underlying raster cells (dB image) and this process was carried out for 

both seasons.  The linear regression was generated between dB values and simulated LAI values at 

pod development from monitoring groundnut fields of study area during both kharif (Salem and 

Namakkal districts) and rabi (Tiruvannamalai and Villupuram districts) seasons.  

In ArcMap, the raster calculator tool provides a tool for performing mathematical 

calculations using operators and functions, set up selection queries, or type in Map Algebra 

syntax. In this study, the generated regression values of both seasons of study area were 

substituted with dB values in dB images from maturity stages of both seasons by using raster 

calculator in ArcMap and LAI of study area was generated spatially corresponding to pod 

development of groundnut.  

3.6. Assessing vulnerability of groundnut to drought (Fig. 9.) 

The quantification of drought severity is called as drought assessment. Drought 

assessment was with the use of a suitable drought index. It could be meteorological, hydrological 

or Agricultural drought assessment. Remote sensing derived drought indices could aid a helping 

hand in this context. 

3.6.1. Agricultural vulnerability to drought 

Agricultural drought risk assessment was done by a reduction in crop area, a loss in crop 

yields or both as a result of deficient moisture conditions during the crop growing season. 

Deficient rainfall during the early part of the crop season lead to abnormal sowing operations 

resulting in reductions in sown area. Further into  the  crop  season,  deficient  rains  lead  to  

stunted  crop  growth  resulting  in  reduced yield potentials.  Rainfall shortages impact crop  

 

 



 

 

 

Fig.9. Flow chart depicting drought vulnerability mapping 



growth most significantly if  they  happen  during  critical  flowering  or  grain  formation  

stages.  Regardless of the timing, agricultural drought is defined by a loss in crop production as a 

result of shortages in water availability. 

3.6.1.1. Dataset 

The dataset used in the present study and their basic characteristic relevant to the aim of 

the study is briefly described as follows: 

3.6.1.2. Rainfall data  

Daily rainfall datasets were acquired from the grid data for the period from January 1980 

to March 2016. The Indian Meteorological Department (IMD) have setup a rainfall monitoring 

station for the Tamil Nadu besides Automatic Weather Station (AWS) from TNAU. Thus, there 

are twelve meteorological stations within the study area which were used for the present study.  

3.6.1.3. Satellite data 

The datasets on NDVI acquired by MODIS from May 2015 to February 2016 were used 

in the present study. 

3.6.2. Standardized Precipitation Index (SPI) 

SPI is the number of standard deviations that the observed value would deviate from the 

long-term mean, for a normally distributed random variable. SPI is based on the cumulative 

probability of a given rainfall event occurring at a station (Tucker, 1979). In order to analyse the 

impact of rainfall deficiency and the development of drought in this study area, SPI was used to 

quantify the precipitation deficit during kharif and rabi 2015. The SPI was calculated using the 

following equation,  

SPI = (Xij − Xim ) /σ 

Where, Xij is the monthly precipitation at the ith rain-gauge station and jth observation, Xim is its 

long-term precipitation mean and σ is its standard deviation. Positive SPI values indicate greater than 

median precipitation and negative values indicate less than median precipitation (Kaushaly, 2011). 

Drought periods were represented by relatively high negative deviations. Normally, the “drought” 

part of the SPI range is arbitrarily split into 7 classes. The standards for SPI is given below: 

 



SPI Value  Drought Condition 

2.00 and above  Extremely wet 

1.50 to 1.99  Very wet 

1.00 to 1.49  Moderately wet 

0.99 to -0.99 Near normal 

-1.00 to -1.49  Moderately dry 

-1.50 to -1.99  Severely dry 

-2.00 and less  Extremely dry 

Since drought is a regional phenomenon, SPI values of the rain gauge stations have been 

interpolated using Spline interpolation technique in Arc GIS to demarcate its spatial extent. The 

SPIRITS software was used to generate SPI images for anomoly assessment. 

3.6.3. Normalised Difference Vegetation Index (NDVI) 

The NDVI images were generated using the imageries of MODIS acquired in 2015 and 

2016. The MODIS measures the intensity of the reflection from the Earth's surface in both red 

and infrared wavelength ranges. The Normalised Difference Vegetation Index (NDVI) is a 

measure of the difference in reflectance between these wavelength ranges. NDVI takes values 

between -1 and 1, with values of  0.5 indicating dense vegetation and values less than 0 

indicating no vegetation. 

The NDVI is given by the following equation: 

NDVI= (NIR-RED/NIR+RED) 

Where, RED and NIR correspond to band 3 and 4 in MODIS respectively. By 

normalizing the difference in this way, the values can be scaled between values of -1 to +1. This 

also reduces the influence of atmospheric absorption. Water has an NDVI value less than 0, bare 

soils between 0 and 0.1 and vegetation above 0.1.  

8-day composite MODIS dataset comprised NDVI, quality, acquisition image, 

acquisition table and metadata files. From the global data, the study area was being subset and 

NDVI data was extracted and analyzed. Time-series NDVI profile of the study area was derived 



from the calculation of NDVI using the MODIS NDVI data for the year 2015 and used to 

generate the Average monthly NDVI values for the year.  

3.6.4. Water Requirement Satisfaction Index (WRSI) 

WRSI for a season was based on the water supply and demand the crop experienced 

during a growing season. It was calculated as the ratio of seasonal actual evapo-transpiration 

(AET) to the seasonal crop water requirement (WR) (Dorenbos and Kassam, 1979). 

WRSI = (AET/WR)*100 

The model was run to simulate WRSI of groundnut during the kharif season in Namakkal 

and Salem districts and rabi season in Tiruvannamalai and Villupuram districts using NDVI, 

LST, Radiance, TRMM rainfall and SRTM DEM from 2001 through 2015.  

 Stress caused by water was one of the major causes of crop failure under rainfed 

conditions. The percentage water requirement satisfaction for rainfed crop given by the 

computation of WRSI determined the growth and yield of the groundnut. Various experiments 

have revealed that, as the WRSI percentage decreased the stress for water increased and when 

this index value was less than 50 per cent, there were more chances for crop failure. Based on 

these conditions the output of WRSI was classified into 6 groups viz., 

  100%   - No Risk 

  90-100% - Low Risk 

  80-90% - Medium Risk 

  70-80% - High Risk 

  50-70% - Very High Risk and  

 <50%  - Chance of Crop failure 

3.6.5. Agricultural vulnerability of groundnut area to drought 

The present study of agricultural vulnerability in study area was assessed by overlaying the 

SPI, NDVI and WRSI using ARCGIS 10.1 version. The integrated map showed the index of 

agricultural vulnerability of groundnut area to drought that is classified as high, medium and Low. 

 



3.7. Statistical Evaluation and Validation of products 

An analysis of the degree of coincidence between simulated and observed values was 

carried out by using R2, Root Mean Square Error (RMSE), Normalised Root Mean Square Error 

(NRMSE) and Agreement percent (Jemison et al., 1994). 

            

NRMSE =100 x (RMSE / Oi) 

Agreement (%) =100 x (1- (RMSE / Oi)) 

Where Pi and Oi were the predicted and observed values for the observation, and N was 

the number of observation within each treatment. RMSE was measure of the deviation of the 

simulated from the measured values, and was always positive. A zero value was ideal. The lower 

the value of RMSE, the higher was the accuracy of the model prediction.   

 



 

 

 

 

 

 

 

 

 

 

 

 

Experimental Results 



CHAPTER IV 

EXPERIMENTAL RESULTS 

A study on ‘Mapping and Modeling growth and productivity of groundnut in Rainfed 

Areas of Tamilnadu’ was conducted during kharif 2015 (Salem and Namakkal districts) and 

rabi 2015 (Tiruvannamalai and Villupuram districts) to estimate groundnut area, model 

growth and productivity and assess the vulnerability of groundnut to drought. The results of 

the study are presented in this chapter. 

4.1. Weather information of the study area 

The study area comprised of Salem, Namakkal, Tiruvannamalai and Villupuram 

districts and the weather parameters viz., rainfall, maximum and minimum temperature and 

relative humidity were observed from major groundnut growing districts of study area during 

the crop growing period. Districtwise mean monthly rainfall (mm) recorded in the study area 

during cropping period is given in Table 5.  The detailed weather prevailed during the 

cropping period at Mecheri and Namakkal of Salem and Namakkal districts are presented in 

Appendices I and II respectively and illustrated in Fig. 10 and 11.  During the crop growing 

period of kharif (May to October, 2015), 243.0 and 313.9 mm of rainfall was recorded at 

Mecheri and Namakkal of Salem and Namakkal districts, respectively. The mean maximum 

and minimum temperature of Mecheri (Salem district) was 36.3°C and 23.5°C, respectively 

whereas Namakkal (Namakkal district) recorded a mean maximum and minimum 

temperature of 35.8°C and 25.2°C, respectively. The mean solar radiation recorded at Mecheri 

was 360.9 cal cm-2min-1 and Namakkal recorded 384.9 cal cm-2min-1.   

The weather condition prevailed during the cropping period at Thandrampattu 

(Tiruvannamali district) and Melmalaiyanur (Villupuram district) are presented in 

Appendices III and IV and illustrated in Fig. 12 and 13. During rabi season (September, 2015 

to January 2016), Thandrampattu (Tiruvannamali district) and Melmalaiyanur (Villupuram 

district) received a rainfall of 397.5 mm and 602.0 mm respectively. The mean maximum and 

minimum temperature of Thandrampattu was 29.6°C and 21.7°C, respectively whereas 

Melmalaiyanur recorded the corresponding values of 31.7°C and 22.3°C. The mean solar 

radiation recorded at Thandrampattu was 349.6 cal cm-2min-1 whereas Melmalaiyanur 

recorded a mean solar radiation of 341.5 cal cm-2min-1. 



 

Fig.10. Weather data prevailed in Namakkal during kharif, 2015  
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Fig.11. Weather data prevailed in Mecheri of Salem district during kharif, 2015 
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Fig.12. Weather data prevailed in Thandrampattu of Tiruvannamalai district during rabi, 2015 
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Fig.13. Weather data prevailed in Melmalaiyanur of Villupuram district during rabi, 2015 
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Table 5. District wise mean monthly rainfall (mm) recorded in the study area during 

cropping period 

Month Salem Namakkal Tiruvannamalai Villupuram 

January, 2015 17.5 24.5 0 3 

February, 2015 4.5 1.1 0 0 

March, 2015 30 2.7 1.8 0 

April, 2015 143.3 107.8 114.7 87.6 

May, 2015 103.7 75.4 61 68.1 

June, 2015 80.3 45.2 81.3 14.5 

July, 2015 31.9 23.6 92.1 76.8 

August, 2015 104 65.7 175.8 113.3 

September, 2015 132.1 164.3 124.9 84 

October, 2015 152.2 115 127.3 78.6 

November, 2015 276.5 162.3 326.4 554.9 

December, 2015 59.3 31.9 142 292.5 

January, 2016 0.0 0.0 9.0 0.0 

Total 1135.3 819.5 1256.3 1373.3 

        (Source: IMD, Ministry of Earth Science, Government of India) 

4.2. Soil characteristics of the study area 

Thiruvannamalai, Vellore, Villupuram, Namakkal, Erode and Salem districts 

constituted 54.9% of the area under groundnut in Tamilnadu. The productivity is high as 

these districts have ideal soil and climatic conditions suitable for groundnut cultivation.  

The study area of Salem, Namakkal, Tiruvannamalai and Villupuram districts comprised, 

well-drained, red sand, loamy sand, or sandy loam.  

Different soil types prevailed in the study area 

Salem Red loam  

Namakkal  Red loam 

Tiruvannamalai  Laterite soil 

Villupuram Red soil and Red sandy soil 

 

 



4.3. Landuse/Landcover details of study area  

Landuse/Landcover data of the study area was derived by using LISS III satellite 

(Fig.14). The spatial pattern of land use in Salem, Namakkal, Tiruvannamalai and Villupuram 

districts of Tamilnadu showed that out of the total geographical area of 2.205 m ha,  

58.4 per cent was under crop land. The statistics of Landuse/Landcover classes during 2015 

in study area are summarized in Table 6. 

Stable vegetation accounted for 19.60 per cent of the study area while water and 

wetlands contributed 7.90 per cent of Landuse/Landcover followed by built-ups and 

wastelands 2.7 and 3.5 per cent respectively. Considering croplands, Villupuram registered 

highest crop cover with an area of 4,43,742 ha (62 per cent) followed by Tiruvannamalai 

(3,43,212 ha), Salem (2,91,991 ha) and Namakkal (2,07,733 ha) districts. With regard to 

other classes, stable vegetation including forest cover was higher in Salem district with an 

area of 1,46,374 ha (28 per cent) followed by Tiruvannamalai district (1,40557 ha and 23 per 

cent). Villupuram district accounted for more area under water bodies and wetlands as 

compared to other districts with an area of 80,679 ha covering 11.20 per cent of the district 

geographical area whereas Namakkal district registered 4.70 per cent of the land area under 

built-ups showing the degree of urbanisation.  

4.4. Groundnut area mapping using SAR data 

 With the advent of new Synthetic Aperture Radar (SAR) satellite sensors and the 

automated processing chain, crop mapping has resulted in higher accuracies. Sentinel-1A 

satellite data was acquired at 12 days interval during the crop growth period. The back 

scattering co-efficient and multi temporal features as influenced by the crop growth 

parameters of groundnut and underlying soil surface were extracted and the results are 

presented hereunder.  

4.4.1. Radar backscattering signature 

The radar backscattering coefficient (σ0) is a measure of crop biomass, plant height, 

water content, underlying soil, crop phenology etc. The SAR data collected during the 

cropping period was processed and analyzed using training pixels from ground truth points to 

derive the temporal backscattering coefficient (σ0) for groundnut from the study area. The 

temporal backscattering signatures of groundnut during kharif 2015 were generated by 

stacking seven SAR acquisitions from 8th July, 2015 to 17th November, 2015. The signature 



 

Fig.14a. Landuse/Landcover map of study area during 2015 

 

Fig.14b.Soil map of study area during 2015 



Table 6. Statistics of LandUse/LandCover classes in the study area 

LU/LC Classes 

Namakkal Salem Tiruvannamalai Villupuram Total 

Area (ha) (%) Area (ha) (%) Area (ha) (%) Area (ha) (%) Area (ha) (%) 

Built Ups 16130 4.7 14339 2.7 10850 1.8 17201 2.4 58520 2.7 

Stable Vegetation 55722 16.3 146374 27.9 140557 22.7 89511 12.4 432164 19.6 

Waste Land 12950 3.8 27040 5.2 19708 3.2 17702 2.5 77400 3.5 

Water + Wetlands 8876 2.6 19697 3.8 64119 10.4 80679 11.2 173371 7.9 

Crop Land 207733 60.8 291991 55.7 343212 55.5 443742 61.6 1286678 58.4 

Miscellaneous 40390 11.8 25103 4.8 39577 6.4 71650 9.9 176720 8.0 

Total 341801 100 524544 100 618023 100 720485 100 2204853 100 

 



curves of groundnut showed a marginal increase in backscattering at seedling to vegetative 

stage and a steep increase from flowering to pod development of 2.07 dB in VV polarization 

followed by a decline thereafter at maturity. The similar trend of minimal increase in 

backscattering at vegetative stage and steep increase from flowering to pod development with 

a variation of 2.27 dB and a decline thereafter at maturity was observed in VH polarization. 

Temporal backscatter values were recorded in ten test sites across Salem and 

Namakkal districts and the details are presented in Table 7 and 8 and illustrated in Fig. 15. In 

these districts, backscattering values were found to be ranging from -10.99 to -9.56 dB and  

-10.77 to -8.92 dB at D1 and D2 in VV polarization. At D4 corresponding to flowering and peg 

penetration stage, the values were -9.71 to -8.12 dB. The backscattering values increased 

further and reached a maximum of -8.12 to -5.62 dB at D6 corresponding to pod development 

to maturity stages of groundnut.  

In these districts, the backscattering values were minimum in the range of -20.04 to  

-16.47 at D1 and -19.08 to -16.27 at D2 in VH polarization. At D4, corresponding to flowering 

stage the dB values ranged from -18.40 to -14.56. The maximum dB values of -14.95 to  

-13.05 were recorded at D6 in test sites of Salem and Namakkal districts and declined thereafter. 

Similarly, temporal backscatter values were recorded in ten test sites across 

Tiruvannamalai and Villupuram districts and the details are presented in Table 9. and 10. and 

illustrated in Fig. 16.  The backscattering values at germination to seedling stages of D1 and 

D2 were found to be -11.74 to -9.72 and -10.94 to -9.45, respectively in VV polarization. In 

the same polarization, the values were -10.82 to -7.89 and -10.48 to -7.76 dB, respectively at 

flowering and peg penetration stage. The maximum dB values of -9.14 to -5.31 were 

recorded at D7 in test sites of Tiruvannamalai and Villupuram districts under VV polarization. 

In respect of VH polarization in these districts, the dB values were minimum at D1  

(31st October, 2015) ranging from -18.57 to -17.77 followed by -18.28 to -16.94 at D2  

(12th November, 2015). During flowering to peg penetration stages (D4) the dB values were -

17.46 to -15.46 with corresponding maximum at D7 with dB values ranging from  

-15.71 to -14.15. 

The maximum, minimum and mean temporal backscattering values for Vertical-

Vertical (VV) and Vertical-Horizontal (VH) polarized SAR data for groundnut during kharif 

season in Salem and Namakkal districts and rabi season in Tiruvannamalai and Villupuram 



 

 

 

Fig.15. Backscattering signature of groundnut test sites for  VV and VH polarization in Salem and Namakkal districts   
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Fig.16. Backscattering signature of groundnut test sites for VV and VH polarization in Tiruvannamalai and  

Villupuram districts 
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Table 7. Temporal backscattering values (dB) in VV polarization for Groundnut during kharif 2015 in test sites of Salem and 

Namakkal districts 

S.No. 
Date of Satellite 

pass 
Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field 10 Mean 

1 
08-07-2015  

(0
D1) 

-10.24 -10.57 -10.99 -10.66 -9.69 -9.56 -10.09 -9.92 -9.93 -9.82 -10.15 

2 
20-07-2015 

(0
D2) 

-10.25 -10.38 -10.77 -10.26 -9.85 -10.08 -9.8 -8.92 -9.62 -10.42 -10.04 

3 
13-08-2015 

(0
D3) 

-9.15 -9.52 -10.13 -10.25 -9.63 -9.70 -8.93 -8.77 -9.15 -9.17 -9.44 

4 
06-09-2015 

(0
D4) 

-8.24 -9.17 -9.71 -9.60 -8.38 -8.12 -8.58 -8.46 -8.4 -8.21 -8.69 

5 
12-10-2015 

(0
D5) 

-7.30 -7.44 -8.45 -6.50 -6.39 -6.35 -8.55 -6.90 -5.83 -6.65 -7.04 

6 
05-11-2015 

(0
D6) 

-6.74 -6.74 -8.12 -5.60 -5.62 -6.24 -7.88 -6.51 -7.32 -7.59 -6.84 

7 
17-11-2015  

(0
D7) 

-8.58 -7.99 -8.62 -7.93 -6.07 -6.87 -8.23 -6.95 -7.96 -7.84 -7.70 

 



Table 8. Temporal backscattering values (dB) in VH polarization for Groundnut during kharif 2015 in test sites of Salem and 

Namakkal districts 

S.No. 
Date of Satellite 

pass 
Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field 10 Mean 

1 
08-07-2015  

(0
D1) 

-17.87 -20.04 -17.49 -16.47 -17.40 -17.93 -17.09 -16.65 -16.52 -16.95 -20.04 

2 
20-07-2015 

(0
D2) 

-18.12 -19.08 -17.99 -16.27 -17.45 -18.14 -16.92 -16.27 -16.46 -17.54 -19.08 

3 
13-08-2015 

(0
D3) 

-16.93 -18.91 -18.03 -15.81 -16.95 -16.03 -16.28 -15.57 -15.45 -16.50 -18.91 

4 
06-09-2015 

(0
D4) 

-16.76 -18.40 -16.61 -15.33 -16.70 -16.11 -16.01 -15.36 -14.56 -15.90 -18.40 

5 
12-10-2015 

(0
D5) 

-13.48 -14.17 -13.83 -15.28 -15.13 -13.80 -14.46 -13.85 -13.34 -15.56 -15.56 

6 
05-11-2015 

(0
D6) 

-13.34 -14.50 -14.95 -13.05 -13.27 -13.71 -14.28 -13.53 -14.02 -14.39 -14.95 

7 
17-11-2015  

(0
D7) 

-13.95 -16.70 -15.56 -14.91 -13.43 -13.76 -14.90 -13.98 -14.78 -15.72 -16.70 

 



Table 9. Temporal backscattering values (dB) in VV polarization for Groundnut during rabi 2015 in test sites of 

Tiruvannamalai and Villupuram districts 

S.No. 
Date of Satellite 

pass 
Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field 10 Mean 

1 
31-10-2015 

(0
D1) 

-10.89 -10.73 -10.77 -10.55 -10.83 -10.93 -9.96 -11.74 -9.72 -10.56 -10.67 

2 
12-11-2015 

(0
D2) 

-10.81 -10.66 -10.64 -10.06 -10.70 -9.94 -10.32 -10.94 -9.45 -10.37 -10.39 

3 
24-11-2015 

(0
D3) 

-10.04 -10.56 -10.29 -10.42 -10.11 -9.88 -9.71 -10.82 -7.89 -10.27 -10.00 

4 
06-12-2015 

(0
D4) 

-9.49 -10.48 -9.76 -9.47 -9.63 -9.65 -9.49 -10.19 -7.76 -10.16 -9.61 

5 
18-12-2015 

(0
D5) 

-8.55 -9.37 -9.27 -9.52 -9.10 -8.59 -8.54 -8.72 -7.50 -9.47 -8.86 

6 
30-12-2015 

(0
D6) 

-8.46 -8.72 -8.82 -9.22 -8.75 -8.49 -8.23 -8.52 -7.00 -8.71 -8.49 

7 
11-01-2016 

(0
D7) 

-8.26 -8.01 -8.16 -9.14 -8.20 -8.31 -8.19 -8.20 -5.31 -8.14 -7.99 

8 
23-01-2016 

(0
D8) 

-8.96 -9.37 -9.20 -8.48 -8.97 -9.82 -9.28 -9.84 -6.98 -8.64 -8.95 

 



 

 

Table 10. Temporal backscattering values (dB) in VH polarization for Groundnut during rabi 2015 in test sites of 

Tiruvannamalai and Villupuram districts 

S.No. 
Date of 

Satellite pass 
Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7 Field 8 Field 9 Field 10 Mean 

1 
31-10-2015 

(0
D1) 

-17.79 -18.17 -17.94 -18.57 -18.10 -18.10 -18.35 -18.32 -17.97 -18.52 -18.18 

2 
12-11-2015 

(0
D2) 

-17.69 -17.62 -16.94 -18.19 -17.80 -17.63 -18.24 -17.50 -17.82 -18.28 -17.77 

3 
24-11-2015 

(0
D3) 

-16.22 -16.33 -16.03 -17.13 -17.71 -16.18 -16.76 -17.24 -17.41 -16.96 -16.80 

4 
06-12-2015 

(0
D4) 

-15.93 -16.06 -15.99 -16.55 -17.46 -15.46 -16.73 -16.34 -16.93 -16.81 -16.43 

5 
18-12-2015 

(0
D5) 

-15.65 -15.84 -15.56 -15.76 -16.80 -15.51 -16.50 -16.11 -16.24 -16.24 -16.02 

6 
30-12-2015 

(0
D6) 

-15.25 -15.56 -15.32 -15.39 -16.28 -15.31 -16.42 -15.71 -15.94 -15.92 -15.71 

7 
11-01-2016 

(0
D7) 

-14.46 -14.61 -14.74 -15.11 -15.44 -15.16 -15.71 -15.49 -14.97 -14.15 -14.98 

8 
23-01-2016 

(0
D8) 

-15.17 -15.28 -15.39 -15.47 -15.71 -15.76 -16.14 -16.06 -15.50 -16.44 -15.69 



districts were recorded and given in Tables 11 and 12  and backscattering signature were 

illustrated in Fig. 17 and 18.  

In Salem and Namakkal districts, the mean backscattering values for groundnut crop 

during the entire cropping period ranged from -10.15 dB to -6.64 dB and from -17.44 dB to  

-13.90 dB for VV and VH polarization, respectively. For groundnut in Tiruvannamalai and 

Villupuram districts, backscattering values ranged from -10.67 dB to -7.99 dB and from  

-18.18 dB to -14.98 dB for VV and VH polarization data, respectively. As compared to the 

mean σ0 of VH for groundnut in Salem and Namakkal districts, it was found that VV 

backscattering was lesser by 7.29 dB to 7.06 dB at different stages of crop growth. Similarly, 

for Tiruvannamalai and Villupuram districts backscattering from VV polarization was lesser 

by 7.51 dB to 6.99 dB.  

In Salem and Namakkal districts, the mean backscatter value for groundnut crop 

during the maturity (0D6) to harvest stage (0D7) decreased by 0.86 dB in VV and 0.87 dB 

in VH as compared to the developed crop stage of 0D6. Similar trend was found in 

Tiruvannamalai and Villupuram districts also where groundnut signature during the maturity 

(0D7) to harvest stage (0D8) decreased by 0.96 dB in VV and 0.71 dB in VH polarization as 

compared to the developed crop stage of 0D7.  

Considering the maximum values of dB in any pass i.e. at any growth stages of 

groundnut crop, the maximum dB of -5.60 was observed under VV polarization in Salem and 

Namakkal districts and the corresponding value was -5.31 dB in Tiruvannamalai and 

Villupuram districts. Likewise, the minimum values were recorded at germination of 

groundnut crop with the values of -10.99 and -11.74 in those districts under VV polarization. 

Considering the maximum values of dB values under VH polarization at any growth stages of 

groundnut crop, the maximum dB of -13.05 was observed in Salem and Namakkal districts 

and the corresponding value was -14.15 dB in Tiruvannamalai and Villupuram districts. 

Likewise the minimum values were recorded at germination of groundnut crop with the 

values of -20.04 and -18.57 in those districts under VH polarization. 

Through classification, the information content of the image was simplified into a 

thematic map and could therefore be easily evaluated by a human interpreter. On the basis of 

classified map, further properties of the different classes were derived and several  

 

 



Table 11.  Cumulative temporal backscattering values for Groundnut during kharif 2015 in 

Salem and Namakkal districts 

S.No 
Date of 

Satellite 

pass 

VV Polarization VH Polarization 

Maximum 

(dB) 

Minimum 

(dB) 

Mean 

(dB) 

Maximum 

(dB) 

Minimum 

(dB) 

Mean 

(dB) 

1 
08-07-2015 

(0
D1) 

-9.56 -10.99 -10.15 -16.47 -20.04 -17.44 

2 
20-07-2015 

(0
D2) 

-8.92 -10.77 -10.04 -16.27 -19.08 -17.42 

3 
13-08-2015 

(0
D3) 

-8.77 -10.25 -9.44 -15.45 -18.91 -16.65 

4 
06-09-2015 

(0
D4) 

-8.12 -9.71 -8.69 -14.56 -18.4 -16.17 

5 
12-10-2015 

(0
D5) 

-5.83 -8.55 -7.04 -13.34 -15.56 -14.29 

6 
05-11-2015 

(0
D6) 

-5.60 -8.12 -6.84 -13.05 -14.95 -13.90 

7 
17-11-2015 

(0
D7) 

-6.07 -8.62 -7.70 -13.43 -16.7 -14.77 

 

 

Fig. 17. Mean Temporal backscattering signatures of Groundnut during kharif 2015 in 

Salem and Namakkal districts



Table 12. Cumulative temporal backscattering values for Groundnut during rabi 2015 in 

Tiruvannamalai and Villupuram districts 

S.No 
Date of 

Satellite pass 

VV Polarization VH Polarization 

Maximum 

(dB) 

Minimum 

(dB) 

Mean 

(dB) 

Maximum 

(dB) 

Minimum 

(dB) 

Mean 

(dB) 

1 
31-10-2015 

(0
D1) 

-9.72 -11.74 -10.67 -17.79 -18.57 -18.18 

2 
12-11-2015 

(0
D2) 

-9.45 -10.94 -10.39 -16.94 -18.28 -17.77 

3 
24-11-2015 

(0
D3) 

-7.89 -10.82 -10.00 -16.03 -17.71 -16.80 

4 
06-12-2015 

(0
D4) 

-7.76 -10.48 -9.61 -15.46 -17.46 -16.43 

5 
18-12-2015 

(0
D5) 

-7.50 -9.52 -8.86 -15.51 -16.80 -16.02 

6 
30-12-2015 

(0
D6) 

-7.00 -9.22 -8.49 -15.25 -16.42 -15.71 

7 
11-01-2016 

(0
D7) 

-5.31 -9.14 -7.99 -14.15 -15.71 -14.98 

8 
23-01-2016 

(0
D8) 

-6.98 -9.84 -8.95 -15.17 -16.44 -15.69 

 

Fig.18. Mean Temporal backscattering signature of Groundnut during rabi 2015 in 

Tiruvannamalai and Villupuram districts 



considerations were given (e.g. total area or land cover changes). Maximum likelihood 

classifier was adopted in this study for extracting information from multi-temporal SAR data. 

The results obtained were compared and presented.  

4.4.2. Multi Temporal Features (MTF) extraction 

 Considering the accuracy of SAR data in phenological variations of groundnut 

growing period, temporal features of track 165 (Salem and Namakkal districts) and track 92 

(Tiruvannamalai and Villupuram districts) were extracted on geocoded time-series intensity 

images (At least two dates are required to compute any of the output features) using multi 

temporal dB images of VV and VH polarizations. The multi temporal features (in dB value) 

viz. Max, Min, Mean, Max Date, Min Date and Span Ratio were generated using seven 

acquisitions during kharif 2015 and eight acquisitions during rabi 2015 (Appendix V and VI). 

The values of MTF were extracted for the monitoring sites in the study area using 

feature extraction tool of MAPscape 5.4. Among the features, the Max feature i.e. maximum 

value for different groundnut fields ranged from -16.95 to -13.01 (VH Polarization) and -9.03 

to -5.47 (VV Polarization) in Salem and Namakkal districts. In Tiruvannamalai and 

Villupuram districts the range of maximum was from -16.93 to -12.59 for VH and -8.89 to -

6.06 for VV polarization, respectively. Min feature i.e. minimum value for Salem and 

Namakkal ranged from -19.86 to -16.77 for VH and -12.58 to -9.26 for VV polarizations. 

Similarly groundnut field of Tiruvannamalai and Villupuram districts recorded minimum 

values of -20.01 to -17.94 for VH and -12.36 to -8.61 for VV polarization, respectively.  

Similarly, Mean i.e. mean value for Salem and Namakkal groundnut fields are ranged from -

17.80 to -15.81 (VH) and -10.82 to -7.87 (VV). In Tiruvannamalai and Villupuram districts, 

groundnut fields recorded a mean value of -17.96 to -14.46 and -10.64 to -7.77 dB for VH 

and VV polarizations, respectively. 

Other MTF features like Max Date i.e. date of the maximum and Min Date i.e. date of 

the minimum of Salem and Namakkal districts and Tiruvannamalai and Villupuram districts 

groundnut fields were also recorded between both VH and VV polarizations. Max Date 

feature of Salem and Namakkal fields was found to be D6 (5th November, 2015) for both VH 

and VV polarization. Likewise, Min Date i.e. Date of the minimum for both VH and VV 

were found to be D1 (8th July, 2015). In groundnut fields of Tiruvannamalai and Villupuram 

districts, the Max Date features for VH and VV polarization were recorded between D6  

(30th December, 2015) and D8 (23rd January, 2016) with majority of the fields recording 



maximum date as D7 (11th January, 2016). The Min Date feature for VH polarization was 

between D1 (31st October, 2015) and D3 (24th November, 2015) and for VV polarization it 

occurred during D1 (31st October, 2015) and D2 (12th November, 2015). 

4.5. Groundnut area (Table 13, 14 and 15) 

Groundnut area map for the study area covering four districts viz., Salem, Namakkal, 

Tiruvannamalai and Villupuram districts were derived from multi temporal C-band SAR 

imagery of Sentinel-1A. Using the shape files of administrative boundaries, district wise and 

block wise maps and statistics of groundnut area were extracted for 19, 15, 18 and 21 blocks 

of Salem, Namakkal, Tiruvannamalai and Villupuram districts, respectively. 

The accuracy assessment for the groundnut area maps was conducted on a groundnut / 

non-groundnut basis, where all other land cover types were grouped into single non-

groundnut class. In total, 88 validation points covering 46 groundnut and 42 non-groundnut 

points were considered for validation in Salem and Namakkal districts, whereas 108 

validation points covering 62 groundnut and 46 non-groundnut points were considered for 

validation in Tiruvannamalai and Villupuram districts. The overall accuracy assessment was 

done for the study area with the 196 validation points covering 108 groundnut and 88 non-

groundnut points (Appendix VII to X).  

The summary of district wise groundnut area is given in Table 13 to 15 and the 

classified groundnut area across Salem district was 17817 ha whereas Namakkal district 

recorded an area of 22581 ha in groundnut during kharif 2015. These two districts 

cumulatively accounted for 40398 ha during the season under rainfed condition. During rabi 

2015 the groundnut area was also estimated using remote sensing techniques and found to be 

24903 and 22722 ha, respectively in Tiruvannamalai and Villupuram districts with a total of 

47625 ha. 

Large, homogeneous and  landscape dominating groundnut areas in Salem and 

Namakkal districts and small, fragmented, heterogeneous groundnut areas in Tiruvannamalai 

and Villupuram districts were classified equally well. Among the four districts, 

Tiruvannamalai recorded the maximum groundnut area followed by Villupuram, Namakkal 

and Salem. Groundnut area maps during kharif and rabi 2015 covering the study area are 

depicted in Fig. 19 to 22. 



 

Fig.19. Groundnut area map for Salem district during kharif 2015 

 

Fig.20. Groundnut area map for Namakkal district during kharif 2015 



 

Fig.21. Groundnut area map for Tiruvannamalai district during rabi 2015 

   

Fig.22. Groundnut area map for Villupuram district during rabi 2015 



Table 13. Blockwise Groundnut area during kharif 2015 in Salem and Namakkal districts 

S.No. 

Salem Namakkal 

Block Area (ha) Block Area (ha) 

1 Kadayampatty 
1240 

Namagiripet 
515 

2 Kalathur 
839 

Vennandur 
1012 

3 Yercaud 
44 

Rasipuram 
1219 

4 Mecheri 
353 

Mallasamudram 
2938 

5 Nangavalli 
496 

Kolli Hills 
83 

6 Valapady 
1303 

Pallipalayam 
1635 

7 Pethanaickenpalayam 
1089 

Tiruchengodu 
3515 

8 Omalur 
815 

Puduchatram 
2170 

9 Ayodhiyapattinam 
584 

Sendamangalam 
488 

10 Tharamangalam 
1215 

Elachipalayam 
2689 

11 Salem 
241 

Paramathi 
1343 

12 Idappadi 
810 

Kabilarmalai 
957 

13 Attur 
1288 

Namakkal 
1026 

14 Thalaivasal 
2783 

Erumaipatti 
1846 

15 Veerapandi 
736 

Mohanur 
1144 

16 Konganapuram 
602 

 
 

17 Mac.donalds choultry 
855 

 
 

18 Sangakiri 
1253 

 
 

19 Gangavalli 
1271 

 
 

 Total 17817 Total 22581 



Table 14. Blockwise Groundnut area during rabi 2015 in Tiruvannamalai and Villupuram districts 

S.No. 

Tiruvannamalai Villupuram 

Block Area (ha) Block Area (ha) 

1 Vembakkam 1074 Melmalaiyanur 2410 

2 Arani 1291 Vallam 1394 

3 West Arani 1133 Olakkur 909 

4 Polur 1319 Mailam 781 

5 Cheyyar 1227 Gingee 1134 

6 Jawadhu hills 215 Marakanam 713 

7 Anakkavur 721 Vanur 1006 

8 Peranamallur 1108 Kanai 932 

9 Chetpet 1585 Vikravandi 554 

10 Vandavasi 1048 Mugaiyur 1513 

11 Thellar 1851 Sankarapuram 829 

12 Kalasapakam 1087 Rishivandiyam 1491 

13 Thurinjapuram 2342 Kalrayan hills 160 

14 Pudupalayam 1231 Thirukoilur 1102 

15 Chengam 1571 Koliyanur 487 

16 Keelpennathur 1993 Thiruvennainallur 476 

17 Tiruvannamalai 1891 Ulundurpet 1373 

18 Thandrampattu 2216 Kallakurichi 1464 

19   Thirunavalur 676 

20   Thiagadurugam 1185 

21   Chinnasalem 2133 

 Total 24903 Total 22722 

 



Table 15. District wise area under groundnut (ha) 

S.No. District Season Groundnut Area (ha) 

1 Salem Kharif, 2015 
17817 

2 Namakkal Kharif, 2015 
22581 

3 Tiruvannamalai Rabi, 2015 
24903 

4 Villupuram Rabi, 2015 

22722 

 

 Total 
88023 

 



The summary of validation data and classification accuracy is given in Table 18. The 

overall classification accuracy was 87.2 per cent with a kappa score of 0.74 indicating the 

accuracy of classification across the study area.  

4.5.1. Groundnut area during kharif 2015  

Among the two districts monitored for groundnut area during kharif 2015 (Table 13), 

in Salem district, Thalaivasal block recorded the highest groundnut area of 2783 ha followed 

by Valapady and Attur blocks registering an area of 1303 and 1288 ha, respectively. 

Gangavalli, Sangakiri, Kadayampatti and Tharamangalam were the next best blocks 

recording groundnut area of 1215 to 1288 ha. Yercaud followed by Salem recorded the 

lowest groundnut area of 44 and 241 ha. In Namakkal district Tiruchengodu block recorded 

the highest groundnut area 3515 ha followed by Mallasamudram, Elachipalayam and 

Puduchatram blocks with an area of (nearly 2000 ha) 2938, 2689 and 2170 ha respectively. 

The lowest groundnut area was recorded with Kolli hills block with 83 ha followed by 

Senthamangalam and Namagiripet blocks with 488 blocks and 515 ha respectively. 

Namakkal recorded higher groundnut area of 22581 ha as compared to Salem district which 

registered a groundnut area of 17817 ha.  

The accuracy assessment with 88 validation points during kharif 2015 showed a lesser 

accuracy of 78.3% for groundnut in Salem and Namakkal districts. However the overall 

accuracy of 85.2% with reliability of 85.9% and kappa score of 0.70 the classification 

accuracy was found to be good (Table 16). 

4.5.2. Groundnut area during rabi 2015 

Among the two districts monitored during rabi 2015, Tiruvannamalai has recorded 

the highest groundnut area of 24903 ha followed by Villupuram district with a groundnut area 

of 22722 ha (Table 14). 

In Tiruvannamalai district, Thurinjipuram and Thandrampattu blocks recorded the 

higher groundnut area of 2342 and 2216 ha respectively followed by Keelpennathur, 

Tiruvannamalai and Thellar blocks with an area of 1993, 1891 and 1851 ha respectively. The 

lowest groundnut area was recorded in Jawadhu hills block with an area of 215 ha followed 

by Anakkavur block with 721 ha. 

In Villupuram district, Melmalaiyanur and Chinnasalem blocks recorded higher area 

of groundnut (2410 and 2133 ha respectively) followed by Mugaiyur, Rishivandiyam, 

Kallakurichi, Vallam and Ulundurpet blocks with an area of 1513, 1491, 1464 and 1394 ha 



Table 16. Confusion matrix for accuracy assessment of Groundnut classification during kharif 2015 in Salem and Namakkal districts  
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Predicted class from the map 

Class Groundnut Non-Groundnut Accuracy (%) 

Groundnut 36 10 78.3% 

Non-Groundnut 3 39 92.9% 

Reliability 92.3% 79.6% 85.2% 

Average accuracy 85.6% 

 

Average reliability 85.9% 

 

Overall accuracy 85.2% Good Accuracy 

Kappa index 0.70 

 
 



Table 17. Confusion matrix for accuracy assessment of Groundnut classification during rabi season 2015 in Tiruvannamalai 

and Villupuram districts 
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Predicted class from the map 

Class Groundnut Non-Groundnut Accuracy (%) 

Groundnut 53 9 85.5% 

Non-Groundnut 3 43 93.5% 

Reliability 94.6% 82.7% 88.9% 

Average accuracy 89.5% 

 

Average reliability 88.7% 

 

Overall accuracy 88.9% Good Accuracy 

Kappa index 0.78 

 
 



Table 18. Confusion matrix for accuracy assessment of Groundnut classification across study area 

A
ct

u
a
l 

cl
a
ss

 f
ro

m
 s

u
rv

ey
 

  

Predicted class from the map 

Class Groundnut Non-Groundnut Accuracy (%) 

Groundnut 89 19 82.4% 

Non-Groundnut 6 82 93.2% 

Reliability 93.7% 81.2% 87.2% 

Average accuracy 87.8% 

 

Average reliability 87.4% 

 

Overall accuracy 87.2% Good Accuracy 

Kappa index 0.74 

 
 

 



respectively. The lowest groundnut area was recorded in Kalrayan hills block with 160 ha 

followed by Thiruvennainallur and Koliyanur blocks with an area of 476 and 487 ha, 

respectively. 

Confusion matrix generated with 108 validation points for accuracy assessment for 

groundnut area classification during rabi 2015 showed a good accuracy of 85.5% for 

groundnut and 93.5% for other land types. The overall accuracy of 88.9% with reliability of 

88.7% and kappa score of 0.78 showed the accuracy of products as good (Table 17).  

4.6. Modeling growth and productivity of groundnut using DSSAT v 4.5  

 A crop simulation model is simple representation of a crop in relation to 

environmental and other growth influencing factors and explanatory in nature. The groundnut 

model PNUTGRO was calibrated, tested and validated to predict crop yields as influenced by 

season and variations in climate, soil, and genotypes spatially. The model validation results 

showed that simulated days to various growth stages, growth processes and final yields were 

significantly correlated with the observed data across environments.  

4.6.1. Generation of input files for DSSAT and calibration (Appendix XIa to XIe) 

4.6.1.1. Weather file generated in DSSAT 

The weather input files was generated using weatherman in DSSAT for 20 monitoring 

locations covering 10 weather stations (Fig. 23 to 32) in the study districts of Salem (3), 

Namakkal (2), Tiruvannamalai (2) and Villupuram (3). During kharif 2015, the generated 

input file showed a mean maximum temperature of 35.3 to 36.3 oC, a mean minimum 

temperature of 23.5 to 23.9oC and mean solar radiation of 360.9 to 410.8 cal cm-2min-1 in 

three weather stations of Salem district during crop growth period. During this period, a 

rainfall of 222.5 to 250.5 mm was recorded in the respective weather stations. In Namakkal 

district, the generated weather files showed a mean maximum temperature of 30.6 to 35.8oC, 

a mean minimum temperature of 25.2 to 25.3 oC and mean solar radiation of 384.5 to 416.5 

cal cm-2min-1 with rainfall of 141.5 to 313.9 mm was recorded in the two weather stations of 

Namakkal district during this period. 

During crop growth period (rabi 2015), in Tiruvannamalai district, the generated 

input file showed a mean maximum temperature of 29.6 to 30.1oC, a mean minimum 

temperature of 21.7 to 21.8oC and mean solar radiation of 349.6 to 474.5 cal cm-2min-1 with 

the rainfall of 397.5 to  566.0 mm in two weather stations of Tiruvannamalai district during 

this period. Whereas Villupuram district generated input file showed a mean maximum 



 

 

Fig.23. Weather chart generated from DSSATfor Tiruchengodu 

 

Fig.24.Weather chart generated from DSSAT for Mac.donalds choultry 

 

Fig.25. Weather chart generated from DSSAT for Namakkal 



 

 

Fig.26. Weather chart generated from DSSAT for Mecheri 

 

Fig.27. Weather chart generated from DSSAT for Tharamangalam  

 

Fig.28. Weather chart generated from DSSAT for Thandrampattu  



 

  

Fig.29. Weather chart generated from DSSAT for Kalasapakkam 

 
Fig.30. Weather chart generated from DSSAT for Rishivandiyam 

  

Fig.31. Weather chart generated from DSSAT for Marakanam Fig.32. Weather chart generated from DSSAT for Melmalaiyanur 

 



temperature of 28.9 to 31.7oC, a mean minimum temperature of 21.6 to 22.3oC and mean 

solar radiation of 293.2 to 360.8 cal cm-2min-1 showed in three weather stations of Villupuram 

district during crop growth period. During this period a rainfall of 279.9 to 921.6 mm was 

recorded in the respective weather stations. 

4.6.1.2. Soil file generated in DSSAT 

The input files for soil was generated with 13 parameters derived from soil analysis 

(Table 19.). In the study area of four districts, a total of twelve soil series were found to be 

predominantly present. The input files generated using ‘S’ build showed that the bulk density 

(SBDM) of the study area ranged from 1.44 to 1.62 g cm-3 whereas  the soil organic carbon 

concentration ranged from 0.20 to 0.92 , pH ranged from 6.0 to 8.9 , Cation Exchange 

Capacity ranged from 7.3 to 39.5,  and soil depth from 42 to 276 cm.  

4.6.1.3. Calibration and derivation of genetic coefficients 

 The genetic coefficients required in the CROPGRO model version 4.5 were estimated by 

entering varietal character as incorporated in the model in the form of ‘genetic coefficients’ for 

CO 6, TMV 7 and VRI 2 cultivars. An inbuilt programme in DSSAT called GENCALC, 

calculates genetic coefficients. The genetic coefficients determined in CROPGRO model 

using identical management and other conditions were used in the subsequent validation and 

application (Table 20.).  

Among the three different genetic coefficients of cultivars used in study districts, the 

time between emergence and flower appearance (EM-FL) and time between first flower and 

first pod (FL-SH) were found to be 16.40 (photothermal days) and 7.00 (photothermal days) 

respectively for all the three cultivars. The maximum leaf photosynthesis rate (LFMAX) was 

1.23 (mgCO2m-2s-1) for CO 6 and TMV 7 cultivars and 1.34 (mgCO2m-2s-1) for VRI 2 

cultivar. With regard to Specific leaf area (SLAVR), TMV 7 cultivar recorded the highest 

value of 245 (cm2g-1) followed by 220 and 205 (cm2g-1) for VRI 2 and CO 6 cultivar 

respectively. The maximum weight per seed (WTPSD) of 0.38 (g) was found in VRI 2 

followed by TMV 7 and CO 6 with 0.36 and 0.31 (g) respectively. Considering average seed 

per pod (SDPDV) CO 6 registered the highest value of 1.60 (seed pod-1) as compared to other 

two cultivars (1.55 seed pod-1). 



Table 19. Soil files generated and used in DSSAT model 

Soil series 
Layer 

(cm) SLB SLLL SDUL SSAT SRGF SSKS SBDM SLOC SLCL SLSI SLCF SLHW SCEC 

Vetavalam 

25 25 0.139 0.23 0.403 1.000 2.59 1.51 0.64 19.2 15.7 -99 7.2 21.9 

52 27 0.115 0.196 0.399 0.595 2.59 1.52 0.67 14.2 12.3 -99 6.9 21.4 

98 46 0.144 0.238 0.404 0.482 0.43 1.51 0.62 20.3 17.3 -99 7.8 17.6 

Perapperi, 

12 12 0.115 0.189 0.389 1.000 2.59 1.55 0.6 14.5 9.8 -99 8.1 12 

34 22 0.194 0.294 0.407 0.631 0.43 1.5 0.58 30.4 17.9 -99 8.1 37 

64 30 0.207 0.311 0.412 0.375 0.43 1.49 0.49 33.5 20.2 -99 8.1 40.1 

86 22 0.222 0.333 0.426 0.232 0.23 1.45 0.49 36.5 22.8 -99 8.4 51 

Palladam 
17 17 0.245 0.341 0.416 1.000 0.12 1.47 0.92 38.7 9.4 -99 8.2 23.3 

33 13 0.222 0.338 0.435 0.625 0.23 1.42 0.8 34.8 22.1 -99 8.1 24.8 

Perundurai 

13 13 0.024 0.037 0.077 1.000 2.59 1.62 0.4 15 6 79 6 10.6 

38 25 0.165 0.221 0.247 0.600 0.06 1.47 0.5 48 11 41 5.9 22.8 

70 32 0.3 0.382 0.386 0.340 0.06 1.24 0.7 69 8 23 5.9 26.4 

92 22 0.145 0.192 0.219 0.198 0.12 1.53 0.3 46 9 45 6.4 19.2 

Irugur 

22 22 0.124 0.195 0.262 1.000 0.23 1.45 0.35 33.3 27.9 38.8 8 25.1 

58 36 0.044 0.064 0.112 0.449 0.43 1.58 0.44 21.9 7.6 70.5 8.1 22.3 

88 30 0.051 0.075 0.125 0.252 0.43 1.58 0.35 24.2 8.6 67.2 8.2 19.6 

108 20 0.121 0.185 0.247 0.165 0.23 1.49 0.18 34.4 25.2 40.4 8.3 26.3 

Vellalur 

22 22 0.077 0.119 0.176 1.000 0.43 1.47 0.84 26.7 15.5 57.8 7.7 11 

37 15 0.103 0.155 0.208 0.554 0.43 1.47 0.78 31.8 18 50.2 7.5 7.6 

66 29 0.128 0.179 0.218 0.361 0.12 1.48 0.68 39.7 12.9 47.4 7.4 9 

Elavamalai 
15 15 0.051 0.071 0.115 1.000 0.43 1.62 0.21 26 5.3 68.6 6.5 12.6 

27 12 0.047 0.065 0.109 0.657 0.43 1.63 0.18 25.1 4.8 70 7.5 11 

Kollattur 

18 18 0.05 0.08 0.137 1.000 0.43 1.55 0.45 20.9 14.3 64.8 6.3 11.4 

48 30 0.102 0.134 0.169 0.522 0.12 1.56 0.37 39.7 4 56.4 6.7 13.8 



Katripatti 

12 12 0.031 0.054 0.115 1.000 2.59 1.58 0.2 14.6 15.4 70 6 9.2 

31 19 0.039 0.072 0.143 0.651 2.59 1.54 0.3 14.6 21.6 63.8 5 8.1 

58 27 0.047 0.065 0.11 0.372 0.43 1.62 0.2 25.1 4.8 70 5.2 8.8 

Chickarasam 

Palaiyam 

23 23 0.058 0.087 0.139 1.000 0.43 1.54 0.51 25 10.4 64.6 8.2 7.3 

35 12 0.047 0.065 0.111 0.560 0.43 1.64 0.06 24.9 5.9 69.2 8.3 14 

63 28 0.1 0.139 0.183 0.375 0.12 1.58 0.15 35.8 12.1 52.1 8.3 22 

90 27 0.07 0.106 0.165 0.217 0.43 1.58 0.09 26.9 16.3 56.8 8.4 25 

Tolurpatti 

 

18 18 0.057 0.094 0.154 1.000 0.43 1.47 0.89 21 16 63 7.5 18.4 

66 48 0.127 0.179 0.219 0.517 0.12 1.48 0.66 39 14 47 6.8 34.1 

Meyyur 

16 16 0.81 0.137 0.210 1.00 0.43 1.44 0.75 23.8 25.2 51.0 8.9 39.5 

30 14 0.128 0.214 0.289 0.631 0.23 1.37 0.78 30.8 32.9 36.3 9.0 40.3 

50 20 0.214 0.333 0.387 0.449 0.06 1.28 0.80 44.1 35.7 20.2 9.3 42.8 

110 60 0.158 0.214 0.243 0.202 0.06 1.46 0.65 46.1 11.5 42.4 9.1 42 

 

SLB - Depth until base of  layer (cm); SLLL - Lower limit of plant extractable soil water (cm3 cm-3); SDUL - Drained upper limit  

(cm3 cm-3); SSAT - Saturated upper limit (cm3cm-3); SRGF - Root growth factor (0-1 scale); SSKS - Saturated hydraulic conductivity 

(cm h-1); SBDM - Bulk density (moist) (g cm-3); SLOC - Soil organic carbon concentration (%); SLCL Clay (<0.002 mm) (%);  

SLSI - Silt (0.002 to 0.05 mm) (%); SLCF - Coarse fraction (>2mm) (%); SLHW - pH in water; SCEC - Soil cation exchange capacity 

(Cmol(+)kg-1) 



Table 20. Genetic co-efficient (GC) of peanut generated and used in DSSAT CROPGRO-

Peanut Model  

S. No. GC-Code* 

Genetic co-efficient (GC) 

CO 6 TMV 7 VRI 2 

1 CSDL 11.84 11.84 11.84 

2 PPSEN 0.00 0.00 0.00 

3 EM-FL 16.40 16.40 16.40 

4 FL-SH 7.00 7.00 7.00 

5 FL-SD 17.50 17.00 16.50 

6 SD-PM 62.00 62.00 62.00 

7 FL-LF 70.00 66.00 66.00 

8 LFMAX 1.23 1.23 1.34 

9 SLAVR 205.00 245.00 220.00 

10 SIZLF 16.00 16.00 16.00 

11 XFRT 0.73 0.80 0.76 

12 WTPSD 0.310 0.360 0.38 

13 SFDUR 29.00 29.00 29.00 

14 SDPDV 1.60 1.55 1.55 

15 PODUR 16.00 16.00 15.00 

16 THRSH 74.00 78.00 74.00 

17 SDPRO 0.27 0.27 0.27 

18 SDLIP 0.51 0.51 0.51 

*(Ref.Table 4.) 



4.6.2. Simulation of growth and development variables of groundnut by DSSAT 

Growth and development variables of groundnut viz., days to emergence, days to 

anthesis, pod development, seed development and physiological maturity, yield at harvest  

(kg ha-1), pod  weight (kg ha-1) and pod number (m-2) were simulated by DSSAT CROPCRO-

Peanut model for twenty monitoring locations across the study area and presented in Table 21 

and 22. Besides maximum LAI, Harvest index, Threshing per cent, N content in grain, tops 

and stem at maturity and canopy height (m) were also simulated in each location spatially.  

The CROPGRO-Peanut simulated the days for different physiological process of 

groundnut. The days to emergence ranged from 7 to 9 days across locations while the days to 

anthesis varied from 25 to 32 days. Among the locations, Nochokarakadu with the variety Co 

6 registered the minimum of 107 days to maturity while Melsevalambadi with the variety 

TMV 7 recorded a maximum number of 117 days to emergence. Similarly, the simulations 

were made for days to first pod development to first seed development and physiological 

maturity and they showed that groundnut took 36 to 44 days to anthesis, 43 to 51 days for 

first pod development and 107 to 117 days to physiological maturity. Further, the DSSAT 

model resulted in a simulated canopy height of 0.67 to 0.70 m and maximum LAI of 1.12 to 

3.07. Vellapillakovil and Kakapalayam resulted in higher simulation of LAI with values of 

3.07 followed by Velangavundanpatti and Pappambadi registering maximum LAI of 3.05. 

However, the model simulated a lesser LAI of 1.12 to 1.48 at Keelravandavadi, 

Thandrampattu, Tindivanam, Melsevalambadi, Padiyandhal and Arkandanallur sites. 

The crop growth model also simulated the leaf number per stem at maturity which 

ranged from 27.84 to 29.02 in Salem district, 25.76 to 29.12 in Namakkal district, 25.47 to 

25.85 in Tiruvannamalai and 24.60 to 26.72 in Villupuram district.   

As influenced by the canopy height, leaf number and maximum LAI, the tops weight 

at maturity (kg ha-1), was also simulated by the model and found to be in the range of 4176 to 

9576 kg ha-1. The yield parameters viz., pod weight (kg ha-1), number of pods m-2 and seed 

weight were simulated to be in the range 1796 to 3060 (kg ha-1), 568 to 783 m-2 and 0.190 to 

0.317 g. 

The resultant yield was simulated by DSSAT PNUTGRO and found to be in the range 

of 1796 to 3060 kg ha-1 across the study area with a harvest index of 0.28 to 0.43. The model 



Table 21. Growth and development variables simulated by DSSAT in monitoring sites of Salem and Namakkal districts 
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1 Cultivar Co 6 Co 6 Co 6 Co 6 Co 6 Co 6 Co 6 Co 6 Co 6 Co 6 Co 6 Co 6 Co 6 

2 Anthesis day (dap) 27 29 26 28 26 26 25 26 28 26 25 26 25 

3 First pod day (dap) 38 41 38 40 38 37 36 38 40 37 37 37 36 

4 First seed day (dap) 45 49 45 47 45 44 43 45 47 44 43 44 43 

5 Physiological maturity day (dap) 114 116 112 114 113 109 108 113 115 113 112 109 107 

6 
Yield at harvest maturity  

(kg [dm]/ha) 
2429 2747 3060 2922 2969 2348 2640 2957 2877 2687 2587 2348 2641 

7 
Pod/Ear/Panicle weight at maturity  

(kg [dm]/ha) 
3532 3760 4174 3991 4100 3263 3655 4099 3957 3816 3746 3263 3633 

8 Number at maturity (no/m2) 1306 1269 1376 1347 1390 1087 1225 1399 1363 1374 1365 1087 1229 

9 Unit weight at maturity (g [dm]/unit) 0.186 0.2165 0.2223 0.2169 0.2137 0.216 0.2156 0.2113 0.2111 0.1956 0.1895 0.216 0.2149 

10 Number at maturity (no/unit) 1.47 1.52 1.53 1.55 1.5 1.47 1.51 1.48 1.53 1.46 1.46 1.47 1.5 

11 Tops weight at maturity (kg [dm]/ha) 8569 8734 9456 9045 9576 7466 8156 9548 9099 9173 9012 7466 8399 

12 
By-product produced (stalk) at 

maturity (kg[dm]/ha 
6140 5990 6400 6120 6610 5120 5520 6590 6220 6490 6420 5120 5760 

13 Leaf area index, maximum 2.68 2.82 3.05 2.82 3.07 1.98 2.31 3.07 2.84 3.05 2.92 1.98 2.37 

14 Harvest index at maturity 0.283 0.314 0.324 0.323 0.31 0.314 0.324 0.31 0.3163 0.293 0.287 0.314 0.314 

15 Threshing % at maturity 68.78 73.05 73.3 73.21 72.41 71.95 72.24 72.14 72.7 70.44 69.06 71.95 72.68 

16 Grain N at maturity (kg/ha) 122 142 161 153 154 119 136 151 150 142 129 119 135 

17 Tops N at maturity (kg/ha) 237 251 277 263 276 214 238 271 263 262 250 214 242 

18 Stem N at maturity (kg/ha) 48 44 46 45 50 40 42 50 46 50 50 40 45 

19 Grain N at maturity (%) 5.04 5.19 5.27 5.23 5.18 5.09 5.16 5.09 5.22 5.28 4.98 5.09 5.12 

20 Tops weight at anthesis (kg [dm]/ha) 71 86 107 95 107 76 108 113 95 107 82 76 108 

21 Tops N at anthesis (kg/ha) 3 3 4 4 4 3 4 4 4 4 3 3 4 

22 Leaf number per stem at maturity 29.02 28.4 27.84 28.46 28.08 25.94 25.76 28.64 28.68 29.12 28.46 25.94 25.81 

23 Grain oil at maturity (%) 50.58 50.03 49.87 49.95 50.17 50.06 49.98 50.34 50.07 50.13 50.71 50.06 49.81 

24 Canopy height (m) 0.7 0.67 0.67 0.68 0.67 0.63 0.63 0.68 0.68 0.7 0.69 0.63 0.63 

25 Harvest maturity day (dap) 114 116 112 114 113 109 108 113 115 113 112 109 107 

26 Emergence day (dap) 9 9 7 9 7 8 7 7 9 7 7 8 7 



Table 22. Growth and development variables simulated by DSSAT in monitoring sites of Tiruvannamalai and Villupuram districts  

S.No. Variables 
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1 Cultivar VRI 2  VRI 2 VRI 2 VRI 2  TMV 7 TMV 7 TMV 7 

2 Anthesis day (dap) 26 26 25 26 27 26 32 

3 First pod day (dap) 37 37 36 37 38 37 44 

4 First seed day (dap) 43 43 43 43 45 44 51 

5 Physiological maturity day (dap) 108 108 108 108 111 112 117 

6 
Yield at harvest maturity  

(kg [dm]/ha) 
1796 2519 1825 2340 2088 1806 2005 

7 
Pod/Ear/Panicle weight at maturity  

(kg [dm]/ha) 
2600 3638 2509 3490 2765 2367 2694 

8 Number at maturity (no/m2) 739 940 623 947 721 568 783 

9 Unit weight at maturity (g [dm]/unit) 0.2431 0.2681 0.2932 0.2417 0.2896 0.3177 0.2562 

10 Number at maturity (no/unit) 1.36 1.34 1.46 1.37 1.35 1.4 1.43 

11 Tops weight at maturity (kg [dm]/ha) 4525 6366 4516 6179 4807 4176 5030 

12 By-product produced (stalk) at maturity (kg[dm]/ha 2730 3850 2690 3840 2720 2370 3030 

13 Leaf area index, maximum 1.12 1.54 1.13 1.48 1.4 1.24 1.37 

14 Harvest index at maturity 0.397 0.396 0.404 0.379 0.434 0.432 0.399 

15 Threshing % at maturity 69.1 69.24 72.77 67.05 75.54 76.3 74.43 

16 Grain N at maturity (kg/ha) 83 107 90 100 91 83 92 

17 Tops N at maturity (kg/ha) 129 179 132 172 141 124 145 

18 Stem N at maturity (kg/ha) 16 25 15 25 19 15 21 

19 Grain N at maturity (%) 4.6 4.26 4.91 4.27 4.35 4.6 4.59 

20 Tops weight at anthesis (kg [dm]/ha) 85 102 78 100 89 75 64 

21 Tops N at anthesis (kg/ha) 3 4 3 4 3 3 2 

22 Leaf number per stem at maturity 25.48 25.47 25.85 25.11 25.31 24.6 26.72 

23 Grain oil at maturity (%) 50.2 51 49.52 51 50.3 49.93 50.27 

24 Canopy height (m) 0.69 0.63 0.68 0.63 0.67 0.63 0.70 

25 Harvest maturity day (dap) 108 108 108 108 111 112 117 

26 Emergence day (dap) 8 8 7 8 8 8 9 

 



also simulated the N content at anthesis and maturity. The groundnut oil content of grains 

was simulated to be 49.52 to 50.58 per cent across the study area.  

4.6.3. Observed values of growth and yield of groundnut 

Observations were made on growth and yield parameters at 20 monitoring locations 

regularly. The observed values of LAI, biomass, pod yield and harvest index are presented in 

Table 23. In case of maximum LAI, Salem district recorded LAI of 3.45 to 4.04 with a mean 

of 3.67 and biomass of 7554 to 9959 kg ha-1 with a mean of 9060 kg ha-1. In the monitoring 

sites of the district, pod yield of 2115 to 2750 kg ha-1 were recorded while the harvest index 

was observed to be between 0.26 to 0.28.  

Monitoring locations in Namakkal district registered a maximum LAI of 3.35 to 4.05 

with a mean of 3.68 with biomass of 7222 to 9600 kg ha-1. The resultant pod yield was 

observed to be 1950 to 2607 kg ha-1 with a harvest index of 0.25 to 0.29. Similarly in 

Tiruvannamalai, the maximum LAI and biomass were observed to be in the range of 2.01 to 

2.62 and 4620 to 7290 kg ha-1. The resultant pod yields were between 1450 and 2187 kg ha-1 

with a harvest index of 0.30 to 0.37. Villupuram district recorded a comparatively lesser LAI 

of 2.44 to 2.80 with biomass of 4652 to 7403 kg ha-1. The pod yields were observed to be 

1535 to 2221 kg ha-1 with a harvest index of 0.30 to 0.34. 

4.6.4. Validating of crop simulation of groundnut growth and productivity  

4.6.4.1. Validation of simulated groundnut Leaf Area Index (LAI) 

 Throughout the study area, LAI was observed in twenty field locations and 

simulations were done through DSSAT model for the respective locations. The agreement 

between the simulated and observed values was worked out and given in Table 24. The 

observed LAI values ranged from 2.01 to 4.05 and higher LAI values of 4.05 and 4.04 were 

observed in Manathi and Pappambadi sites followed by Kakapalayam, Palayapuliyampatti, 

Kandarkulamanickam and Vellapillakovil with the values of 3.83, 3.78, 3.71 and 3.70 

respectively. Comparatively lesser values of LAI ranging from 2.74 to 2.01 were recorded at 

Tiruvannamalai district. The lowest LAI of 2.01 was recorded at Keelravandavadi followed 

by Tindivanam with LAI of 2.44.   

Simulated LAI values through CROPGRO-Peanut model ranged from 1.12 to 3.07.  

The maximum LAI value of 3.07 was simulated in Vellapillakovil and Kakapalayam followed 



Table 23. District wise observed values of LAI, biomass, pod yield and harvest index  of groundnut 

Parameters 

Salem Namakkal Tiruvannamalai Villupuram 

M
a
x
im

u
m

 

M
in

im
u

m
 

M
ea

n
 

M
a
x
im

u
m

 

M
in

im
u

m
 

M
ea

n
 

M
a
x
im

u
m

 

M
in

im
u

m
 

M
ea

n
 

M
a
x
im

u
m

 

M
in

im
u

m
 

M
ea

n
 

LAI 
4.04 3.45 3.67 4.05 3.35 3.68 2.62 2.01 2.38 2.80 2.44 2.63 

Biomass  

(kg ha-1) 9959 7554 9060 9600 7222 8491 7290 4620 5529 7403 4652 5707 

Pod yield  

(kg ha-1) 2750 2115 2464 2607 1950 2333 2187 1450 1782 2221 1535 1825 

Harvest 

Index 0.28 0.26 0.27 0.29 0.25 0.28 0.37 0.30 0.33 0.34 0.30 0.32 



Table 24. Validation of DSSAT CROPGRO-Peanut model for groundnut Leaf Area Index 

(LAI) 

S.No. District Village 
Simulated 

LAI  

Observed 

LAI 

Agreement 

(%) 

1 Namakkal Palayapuliyampatti 1.98 3.78 52 

2 Namakkal Pudhupuliyampatti 2.31 3.37 69 

3 Namakkal Kakapalayam 3.07 3.83 80 

4 Namakkal Kandarkulamanickam 2.84 3.71 77 

5 Namakkal Velagavundmpatti 3.05 3.68 83 

6 Namakkal Manathi 2.92 4.05 72 

7 Namakkal Morepalayam 1.98 3.35 59 

8 Namakkal Nochokarakadu 2.37 3.64 65 

9 Salem Pudhuchatram 2.68 3.55 75 

10 Salem Pothiyampatti 2.82 3.60 78 

11 Salem Pappambadi 3.05 4.04 75 

12 Salem Moongathur 2.82 3.45 82 

13 Salem Vellapillakovil 3.07 3.70 83 

14 Tiruvannamalai Keelravandavadi 1.12 2.01 56 

15 Tiruvannamalai Manmalai 1.54 2.51 61 

16 Tiruvannamalai Thandrampattu 1.13 2.62 43 

17 Villupuram Arkandanallur 1.48 2.80 53 

18 Villupuram Padiyandhal 1.40 2.55 55 

19 Villupuram Tindivanam 1.24 2.44 51 

20 Villupuram Melsevalambadi 1.37 2.74 50 

Mean 2.21 3.27  

R2 0.82 

RMSE  1.10 

NRMSE (%)  34 

Total Agreement (%) 66 



by Velagavundanpatti and Pappambadi field locations with LAI of 3.05. The lesser simulated 

LAI values of 1.12, 1.13, 1.24, 1.37, 1.40 and 1.48 were recorded in Keelravandavadi, 

Thandrampattu, Tindivanam, Melsevalambadi, Padiyandhal and Arkandanallur of 

Tiruvannamalai district respectively.  

 On comparison between observed and simulated values, the Leaf Area Index as 

simulated by the CROPGRO-Peanut model was found to be underestimated for all twenty 

field locations during kharif and rabi season in all the study districts. The DSSAT model 

fairly simulated the LAI values in Velagavundanpatti and Vellapillaikovil sites with the 

values of 3.05 and 3.07 as against the observed values of 3.68 and 3.70 respectively, followed 

by Moongathur and Kakapalayam field locations which recorded the simulated values of 2.82 

and 3.07 with the observed values of 3.45 and 3.83 respectively. The model poorly predicted 

the LAI in Thandrampattu field with the value of 1.40 against the observed value of 2.62 

followed by Melsevalambadi and Tindivanam fields with a simulated LAI of 1.37and 1.24 as 

against the  observed values of 2.74 and 2.44 respectively.  

The agreement between simulated LAI value with observed value was worked out and 

given in Table 24. The individual agreement for all field locations ranged from 43 to 84 per 

cent. Among the twenty field locations, the maximum agreement of 83 per cent was recorded 

in two field locations viz., Velagavundanpatti and Vellapillaikovil followed by Moongathur 

and Kakapalayam field locations which recorded 82 and 80 per cent respectively.   

The minimum agreement was recorded in Thandrampattu field location with 43 per cent 

followed by 50, 51 and 52 per cent for Melsevalambadi, Tindivanam, and Palayapuliyampatti 

fields respectively. 

 A summary of statistical analysis of the results of LAI variable is also presented in 

Table 24. The average errors as computed by R2, RMSE and NRMSE were 0.82, 1.10 and    

34 per cent respectively. The overall agreement between simulated and observed values was 

66 per cent. 

4.6.4.2. Validation of simulated groundnut biomass 

 Similar to LAI, groundnut biomass was observed and simulated in the twenty field 

locations across study area and the results are given in Table 25. The observed values of 

biomass production which means both pods and haulm yields of groundnut crops in all field 

locations at harvest ranged from 5246 kg ha-1 from 8969 kg ha-1. The maximum biomass of 



Table 25. Validation of DSSAT  CROPGRO-Peanut model for groundnut biomass (kg ha-1) 

S.No. District Village 
Simulated 

Biomass 

Observed 

Biomass 

Agreement 

(%) 

1 Namakkal Palayapuliyampatti 7466 8275 90 

2 Namakkal Pudhupuliyampatti 8156 7845 96 

3 Namakkal Kakapalayam 9548 8969 94 

4 Namakkal Kandarkulamanickam 9099 8011 86 

5 Namakkal Velagavundmpatti 9173 7768 82 

6 Namakkal Manathi 9012 7895 86 

7 Namakkal Morepalayam 7466 8660 86 

8 Namakkal Nochokarakadu 8399 8929 94 

9 Salem Pudhuchatram 8569 7753 89 

10 Salem Pothiyampatti 8734 8456 97 

11 Salem Pappambadi 9456 8715 91 

12 Salem Moongathur 9045 8832 98 

13 Salem Vellapillakovil 9576 8778 91 

14 Tiruvannamalai Keelravandavadi 4525 5788 78 

15 Tiruvannamalai Manmalai 6366 5862 91 

16 Tiruvannamalai Thandrampattu 4516 5246 86 

17 Villupuram Arkandanallur 6179 6678 93 

18 Villupuram Padiyandhal 4807 5681 85 

19 Villupuram Tindivanam 4716 5683 83 

20 Villupuram Melsevalambadi 5030 5883 86 

Mean 7492 7485  

R2 0.79 

RMSE (kg ha-1) 844 

NRMSE (%)  11 

Total Agreement (%) 89 



8969 kg ha-1 was observed in Kakapalayam field followed by Nochokarakadu, Moongathur, 

Vellapillakovil, Pappambadi and Morepalayam fields which recorded a biomass of 8929, 

8832, 8778, 8715 and 8660 kg ha-1 respectively. Thandrampattu field recorded the lowest 

observed biomass of 5246 kg ha-1 followed by observed values of 5681, 5683 and  

5788 kg ha-1 from Padiyandhal, Tindivanam and Keelravandavadi fields respectively with all 

the three locations falling in Tiruvannamalai and Villupuram districts. 

 In the twenty field locations, the CROPGRO-Peanut model simulated the biomass 

production and the values ranged from 4516 kg ha-1 to 9576 kg ha-1. Vellapillakovil field 

recorded the maximum simulated value of biomass with 9576 kg ha-1 followed by 

Kakapalayam, Pappambadi, Velagavundanpatti, Kandarkulamanickam, Moongathur and 

Manathi field locations which recorded the biomass production of 9548, 9456, 9173, 9099, 

9045 and 9012 kg ha-1 respectively. The minimum simulated biomass of 4516 kg ha-1 was 

recorded in Thandrampattu field followed by Keelravandavadi, Tindivanam and Padiyandhal 

fields with the biomass of 4525, 4716 and 4807 kg ha-1respectively. 

The CROPGRO-Peanut model slightly over predicted the biomass production in most 

of the field locations. At the same time there was a positive significant relation between 

simulated and observed values prevailed throughout the twenty locations. Especially,  

In Moongathur, Pothiyampatti and Pudhupuliyampatti field locations, CROPGRO-Peanut 

model excellently predicted the biomass production of 9045, 8734 and 8156 with observed 

values of 8832, 8456 and 7845 kg ha-1 respectively. In Nochokarakadu and Kakapalayam, 

also the DSSAT model simulated the biomass accurately with the values of 8339 and 9548 kg 

ha-1 as against 8929 and 8969 kg ha-1 of observed values respectively. In Keelravandavadi 

field the simulation was slightly poor with biomass production of 4525 kg ha-1 as compared 

to the observed values of 5788kg ha-1. 

 The agreement between simulated and observed values was more acceptable for 

almost all monitoring field locations. The agreement of fields ranged from 78 to 98 per cent. 

The maximum level of agreement of 98% was recorded in Moongathur followed by 97 and 

96 per cent in Pothiyampatti and Pudhupuliyampatti and 94 per cent by Nochokarakadu and 

Kakapalayam fields. Among the twenty field locations, Keelravandavadi field recorded 

slightly poor agreement for biomass production with 78 per cent.  

The model prediction for biomass production at maturity was considered excellent 

and the average errors as computed by R2, RMSE and NRMSE were 0.79, 844 kg ha-1 and 11 



per cent respectively and overall agreement between simulated and observed values was 89 

per cent. The model prediction was in close agreement with measured values. 

4.6.4.3. Validation of simulated groundnut pod yield  

 Groundnut pod yield under rainfed condition was observed and simulated using 

DSSAT model in twenty monitoring sites spatially and the results are given in Table 26. 

The observed pod yield ranged from 1450 to 2750 kg ha-1 and the maximum yield of 

2750 kg ha-1 was observed in Pappambadi field followed by Moongathur, Kakapalayam and 

Pothiyampatti field locations which recorded 2689, 2607 and 2525 kg ha-1 respectively. The 

fields at Velagavundanpatti, Nochokarakadu, Morepalayam and Pudhupuliyampatti were the 

next best locations which recorded pod yield around 2400 kg ha-1. On spatial observation, it 

was found that Kandarkulamanickam, Vellapillakovil, Arkandanallur, Manmalai, 

Pudhuchatram and Palayapuliyampatti recorded pod yield of 2050 to 2376 kg ha-1. The other 

locations recorded the pod yield of less with Keelravandavadi recording the lowest observed 

pod  yield of 1450 kg ha-1 followed by Tindivanam, Padiyandhal and Thandrampattu with the 

observed pod yields of 1535,1660 and 1710 kg ha-1.  

The simulated pod yields by DSSAT model ranged from 1796 to 3060 kg ha-1. 

Among the twenty field locations, the maximum pod yield of 3060 kg ha-1 was simulated in 

Pappambadi followed by Vellapillakovil, Kakapalayam, Moongathur, Kandarkulamanickam 

and Pothiyampatti locations which recorded 2969, 2957, 2922, 2827 and 2747 kg ha-1 of pod 

yield respectively.  The lowest simulated pod yield of 1796 kg ha-1 was recorded at 

Keelravandavadi followed by 1806 and 1825 kg ha-1 of pod yields at Tindivanam and 

Thandrampattu locations respectively.  

The performance of the CROPGRO-Peanut model in simulating the pod yield was 

good for all the twenty field locations. In most of the locations, positive significant 

association prevailed between simulated and observed yield. Morepalayam recorded a 

simulated pod yield of 2348 kg ha-1 against 2400 kg ha-1 of observed pod yield. 

Arkandanallur, Melsevalambadi, Thandrampattu, Moongathur, Pothiyampatti and 

Pudhupuliyampatti fields also recorded fairly good simulated values of 2340, 2005, 1825, 

2922, 2747 and 2640 kg ha-1 as compared to the observed values of 2221, 1885, 1710, 2689, 

2525 and 2400 kg ha-1 respectively.  



Table 26. Validation of DSSAT CROPGRO-Peanut model for groundnut pod yield 

 (kg ha-1) 

S.No. District Village 
Simulated 

yield 

Observed 

yield 

Agreement 

(%) 

1 Namakkal Palayapuliyampatti 2348 2050 85 

2 Namakkal Pudhupuliyampatti 2640 2400 90 

3 Namakkal Kakapalayam 2957 2607 87 

4 Namakkal Kandarkulamanickam 2827 2376 81 

5 Namakkal Velagavundanpatti 2687 2464 91 

6 Namakkal Manathi 2587 1950 67 

7 Namakkal Morepalayam 2348 2400 98 

8 Namakkal Nochokarakadu 2641 2419 91 

9 Salem Pudhuchatram 2429 2115 85 

10 Salem Pothiyampatti 2747 2525 91 

11 Salem Pappambadi 3060 2750 89 

12 Salem Moongathur 2922 2689 91 

13 Salem Vellapillakovil 2969 2240 67 

14 Tiruvannamalai Keelravandavadi 1796 1450 76 

15 Tiruvannamalai Manmalai 2519 2187 85 

16 Tiruvannamalai Thandrampattu 1825 1710 93 

17 Villupuram Arkandanallur 2340 2221 95 

18 Villupuram Padiyandhal 2088 1660 74 

19 Villupuram Tindivanam 1806 1535 82 

20 Villupuram Melsevalambadi 2005 1885 94 

Mean 2477 2182  

R2 0.81 

RMSE (kg ha-1) 342 

NRMSE (%)  16 

Total Agreement (%) 84 



In simulation of pod yields, the agreement of simulated values with observed values 

are given in Table 26. The individual agreement of pod yield for all field locations ranged 

from 77 to 98 per cent. Moongathur, Pothiyampatti, Nochokarakadu and Velagavundanpatti 

also recorded a fairly good agreement of 91 per cent of pod yield in groundnut between 

observed values and the values simulated by DSSAT crop growth model. The lowest 

agreement of 67 per cent was recorded in Manathi and Vellapillakovil locations followed by 

Padiyandhal and Keelravandavadi with 74 and 76 per cent agreement and the remaining 

monitoring sites recording an agreement of above 80 per cent on groundnut pod yield.   

The average errors as computed by R2, RMSE and NRMSE were 0.81, 342 kg ha-1 

and 16 per cent respectively. The overall agreement between simulated and observed values 

was 84 per cent.  

4.6.4.4. Validation of simulated groundnut harvest index 

 Yield of the plant parts of economic importance (pod yield) to total biological yield in 

terms of dry matter was calculated as harvest index and recorded at all twenty field locations 

along with DSSAT based simulated values (Table 27). The observed harvest index ranged 

from 0.247 to 0.373. Manmalai field recorded maximum observed harvest index of 0.373 

followed by 0.333, 0.326, 0.320 and 0.317 at Arkandanallur, Thandrampattu, 

Melsevalambadi and Velagavundanpatti respectively. The lowest harvest index of 0.247 was 

observed at Manathi field followed by Palayapuliyampatti which recorded a value of 0.248.  

 Simulation of harvest index in all the field locations was carried out through DSSAT 

model and the values ranged from 0.283 to 0.434. The maximum simulated harvest index of 

0.434 was recorded in Padiyandhal followed by Tindivanam, Thandrampattu, 

Melsevalambadi, Keelravandavadi and Manmalai field which recorded a simulated value 

with 0.432, 0.404, 0.399, 0.397 and 0.396. Pudhuchatram field recorded the minimum 

simulated harvest index of 0.283 followed by 0.293 and 0.287 at Velagavundanpatti and 

Manathi fields. 

 In simulating harvest index, CROPGRO-Peanut model performed well for all field 

locations. Especially, model simulated the harvest index in Pappambadi field as 0.324 which 

was very close to the observed value of 0.316 followed by Pudhuchatram and Pothiyampatti 

fields which recorded simulated values of 0.283 and 0.314 as compared to observed values of 

0.273 and 0.299 respectively.  However, the model overestimated the harvest index in all the 



Table 27. Validation of DSSAT CROPGRO-Peanut model for groundnut Harvest Index 

S.No. District Village 
Simulated 

HI 

Observed 

HI 

Agreement 

(%) 

1 Namakkal Palayapuliyampatti 0.314 0.248 73 

2 Namakkal Pudhupuliyampatti 0.324 0.306 94 

3 Namakkal Kakapalayam 0.310 0.291 93 

4 Namakkal Kandarkulamanickam 0.316 0.297 94 

5 Namakkal Velagavundmpatti 0.293 0.317 92 

6 Namakkal Manathi 0.287 0.247 84 

7 Namakkal Morepalayam 0.314 0.277 87 

8 Namakkal Nochokarakadu 0.314 0.271 84 

9 Salem Pudhuchatram 0.283 0.273 96 

10 Salem Pothiyampatti 0.314 0.299 95 

11 Salem Pappambadi 0.324 0.316 97 

12 Salem Moongathur 0.323 0.304 94 

13 Salem Vellapillakovil 0.310 0.255 78 

14 Tiruvannamalai Keelravandavadi 0.397 0.251 42 

15 Tiruvannamalai Manmalai 0.396 0.373 94 

16 Tiruvannamalai Thandrampattu 0.404 0.326 76 

17 Villupuram Arkandanallur 0.379 0.333 86 

18 Villupuram Padiyandhal 0.434 0.292 51 

19 Villupuram Tindivanam 0.432 0.270 40 

20 Villupuram Melsevalambadi 0.399 0.320 75 

Mean 0.343 0.293  

R2 0.70 

RMSE  0.070 

NRMSE (%)  24 

Total Agreement (%) 76 

 



fields except Velagavundanpatti which recorded the simulated value of 0.293 as compared to 

the observed value of 0.317.   

 During validation of simulated harvest index, individual agreement between simulated 

and observed values was fairly well for all twenty field locations. The individual agreement 

of harvest index in all field locations ranged from 40 to 97 per cent. Especially, Pappambadi 

field recorded the maximum agreement of 97 per cent followed by Pudhuchatram and 

Pothiyampatti fields which recorded an agreement of 96 and 95 per cent of agreement 

between simulated and observed values respectively. The lowest agreement was recorded in 

Tindivanam field with 40 per cent followed by Keelravandavadi and Padiyandhal, fields with 

42 and 51 per cent respectively. These two fields were located in Tiruvannamalai and 

Villupuram districts respectively. 

 The R2, RMSE and NRMSE (%) values of the regression between the 

estimated and measured harvest index values were 0.70, 0.070 and 24 per cent and overall 

agreement of harvest index between simulated and observed values was 76 per cent. Thus the 

model prediction was in close agreement with the measured values. 

4.7. Integrating remote sensing products with DSSAT crop growth model for yield 

estimation at spatial level  

Most of the crop yield models developed so far could not be adopted in practice either 

because of delay in the availability of data for different variables to be used in the model or 

the high cost in collecting the data and in analyzing the results. For any operational yield 

model to be successful for adoption, it is necessary that the data should be available much 

before the harvest of the crop and it should be cost effective. Spectral data in the form of 

vegetation indices have proved to be very useful variables for explaining variability of the 

crop yield which can be easily available for use in yield models.  

In the present study, therefore suitable regression models using spectral vegetation 

indices in the form of LAI derived by integrating dB (back scattering) image and simulated 

LAI from DSSAT model as explanatory variable have been developed for yield estimation.  

4.7.1. LAI of groundnut retrieved from Sentinel-1A dB image at spatial level 

  LAI values were generated spatially over the study area by correlating dB values in 

the monitoring sites during pod development and given in Table 28. The methodology 



 Table 29. Validation of remote sensing based groundnut yield with observed yield (kg ha-1) 

S.No. District Village RS yield 
Observed 

yield 

Agreement 

(%) 

1 Namakkal Palayapuliyampatti 2677 2050 69 

2 Namakkal Pudhupuliyampatti 2701 2400 87 

3 Namakkal Kakapalayam 2975 2607 86 

4 Namakkal Kandarkulamanickam 2699 2376 86 

5 Namakkal Velagavundanpatti 2781 2464 87 

6 Namakkal Manathi 2680 1950 63 

7 Namakkal Morepalayam 2721 2400 87 

8 Namakkal Nochokarakadu 2916 2419 79 

9 Salem Pudhuchatram 2700 2115 72 

10 Salem Pothiyampatti 2894 2525 85 

11 Salem Pappambadi 2414 2750 88 

12 Salem Moongathur 2975 2689 89 

13 Salem Vellapillakovil 2727 2240 78 

14 Tiruvannamalai Keelravandavadi 1912 1450 68 

15 Tiruvannamalai Manmalai 2008 2187 92 

16 Tiruvannamalai Thandrampattu 2060 1710 80 

17 Villupuram Arkandanallur 2516 2221 87 

18 Villupuram Padiyandhal 2186 1660 68 

19 Villupuram Tindivanam 2037 1535 67 

20 Villupuram Melsevalambadi 2224 1885 82 

Mean 2540 2182  

R2 0.60 

RMSE (kg ha-1) 431 

NRMSE (%)  20 

Total Agreement (%) 80 

  



demonstrated the capability of Sentinel-1A dB values in capturing the dynamic variation in 

the study area. The satellite derived LAI for groundnut at pod development ranged from 1.31 

to 3.23. Among the locations, Kandarkulamanickam recorded the highest LAI of 3.23 

followed by Vellapillaikovil and Pappambadi with the values of 3.15 and 3.14 and 

Morepalayam and Pothiyampatti which recorded a LAI of 3.13. The lowest LAI of 1.31 was 

recorded at Keelravandavadi followed by Thandrampattu with 1.44. The monitoring sites in 

Tiruvannamalai district recorded comparatively lesser LAI of 1.31 to 1.67. As compared with 

the observed LAI of 2.01 to 4.05 of groundnut, the estimation from satellite derived values 

ranged from 1.31 to 3.23 with an agreement of 55 to 93 per cent for point based observation 

with an overall agreement of 76 per cent. The R2, RMSE and NRMSE were 0.86, 0.78 and 24 

per cent respectively. 

4.7.2. Remote sensing based spatial estimation of groundnut pod yield 

Corresponding to the spatial LAI of groundnut at pod development, using regression 

models groundnut yield was generated spatially and given in Table 29. and illustrated in  

(Fig. 33 to 36) 

The validation of the yield estimation was done at district level with observed yield 

(point level). The simulated yields of monitoring fields ranged from 1912 kg ha-1 to 2975 kg 

ha-1. The maximum pod yield of 2975 kg ha-1 was estimated in Kakapalayam and 

Moongathur followed by Nochokarakadu, Pothiyampatti and Velagavundanpatti which 

recorded a pod yield 2916, 2894 and 2781 kg ha-1 respectively. The lowest pod yield of  

1912 kg ha-1 was recorded at Keelravandavadi followed by yield of 2008, 2037 and  

2060 kg ha-1 at Manmalai, Tindivanam and Thandrampattu locations respectively. As against 

the remote sensing based groundnut yields of 1912 to 2975 kg ha-1, the observed yields were 

1450 to 2750 kg ha-1. At point level, the agreement was found to range from 67 to 92 per cent 

with a fairly good overall agreement of 80 per cent. The R2 was 0.60 with RMSE of 431 kg 

ha-1 and NRMSE of 20 per cent.  

4.8. Assessing vulnerability of groundnut to drought 

The empirical results on agricultural vulnerability of groundnut to drought conditions 

and its spatial distribution are presented hereunder. The spatial distribution of classes of 

drought in terms of groundnut area based on different drought indices viz., SPI, NDVI and 

WRSI were worked out. Each index was classified, using GIS, for the purpose of 



Table  28. Validation of remote sensing based groundnut LAI with observed values 

S.No. District Village RS LAI 
Observed 

LAI 

Agreement 

(%) 

1 Namakkal Palayapuliyampatti 3.03 3.78 80 

2 Namakkal Pudhupuliyampatti 3.08 3.37 91 

3 Namakkal Kakapalayam 3.10 3.83 81 

4 Namakkal Kandarkulamanickam 3.23 3.71 87 

5 Namakkal Velagavundanpatti 3.01 3.68 82 

6 Namakkal Manathi 2.98 4.05 74 

7 Namakkal Morepalayam 3.13 3.35 93 

8 Namakkal Nochokarakadu 3.08 3.64 85 

9 Salem Pudhuchatram 3.05 3.55 86 

10 Salem Pothiyampatti 3.13 3.6 87 

11 Salem Pappambadi 3.14 4.04 78 

12 Salem Moongathur 3.11 3.45 90 

13 Salem Vellapillakovil 3.15 3.7 85 

14 Tiruvannamalai Keelravandavadi 1.31 2.01 65 

15 Tiruvannamalai Manmalai 1.51 2.51 60 

16 Tiruvannamalai Thandrampattu 1.44 2.62 55 

17 Villupuram Arkandanallur 1.67 2.8 60 

18 Villupuram Padiyandhal 1.60 2.55 63 

19 Villupuram Tindivanam 1.62 2.44 66 

20 Villupuram Melsevalambadi 1.51 2.74 55 

Mean 2.54 3.27  

R2 0.86 

RMSE 0.784 

NRMSE (%)  24 

Total Agreement (%) 76 



 

Fig.33. Blockwise Groundnut yield during kharif 2015 in Salem district 

 

Fig.34. Blockwise Groundnut yield during kharif 2015 in Namakkal district 



 

Fig.35. Blockwise Groundnut yield during rabi 2015 in Tiruvannamalai district 

 

Fig.36. Blockwise Groundnut yield during rabi 2015 in Villupuram district 



vulnerability assessment. To produce a vulnerability map for groundnut area to drought for 

Salem, Namakkal, Tiruvannamalai and Villupuram, the drought indices data layers were 

overlayed and masked to groundnut area in ArcMap to determine the areal extent of 

combinations of classes.  

In this part, the three main drought indices were worked out and the class wise 

groundnut area was calculated. In the first section, classes of the drought and corresponding 

groundnut area based on the NDVI of groundnut from the remotely sensed imagery across the 

study area was analysed. Further the intensity of drought was assessed based on the SPI on 

groundnut area and the sensitivity to drought were estimated using historical and current 

rainfall information. The spatial patterns of agricultural drought of groundnut under WRSI 

was also worked out in third section and illustrated. Finally, the vulnerability of groundnut to 

drought was assessed in the study area by overlaying all the three drought indices. 

4.8.1. Assessing drought based on Standardized Precipitation Index (SPI)  

Standardized Precipitation Index (SPI), the deviation of rainfall from long term mean 

was worked out monthly and presented in Fig. 37 and 38. The SPI classes corresponding to 

drought intensity of the study area at block level was assessed monthly and presented in 

Tables 30 to 33.  

In Salem district, during the month of May 2015, four blocks viz., Kadayampatti, 

Yercaud, Valapady and Veerapandi were found to be under severely dry condition based on 

SPI values. Other eleven blocks were classified as moderately dry except Idappadi, Attur and 

Gangavalli which were grouped as mildly dry. Thalaivasal was classified as normal with 

regard to rainfall in comparison with historical precipitation data. During the cropping period 

of June to September, 2015, all the blocks were classified as normal to moderately wet 

classes of SPI. Similarly in Namakkal district also, SPI classes of mildly dry (11 Blocks) and 

severely dry (4 blocks) were observed during May 2015 while normal to severely wet 

conditions prevailed during June to September 2015 in all the blocks. 

During rabi 2015, most of the blocks were found to be normal to mildly wet across 

the cropping season with a few blocks registering moderately wet to severely wet condition. 

Similarly, all the blocks in Villupuram district also recorded SPI classes corresponding to 

normal to mildly wet classes except Sankarapuram, Rishivandiyam and Koliyanur which 

recorded moderately wet condition during corresponding period. 



Table 30. Blockwise drought condition based on SPI classes in Salem district 

S.No. Block May June July August September 

1 Kadayampatty Severely Dry Normal Normal Normal Mildly Dry 

2 Kalathur 
Moderately  

Dry 
Mildly Wet Mildly Wet Normal Normal 

3 Yercaud Severely Dry Normal Mildly Wet Normal 
Moderately 

Dry 

4 Mecheri 
Moderately  

Dry 
Normal Normal Normal Normal 

5 Nangavalli 
Moderately  

Dry 
Mildly Wet Normal Normal Normal 

6 Valapady Severely Dry Normal Normal Normal Normal 

7 Pethanaickenpalayam 
Moderately 

 Dry 
Normal Normal Normal Normal 

8 Omalur 
Moderately 

 Dry 
Normal Normal Normal Mildly Dry 

9 Ayodhiyapattinam 
Moderately  

Dry 
Normal Normal Normal Normal 

10 Tharamangalam 
Moderately  

Dry 
Normal Normal Normal Normal 

11 Salem 
Moderately  

Dry 
Normal Normal Normal Normal 

12 Idappadi Mildly Dry Mildly Wet Mildly Wet Normal Normal 

13 Attur Mildly Dry Mildly Wet Mildly Wet Normal Normal 

14 Thalaivasal Normal Normal 
Moderately 

Wet 

Moderately 

Wet 
Normal 

15 Veerapandi Severely Dry Normal Mildly Wet Normal Normal 

16 Konganapuram 
Moderately 

 Dry 
Mildly Wet Mildly Wet Normal Normal 

17 Mac.donalds choultry 
Moderately  

Dry 
Mildly Wet Mildly Wet Normal Normal 

18 Sangakiri 
Moderately  

Dry 
Mildly Wet Mildly Wet Normal Normal 

19 Gangavalli Mildly Dry 
Moderately  

Wet 

Moderately 

Wet 
Mildly Wet Normal 

SPI Classes: 2.00 and above (Extremely wet); 1.50 to 1.99 (Very wet); 1.00 to 1.49 (Moderately 

wet); 0.50 to 0.99 (Mildly wet); 0.49 to – 0.49 (Normal); -0.50 to -0.99 (Mildly dry); 

 -1.00 to -1.49 (Moderately dry); -1.50 to -1.99 (Severely dry); -2.00 and less (Extremely dry) 



Table 31. Blockwise drought condition based on SPI classes in Namakkal district  

S.No. Block May June July August September 

1 Namagiripet Mildly Dry Normal Normal Normal Normal 

2 Vennandur Mildly Dry Normal Normal Normal Normal 

3 Rasipuram Mildly Dry Normal Normal Normal Normal 

4 Mallasamudram Mildly Dry Mildly Wet 
Moderately  

Wet 
Mildly Wet Normal 

5 Kolli hills Mildly Dry Mildly Wet Mildly Wet Normal Normal 

6 Pallipalayam Mildly Dry Mildly Wet Mildly Wet Mildly Wet Normal 

7 Tiruchengodu Mildly Dry Mildly Wet Mildly Wet Normal Normal 

8 Puduchatram Mildly Dry Mildly Wet Mildly Wet Normal Normal 

9 Sendamangalam Mildly Dry Mildly Wet Mildly Wet Normal Normal 

10 Elachipalayam Severe Dry Mildly Wet Mildly Wet Mildly Wet Normal 

11 Paramathi Mildly Dry 
Moderately  

Wet 
Severely Wet 

Moderately  

Wet 
Normal 

12 Kabilarmalai Mildly Dry Severely Wet Severely Wet 
Extremely  

Wet 

Moderately  

Wet 

13 Namakkal Severe Dry Mildly Wet Mildly Wet Normal Normal 

14 Erumaipatti Severe Dry 
Moderately  

Wet 

Moderately  

Wet 
Mildly Wet Normal 

15 Mohanur Severe Dry 
Moderately  

Wet  

Moderately  

Wet 

Moderately  

Wet 
Normal 

SPI Classes: 2.00 and above (Extremely wet); 1.50 to 1.99 (Very wet); 1.00 to 1.49 (Moderately 

wet); 0.50 to 0.99 (Mildly wet); 0.49 to – 0.49 (Normal); -0.50 to -0.99 (Mildly dry); 

 -1.00 to -1.49 (Moderately dry); -1.50 to -1.99 (Severely dry); -2.00 and less (Extremely dry)



Table 32. Blockwise groundnut area (ha) under SPI classes in Tiruvannamalai district 

S.No. Block October November December January February 

1 Vembakkam Mildly Wet Mildly Wet Mildly Wet Mildly Wet Mildly Wet 

2 Arni Normal 
Moderately  

Wet 
Mildly Wet Mildly Wet Mildly Wet 

3 West Arani Normal 
Moderately  

Wet 
Mildly Wet Mildly Wet Mildly Wet 

4 Polur Mildly Wet 
Moderately  

Wet 
Mildly Wet Mildly Wet Mildly Wet 

5 Cheyyar Mildly Wet Mildly Wet Mildly Wet Mildly Wet Mildly Wet 

6 Jawadhu hills Mildly Wet Severely Wet Mildly Wet 
Moderately  

Wet 

Moderately  

Wet 

7 Anakkavur Mildly Wet Mildly Wet Mildly Wet Mildly Wet Mildly Wet 

8 Peranamallur Normal Mildly Wet Mildly Wet Mildly Wet Mildly Wet 

9 Chetpet Mildly Wet 
Moderately  

Wet 
Mildly Wet Mildly Wet Mildly Wet 

10 Vandavasi Normal 
Moderately  

Wet 
Normal Mildly Wet Mildly Wet 

11 Thellar Normal Mildly Wet Normal Mildly Wet Mildly Wet 

12 Kalasapakkam Mildly Wet 
Moderately  

Wet 
Mildly Wet 

Moderately  

Wet 
Mildly Wet 

13 Thurinjapuram Mildly Wet 
Moderately  

Wet 
Mildly Wet Mildly Wet Mildly Wet 

14 Pudupalayam Mildly Wet 
Moderately  

Wet 
Mildly Wet Mildly Wet 

Moderately  

Wet 

15 Chengam Mildly Wet 
Moderately  

Wet 
Normal Mildly Wet 

Moderately  

Wet 

16 Keelpennathur Mildly Wet 
Moderately  

Wet 
Mildly Wet Mildly Wet Mildly Wet 

17 Tiruvannamalai Normal 
Moderately  

Wet 
Mildly Wet 

Moderately  

Wet 

Moderately  

Wet 

18 Thandrampattu Mildly Wet Mildly Wet Mildly Wet Mildly Wet 
Moderately  

Wet 

SPI Classes: 2.00 and above (Extremely wet); 1.50 to 1.99 (Very wet); 1.00 to 1.49 (Moderately 

wet); 0.50 to 0.99 (Mildly wet); 0.49 to – 0.49 (Normal); -0.50 to -0.99 (Mildly dry); 

 -1.00 to -1.49 (Moderately dry); -1.50 to -1.99 (Severely dry); -2.00 and less (Extremely dry) 



Table 33. Blockwise groundnut area (ha) under SPI classes in Villupuram district 

S.No. Block October November December January February 

1 Melmalaiyanur Normal Mildly Wet Mildly Wet Mildly Wet Mildly Wet 

2 Vallam Normal Mildly Wet Mildly Wet Mildly Wet Mildly Wet 

3 Olakkur Normal Mildly Wet Normal Mildly Wet Mildly Wet 

4 Mailam Normal Mildly Wet Normal Mildly Wet Mildly Wet 

5 Gingee Normal Mildly Wet Mildly Wet Mildly Wet Mildly Wet 

6 Marakanam Normal Mildly Wet Normal Mildly Wet Mildly Wet 

7 Vanur Normal Mildly Wet Normal Mildly Wet Mildly Wet 

8 Kanai Mildly Wet Mildly Wet Mildly Wet Mildly Wet Mildly Wet 

9 Vikravandi Normal Mildly Wet Mildly Wet Mildly Wet Mildly Wet 

10 Mugaiyur Mildly Wet Mildly Wet Mildly Wet Mildly Wet Mildly Wet 

11 Sankarapuram Mildly Wet 
Moderately  

Wet 
Mildly Wet 

Moderately  

Wet 

Moderately  

Wet 

12 Rishivandiyam Mildly Wet 
Moderately  

Wet 
Mildly Wet Mildly Wet Mildly Wet 

13 Kalrayan hills Normal Mildly Wet Mildly Wet Mildly Wet Mildly Wet 

14 Thirukoilur Mildly Wet Mildly Wet Mildly Wet Mildly Wet Mildly Wet 

15 Koliyanur Mildly Wet Mildly Wet Mildly Wet 
Moderately  

Wet 

Moderately  

Wet 

16 Thiruvennainallur Normal Mildly Wet Normal Mildly Wet Mildly Wet 

17 Ulundurpet Mildly Wet Mildly Wet Normal Mildly Wet Mildly Wet 

18 Kallakurichi Normal Mildly Wet Mildly Wet Mildly Wet Mildly Wet 

19 Thirunavalur Normal Mildly Wet Normal Mildly Wet Mildly Wet 

20 Thiagadurugam Normal Mildly Wet Normal Mildly Wet Mildly Wet 

21 Chinnasalem Normal Mildly Wet Mildly Wet Mildly Wet Mildly Wet 

SPI Classes: 2.00 and above (Extremely wet); 1.50 to 1.99 (Very wet); 1.00 to 1.49 (Moderately 

wet); 0.50 to 0.99 (Mildly wet); 0.49 to – 0.49 (Normal); -0.50 to -0.99 (Mildly dry); 

 -1.00 to -1.49 (Moderately dry); -1.50 to -1.99 (Severely dry); -2.00 and less (Extremely dry) 

 



 

  

  

  

Fig.37. Block wise SPI classes in Salem and Namakkal districts during kharif 2015 
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Fig.38. Block wise SPI classes in Tiruvannamalai and Villupuram districts during rabi 2015
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Table 34. Blockwise groundnut area (ha) under composite SPI classes in Salem and 

Namakkal districts during kharif 2015 

S.No

. 

Salem Namakkal 

Block 

SPI 

Block 

SPI 

Moderately wet 

(1.00 to 1.49) 

Near normal 

(0.99 to -0.99) 

Moderately wet 

(1.00 to 1.49) 

Near normal 

(0.99 to -0.99) 

1 Kadayampatty 0 1200 Namagiripet 0 569 

2 Kalathur 0 800 Vennandur 0 1075 

3 Yercaud 0 19 Rasipuram 0 1313 

4 Mecheri 0 369 Mallasamudram 0 2894 

5 Nangavalli 0 463 Kolli Hills 0 119 

6 Valapady 0 1256 Pallipalayam 0 1631 

7 Pethanaickenpalayam 0 1019 Tiruchengodu 0 3350 

8 Omalur 0 900 Puduchatram 0 2269 

9 Ayodhiyapattinam 0 563 Sendamangalam 0 550 

10 Tharamangalam 0 1256 Elachipalayam 0 2888 

11 Salem 0 231 Paramathi 0 1400 

12 Idappadi 0 800 Kabilarmalai 181 713 

13 Attur 0 1369 Namakkal 0 1156 

14 Thalaivasal 19 2838 Erumaipatti 0 1750 

15 Veerapandi 0 738 Mohanur 0 1138 

16 Konganapuram 0 600    

17 Mac.donalds choultry 0 888    

18 Sangakiri 0 1244    

19 Gangavalli 0 1231    

 Total 

19 17781 

Total 

181 22813 

17800 22994 

SPI Classes: 2.00 and above (Extremely wet); 1.50 to 1.99 (Very wet); 1.00 to 1.49 (Moderately 

wet); 0.99 to -0.99 (Near normal); -1.00 to -1.49 (Moderately dry); -1.50 to -1.99 (Severely dry); 

-2.00 and less (Extremely dry) 

 

 



Table 35. Blockwise groundnut area (ha) under composite SPI classes in Tiruvannamalai 

and Villupuram districts during rabi 2015 

S.No. 

Tiruvannamalai Villupuram 

Block 

SPI 

Block 

SPI 

Moderately wet 

(1.00 to 1.49) 
Near normal 

(0.99 to -0.99) 

Moderately wet 

(1.00 to 1.49) 
Near normal 
(0.99 to -0.99) 

1 Vembakkam 0 1113 Melmalaiyanur 0 2494 

2 Arni 0 1213 Vallam 0 1450 

3 West Arani 0 1231 Olakkur 0 856 

4 Polur 13 1231 Mailam 0 813 

5 Cheyyar 0 1150 Gingee 0 1094 

6 Jawadhu hills 206 25 Marakanam 0 656 

7 Anakkavur 0 788 Vanur 0 988 

8 Peranamallur 0 1069 Kanai 0 881 

9 Chetpet 0 1681 Vikravandi 0 594 

10 Vandavasi 0 969 Mugaiyur 0 1625 

11 Thellar 0 1825 Sankarapuram 131 756 

12 Kalasapakkam 13 1088 Rishivandiyam 0 1538 

13 Thurinjapuram 0 2319 Kalrayan hills 6 200 

14 Pudupalayam 0 1156 Thirukoilur 0 1131 

15 Chengam 0 1456 Koliyanur 0 494 

16 Keelpennathur 0 1925 Thiruvennainallur 0 400 

17 Tiruvannamalai 0 1831 Ulundurpet 0 1438 

18 Thandrampattu 0 2175 Kallakurichi 0 1419 

19    Thirunavalur 0 625 

20    Thiagadurugam 0 1169 

21    Chinnasalem 0 2150 

 Total 

231 24244 

Total 

137 22769 

24475 22906 

SPI Classes: 2.00 and above (Extremely wet); 1.50 to 1.99 (Very wet); 1.00 to 1.49 (Moderately 

wet); 0.99 to -0.99 (Near normal); -1.00 to -1.49 (Moderately dry); -1.50 to -1.99 (Severely dry); 

-2.00 and less (Extremely dry) 

 



Considering the groundnut area in the study districts, the composite SPI class of near 

normal season was recorded in 17781 ha out of 17800 ha of total groundnut area in Salem 

district. Similarly in Namakkal district, most of the groundnut area was classified under near 

normal condition with 22813 ha out of total area of 22994 ha. During rabi season in 

Tiruvannamalai and Villupuram districts also, similar trend was observed (Table 34 and 35). 

In Tiruvannamalai district, out of 24475 ha of groundnut area, 24244 ha were classified under 

near normal condition. In Villupuram district, out of 22906 ha of groundnut area, 22769 ha 

and 137 ha were found to be under near normal and moderately wet condition respectively. 

4.8.2. Assessing drought based on Normalised Difference Vegetation Index (NDVI)  

The Normalised Difference Vegetation Index (NDVI) gave a measure of the 

vegetative cover and was sensitive to the chlorophyll content of plants. NDVI images of 

cropping period during both seasons were generated using the imageries of MODIS acquired 

from May, 2015 to February, 2016. Dense vegetation showed high value in the NDVI 

imagery, and the areas with little or no vegetation showed negative value and was also clearly 

identified. The groundnut area under different classes of NDVI was extracted the statistics are 

presented in Table 36 and 37. 

By computing the values of NDVI for each month during kharif and rabi seasons of 

study area, month wise NDVI images were generated. Groundnut area pertaining to each 

class was extracted from these images. Average NDVI image of cropping period for kharif 

season is illustrated in Fig. 39 and 40.  

Analysis of composite NDVI classes during kharif season showed that Salem district 

registered 2250 ha of groundnut area under stressed condition whereas 238 and 15381 ha of 

groundnut area was found to be in the classes of very good and good respectively. NDVI. 

Among the blocks, Thalaivasal recorded maximum groundnut area with stressed condition 

(531 ha) followed by Kalathur block which are recorded 275 ha of groundnut area under 

stressed condition. Namakkal district recorded 9088 ha of groundnut area under stressed 

condition and 475 and 13500 ha of groundnut area under very good and good condition 

respectively based on NDVI values. Among the 15 blocks of Namakkal district, 

Elachipalayam recorded maximum groundnut area of 2531 ha under stressed condition 

followed by Tiruchengodu and Namakkal blocks which recorded 1294 and 1006 ha 

respectively.  



Table 36. Blockwise groundnut area (ha) under NDVI classes in Salem district 

S.No. Block 

NDVI  

Total 
Very Good  

(>0.6) 

Good  

(0.4 - 0.6) 

Stressed  

(0.2 - 0.4) 

1 Kadayampatty 25 1125 50 1200 

2 Kalathur 6 531 275 813 

3 Yercaud 13 6 0 19 

4 Mecheri 0 238 131 369 

5 Nangavalli 0 431 31 463 

6 Valapady 13 1081 175 1269 

7 Pethanaickenpalayam 69 781 169 1019 

8 Omalur 0 869 31 900 

9 Ayodhiyapattinam 25 538 0 563 

10 Tharamangalam 0 1206 50 1256 

11 Salem 0 213 19 231 

12 Idappadi 44 713 44 800 

13 Attur 0 1269 106 1375 

14 Thalaivasal 6 2338 531 2875 

15 Veerapandi 6 675 56 738 

16 Konganapuram 0 463 138 600 

17 Mac.donalds choultry 0 713 181 894 

18 Sangakiri 13 1075 169 1256 

19 Gangavalli 19 1119 94 1231 

 
Total 238 15381 2250 17869 

NDVI Classes: Very Good (>0.6); Good (0.4 - 0.6); Stressed (0.2 - 0.4); Barren (<0.2).



Table 37. Blockwise groundnut area (ha) under NDVI classes in Namakkal district 

S.No. Block 

NDVI  

Total 
Very Good  

(>0.6) 

Good  

(0.4 - 0.6) 

Stressed  

(0.2 - 0.4) 

1 Namagiripet 13 556 0 569 

2 Vennandur 44 1031 6 1081 

3 Rasipuram 0 1225 88 1313 

4 Mallasamudram 6 2319 594 2919 

5 Kolli hills 113 6 0 119 

6 Pallipalayam 19 1088 544 1650 

7 Tiruchengodu 13 2050 1294 3356 

8 Puduchatram 6 1488 775 2269 

9 Sendamangalam 25 488 38 550 

10 Elachipalayam 0 356 2531 2888 

11 Paramathi 31 588 781 1400 

12 Kabilarmalai 169 638 88 894 

13 Namakkal 0 150 1006 1156 

14 Erumaipatti 6 988 763 1756 

15 Mohanur 31 531 581 1144 

 

Total 475 13500 9088 23063 

 NDVI Classes: Very Good (>0.6); Good (0.4 - 0.6); Stressed (0.2 - 0.4); Barren (<0.2).



Table 38. Blockwise groundnut area (ha) under NDVI classes in Tiruvannamali district 

S.No. Block 

NDVI  

Total 
Very Good  

(>0.6) 

Good  

(0.4 - 0.6) 

Stressed  

(0.2 - 0.4) 

1 Vembakkam 0 1031 81 1113 

2 Arni 0 1256 13 1269 

3 West Arani 0 1144 6 1150 

4 Polur 13 1181 0 1194 

5 Cheyyar 0 1138 69 1206 

6 Jawadhu hills 31 194 0 225 

7 Anakkavur 0 644 25 669 

8 Peranamallur 0 1075 75 1150 

9 Chetpet 0 1638 63 1700 

10 Vandavasi 0 913 75 988 

11 Thellar 0 1919 56 1975 

12 Kalasapakam 31 1019 0 1050 

13 Thurinjapuram 0 2238 88 2325 

14 Pudupalayam 0 1163 13 1175 

15 Chengam 0 1594 19 1613 

16 Keelpennathur 0 1938 44 1981 

17 Tiruvannamalai 0 1775 81 1856 

18 Thandrampattu 19 2231 31 2281 

 
Total 94 24088 738 24919 

 NDVI Classes: Very Good (>0.6); Good (0.4 - 0.6); Stressed (0.2 - 0.4); Barren (<0.2). 



Table 39. Blockwise groundnut area (ha) under NDVI classes in Villupuram district 

S.No. Block 

NDVI  

Total Very Good  

(>0.6) 

Good  

(0.4 - 0.6) 

Stressed  

(0.2 - 0.4) 

1 Melmalaiyanur 0 2213 38 2250 

2 Vallam 0 1381 0 1381 

3 Olakkur 0 825 38 863 

4 Mailam 0 763 38 800 

5 Gingee 6 1125 25 1156 

6 Marakanam 0 619 119 738 

7 Vanur 6 756 188 950 

8 Kanai 0 981 88 1069 

9 Vikravandi 0 500 6 506 

10 Mugaiyur 0 1313 106 1419 

11 Sankarapuram 0 675 13 688 

12 Rishivandiyam 0 1481 63 1544 

13 Kalrayan hills 6 175 0 181 

14 Thirukoilur 0 931 75 1006 

15 Koliyanur 0 406 38 444 

16 Thiruvennainallur 0 419 94 513 

17 Ulundurpet 0 1075 225 1300 

18 Kallakurichi 13 1444 63 1519 

19 Thirunavalur 0 494 213 706 

20 Thiagadurugam 0 1181 44 1225 

21 Chinnasalem 0 2044 38 2081 

 
Total 31 20800 1506 22338 

 NDVI Classes: Very Good (>0.6); Good (0.4 - 0.6); Stressed (0.2 - 0.4); Barren (<0.2). 



 

Fig.39. Drought level based on NDVI during kharif 2015 in Salem and Namakkal districts 

 

Fig.40. Drought level based on NDVI during rabi 2015 in Tiruvannamalai and Villupuram districts 



NDVI based on drought classes of groundnut area during rabi season of 

Tiruvannamalai and Villupuram districts are presented in Table 38 and 39. Tiruvannamalai 

district recorded the lowest stressed groundnut area of 738 ha with larger groundnut area 

classified under good condition with 24088 ha. Considering NDVI level, Villupuram district 

recorded 1506 ha of groundnut area under stressed condition and 20800 ha of groundnut area 

under good condition. Stressed area were found to be in five blocks viz., Ulundurpet, 

Thirunavalur, Vanur and Marakanam with groundnut area of 225, 213, 188, 119 and 106 ha 

respectively. 

4.8.3. Assessing drought based on Water Requirement Satisfaction Index (WRSI) 

WRSI is an indicator of crop performance based on the availability of water to the 

crop during the growing season. WRSI results were then reclassified based on drought 

severity classes shown in Fig. 41 and 42 for each grid cell of the study area. Based on this 

classification, WRSI distribution on groundnut area was assessed and the statistics were 

derived and given in Table 40 to 43 which showed the district-wise area of groundnut under 

incidences of drought during both season based on WRSI. For the computation of the drought 

probability over each district, both the seasons for which data were available during the 

period May 2015 to January 2016 were used.  

In Salem and Namakkal districts, during the kharif season, the whole groundnut area 

was covered under three levels of WRSI viz., no risk, medium risk and high risk. In Salem 

district, the medium risk condition had more groundnut area of 14188 ha out of 17869 ha of 

total area and other classes of no risk and high risk covered 6 and 3675 ha, respectively. 

Among the 19 blocks of Salem district, under medium risk condition, Thalaivasal block 

covered maximum groundnut area with 2663 ha followed by Tharamangalam and Valapady 

blocks which recorded 1225 and 1063 ha of groundnut area respectively. Under high risk 

condition, Attur block covered maximum area of 631 ha followed by Omalur and Sangakiri 

blocks with 394 and 363 ha, respectively. Valapady block alone had groundnut area under no 

risk condition and remaining blocks registered groundnut area under other two WRSI 

conditions. 

Among three levels of WRSI (low, high and very high risk) in Namakkal district, low 

risk level of WRSI registered maximum groundnut area of 17300 out of total 23063 ha of 

total groundnut area and other two levels of high risk and very high risk conditions were 

recorded at 5000 and 763 ha of groundnut area respectively. Among the 15 blocks of 



Table 40. Blockwise groundnut area (ha) under WRSI classes in Salem district 

S.No. Block 

WRSI  

No Risk 

(100%) 

Medium Risk  

(80 - 90%) 

High Risk  

(70 - 80%) 
Total 

1 Kadayampatty 0 413 788 1200 

2 Kalathur 0 806 6 813 

3 Yercaud 0 6 13 19 

4 Mecheri 0 369 0 369 

5 Nangavalli 0 463 0 463 

6 Valapady 6 1063 200 1269 

7 Pethanaickenpalayam 0 881 138 1019 

8 Omalur 0 506 394 900 

9 Ayodhiyapattinam 0 338 225 563 

10 Tharamangalam 0 1225 31 1256 

11 Salem 0 63 169 231 

12 Idappadi 0 788 13 800 

13 Attur 0 744 631 1375 

14 Thalaivasal 0 2663 213 2875 

15 Veerapandi 0 569 169 738 

16 Konganapuram 0 600 0 600 

17 Mac.donalds choultry 0 831 63 894 

18 Sangakiri 0 894 363 1256 

19 Gangavalli 0 969 263 1231 

 
Total 6 14188 3675 17869 

WRSI Level: 100%  - No Risk; 90-100% - Low Risk; 80-90% - Medium Risk; 70-80%- 

High Risk; 50-70%- Very High Risk and <50% - Chance of Crop failure 



Table 41. Blockwise groundnut area (ha) under WRSI classes in Namakkal district 

S.No. Block 

WRSI  

Total 
Low Risk  

(90 - 100%) 

High Risk  

(70 - 80%) 

Very High Risk  

(50 - 70%) 

1 Namagiripet 550 19 0 569 

2 Vennandur 1056 25 0 1081 

3 Rasipuram 1313 0 0 1313 

4 Mallasamudram 2400 488 31 2919 

5 Kolli hills 50 63 6 119 

6 Pallipalayam 1406 188 56 1650 

7 Tiruchengodu 2013 1325 19 3356 

8 Puduchatram 2269 0 0 2269 

9 Sendamangalam 500 50 0 550 

10 Elachipalayam 2356 519 13 2888 

11 Paramathi 781 550 69 1400 

12 Kabilarmalai 119 419 356 894 

13 Namakkal 975 181 0 1156 

14 Erumaipatti 900 700 156 1756 

15 Mohanur 613 475 56 1144 

 

Total 17300 5000 763 23063 

WRSI Level: 100%  - No Risk; 90-100% - Low Risk; 80-90% - Medium Risk; 70-80%- 

High Risk; 50-70%- Very High Risk and <50% - Chance of Crop failure 



Table 42. Blockwise groundnut area (ha) under WRSI classes in Tiruvannamalai district 

S.No. Block 

WRSI  

Total 
Very High Risk  

(50 - 70%) 

Chance of Crop  

failure (<50%) 

1 Vembakkam 0 1113 1113 

2 Arni 0 1269 1269 

3 West Arani 0 1150 1150 

4 Polur 0 1194 1194 

5 Cheyyar 0 1206 1206 

6 Jawadhu hills 0 225 225 

7 Anakkavur 0 669 669 

8 Peranamallur 0 1150 1150 

9 Chetpet 6 1694 1700 

10 Vandavasi 0 988 988 

11 Thellar 0 1975 1975 

12 Kalasapakam 0 1050 1050 

13 Thurinjapuram 0 2325 2325 

14 Pudupalayam 25 1150 1175 

15 Chengam 19 1594 1613 

16 Keelpennathur 25 1956 1981 

17 Tiruvannamalai 81 1775 1856 

18 Thandrampattu 81 2200 2281 

 

Total 238 24681 24919 

WRSI Level: 100%  - No Risk; 90-100% - Low Risk; 80-90% - Medium Risk; 70-80%- 

High Risk; 50-70%- Very High Risk and <50% - Chance of Crop failure 



Table 43. Blockwise groundnut area (ha) under WRSI classes in Villupuram district 

S.No. Block 

WRSI  

Total 
High Risk 

(70 – 80%) 

Very High Risk 

(50 – 70%) 

Chance of Crop  

failure (<50%) 

1 Melmalaiyanur 0 0 2250 2250 

2 Vallam 0 31 1350 1381 

3 Olakkur 0 50 813 863 

4 Mailam 0 56 744 800 

5 Gingee 0 138 1019 1156 

6 Marakanam 19 381 338 738 

7 Vanur 31 600 319 950 

8 Kanai 0 525 544 1069 

9 Vikravandi 6 88 413 506 

10 Mugaiyur 0 656 763 1419 

11 Sankarapuram 0 0 688 688 

12 Rishivandiyam 0 219 1325 1544 

13 Kalrayan hills 0 0 181 181 

14 Thirukoilur 0 331 675 1006 

15 Koliyanur 6 363 75 444 

16 Thiruvennainallur 19 494 0 513 

17 Ulundurpet 6 725 569 1300 

18 Kallakurichi 0 50 1469 1519 

19 Thirunavalur 19 663 25 706 

20 Thiagadurugam 0 550 675 1225 

21 Chinnasalem 0 13 2069 2081 

 

Total 106 5931 16300 22338 

WRSI Level: 100%  - No Risk; 90-100% - Low Risk; 80-90% - Medium Risk; 70-80%- 

High Risk; 50-70%- Very High Risk and <50% - Chance of Crop failure 



 

 

Fig.41. Drought level based on WRSI during kharif 2015 in Salem and Namakkal districts 

 

Fig.42. Drought level based on WRSI during rabi 2015 in Tiruvannamalai and Villupuram districts 



Namakkal district, Mallasamudram block had more groundnut area of 2400 ha under low risk 

condition followed by Elachipalayam, Puduchatram and Tiruchengodu blocks which covered 

2356, 2269 and 2013 ha respectively. Under high risk condition, Tiruchengodu block had 

maximum area of 1325 ha of groundnut. Rasipuram and Puduchatram block had no area of 

groundnut under high risk and very high risk condition. All the blocks of Namakkal district 

had lower or none of groundnut area under very high risk condition except Kabilarmalai 

which had 356 ha under high risk condition out of total groundnut area of 894 ha in the block. 

During rabi 2015, Tiruvannamalai district registered larger groundnut area under very 

high risk and chance of crop failure based on WRSI. Out of total groundnut area  

24919 ha, majority area with 24681 ha was found to be under chance of crop failure and 

remaining 238 ha only was covered in very high risk condition. All the 18 blocks were 

classified under chance of crop failure condition except Pudupalayam, Chengam, 

Keelpennathur, Tiruvannamalai and Thandrampattu blocks which had some groundnut area 

under very high risk condition also. Under chance of crop failure condition, Thurinjipuram 

block had maximum groundnut area with 2325 ha followed by Thandrampattu and 

Keelpennathur blocks which covered 2200 and 1956 ha respectively.  

In Villupuram district, out of total groundnut area 22338 ha, an area of 16300 ha was 

classified as chances of crop failure condition followed by very high risk and high risk 

conditions with 5931 and 106 ha, respectively. Under chance of crop failure condition, 

among the 21 blocks, the maximum groundnut area of 2250 ha was found in Melmalaiyanur 

followed by Chinnasalem with 2069 ha. Especially the whole groundnut area of 

Melmalaiyanur block was found under this condition. Thiruvennainallur block had none of 

groundnut area under the condition of chance of crop failure.  

4.9. Assessing overall vulnerability of groundnut to drought 

 Overlaying three different drought indices viz., SPI, NDVI and WRSI, the distribution 

of vulnerability of groundnut area to drought was assessed (Fig. 43 and 44) and blockwise 

statistics were generated. During kharif season, in Salem district, out of total groundnut area 

17938 ha, most of the groundnut area was found to be under low vulnerability level with 

12031 ha followed by 5850  and 56 ha under moderate level and high level of vulnerability 

(Table 44.). Among the 19 blocks, most of the blocks were classified as less vulnerable 

except Kadayampatty, Salem and Attur which were moderately vulnerable to drought. In low 

vulnerability class which one have majority of groundnut area, the maximum groundnut area 



Table 44. Blockwise drought vulnerability levels and corresponding groundnut area (ha) in 

Salem district 

S.No. Block 
Level of Vulnerability to drought 

Total 
High Moderate Low 

1 Kadayampatty 6 819 363 1188 

2 Kalathur 0 288 538 825 

3 Yercaud 0 31 0 31 

4 Mecheri 0 125 244 369 

5 Nangavalli 0 31 450 481 

6 Valapady 0 375 894 1269 

7 Pethanaickenpalayam 0 306 713 1019 

8 Omalur 0 425 469 894 

9 Ayodhiyapattinam 0 219 338 556 

10 Tharamangalam 0 75 1169 1244 

11 Salem 6 188 50 244 

12 Idappadi 0 56 750 806 

13 Attur 6 725 663 1394 

14 Thalaivasal 0 744 2119 2863 

15 Veerapandi 6 213 506 725 

16 Konganapuram 0 144 456 600 

17 Mac.donalds choultry 13 213 688 913 

18 Sangakiri 19 513 756 1288 

19 Gangavalli 0 363 869 1231 

 
Total 56 5850 12031 17938 



 

Fig.43. Vulnerability level map of groundnut to drought in Salem and Namakkal district 

 

Fig.44. Vulnerability level map of groundnut to drought in Tiruvannamalai and Villupuram district 

 



was observed under Thalaivasal block with 2119 ha followed by Tharamangalam block with 

1169 ha of groundnut area.  

Considering the overall vulnerability of groundnut to drought in Namakkal district, 

out of the total groundnut area of 23119 ha, 9713 ha was found to be less vulnerable followed 

by 11938 ha as moderately vulnerable to drought. Major groundnut areas of Mallasamudram, 

Puduchatram, Rasipuram, Sendamangalam and Vennandur blocks were found to be less 

vulnerable to drought. While major areas of Tiruchengodu, Elachipalayam and Erumaipatti 

blocks were moderately vulnerable to drought. An area of 1469 ha under groundnut in 

Elachipalayam, Tiruchengodu and Paramathi was highly vulnerable to drought (Table 45.).  

During rabi 2015, the studies on vulnerability to drought in groundnut showed that all 

the 18 blocks of Tiruvannamalai district covering a groundnut area of 24294 ha were 

classified as moderately vulnerable to drought. In case of Villupuram district, all the 21 

blocks covering groundnut area of 22369 ha were found to be highly vulnerable to drought 

(Table 46 and 47). 

Considering overall vulnerability, 14 blocks of Salem and 6 blocks Namakkal were 

found to be less vulnerable to drought for groundnut cultivation whereas four and eight 

blocks of Salem and Namakkal districts were moderately vulnerable to drought. The results 

of this study revealed that all the blocks of Tiruvannamalai were moderately vulnerable to 

drought while the whole district of Villupuram was highly vulnerable to drought with regard 

to groundnut cultivation (Table 48 and 49). 



Table 45. Blockwise drought vulnerability levels and corresponding groundnut area (ha) in 

Namakkal district 

S.No. Block 
Level of Vulnerability to drought 

Total 

High Moderate Low 

1 Namagiripet 0 19 550 569 

2 Vennandur 0 31 1019 1050 

3 Rasipuram 0 88 1231 1319 

4 Mallasamudram 75 956 1919 2950 

5 Kolli hills 0 63 50 113 

6 Pallipalayam 0 788 888 1675 

7 Tiruchengodu 288 2138 988 3413 

8 Puduchatram 0 775 1506 2281 

9 Sendamangalam 0 63 456 519 

10 Elachipalayam 463 2106 294 2863 

11 Paramathi 219 963 219 1400 

12 Kabilarmalai 31 788 63 881 

13 Namakkal 94 994 69 1156 

14 Erumaipatti 163 1319 306 1788 

15 Mohanur 138 850 156 1144 

 

Total 1469 11938 9713 23119 



Table 46. Blockwise drought vulnerability levels and corresponding groundnut area (ha) in 

Tiruvannamalai district 

S. No. Block 

Level of Vulnerability to drought 

Total 

High Moderate Low 

1 Vembakkam 75 1031 0 1106 

2 Arni 13 1256 0 1269 

3 West Arani 6 1131 0 1138 

4 Polur 0 1219 0 1219 

5 Cheyyar 75 1156 0 1231 

6 Jawadhu hills 0 213 0 213 

7 Anakkavur 25 644 0 669 

8 Peranamallur 75 1075 0 1150 

9 Chetpet 63 1638 0 1700 

10 Vandavasi 75 894 0 969 

11 Thellar 56 1969 0 2025 

12 Kalasapakam 0 1044 0 1044 

13 Thurinjapuram 88 2281 0 2369 

14 Pudupalayam 13 1175 0 1188 

15 Chengam 25 1606 0 1631 

16 Keelpennathur 50 1969 0 2019 

17 Tiruvannamalai 81 1738 0 1819 

18 Thandrampattu 25 2256 0 2281 

 

Total 744 24294 0 25038 

 



Table 47. Blockwise drought vulnerability levels and corresponding groundnut area (ha) in 

Villupuram district 

S. No. Block 
Level of Vulnerability to drought 

Total 
High Moderate Low 

1 Melmalaiyanur 2250 0 0 2250 

2 Vallam 1394 0 0 1394 

3 Olakkur 838 0 0 838 

4 Mailam 819 0 0 819 

5 Gingee 1150 6 0 1156 

6 Marakanam 750 0 0 750 

7 Vanur 963 6 0 969 

8 Kanai 1081 0 0 1081 

9 Vikravandi 494 0 0 494 

10 Mugaiyur 1425 0 0 1425 

11 Sankarapuram 694 0 0 694 

12 Rishivandiyam 1550 0 0 1550 

13 Kalrayan hills 175 6 0 181 

14 Thirukoilur 1013 0 0 1013 

15 Koliyanur 450 0 0 450 

16 Thiruvennainallur 494 0 0 494 

17 Ulundurpet 1294 0 0 1294 

18 Kallakurichi 1506 13 0 1519 

19 Thirunavalur 700 0 0 700 

20 Thiagadurugam 1231 0 0 1231 

21 Chinnasalem 2100 0 0 2100 

 

Total 22369 31 0 22400 

  

 



Table 48. Blockwise levels of vulnerability to drought in groundnut 

District 
Blockwise Vulnerability  to drought 

Low Moderate High 

Salem 

(19 Blocks) 

Kalathur, Mecheri, Nangavalli, 

Valapady, Pethanaickenpalayam, 

Omalur, Ayodhiyapattinam 

Tharamangalam, Idappadi, Thalaivasal, 

Veerapandi, Konganapuram, 

Mac.donalds choultry, Sangakiri   and 

Gangavalli(15 Blocks) 

Kadayampatty, Yercaud, Salem and Attur 

(4Blocks) 
Nil 

Namakkal 

(15 Blocks) 

Namagiripet, Vennandur, Rasipuram, 

Mallasamudram, Pallipalayam, 

Puduchatram and Sendamangalam 

(7 Blocks) 

Kolli hills, Tiruchengodu, Elachipalayam, 

Paramathi, Kabilarmalai, Namakkal, 

Erumaipatti and Mohanur(8 Blocks) 

Nil 

Tiruvannamalai 

(18 Blocks) 
Nil 

Vembakkam, Arani, West Arani, 

Polur, Cheyyar, Jawadhu hills, 

Anakkavur, Peranamallur, Chetpet, 

Vandavasi, Thellar, Kalasapakam, 

Thurinjapuram, Pudupalayam, 

Chengam, Keelpennathur, 

Tiruvannamalai and Thandrampattu 

(18 Blocks) 

Nil 

Villupuram 

(21 Blocks) 
Nil Nil 

Melmalaiyanur, Vallam, Olakkur, 

Mailam, Gingee, Marakanam,  

Vanur, Kanai, Vikravandi, 

Mugaiyur, Sankarapuram, 

Rishivandiyam, Kalrayan hills, 

Thirukoilur, Koliyanur, 

Thiruvennainallur, Ulundurpet, 

Kallakurichi, Thirunavalur, 

Thiagadurugam and Chinnasalem 

(21 Blocks) 



Table 49. District wise groundnut area (ha) under levels of vulnerability to drought 

S.No. District 
Vulnerability  to drought 

Low Moderate High Total 

1 Salem 12031 5850 56 
17938 

2 Namakkal 9731 11944 1496 
23125 

3 Tiruvannamalai - 24294 744 
25038 

4 Villupuram - 31 22369 22400 

 Total 
21762 42119 24665 88501 

 



 

 

 

 

 

 

 

 

 

 

 

 

Discussion   



CHAPTER V 

DISCUSSION 

India is the second largest producer of groundnut after China. Groundnut is the largest 

oilseed in India in terms of production and plays an important role as food crop. Monitoring, 

estimating and forecasting of groundnut area and production are very important for the 

management of regional or local food demand and supply balance for social security.  

Traditional decision support systems based on crop simulation models are normally  

site-specific. In policy formulation, however, spatial variability of crop production often 

needs to be evaluated due to different soil, weather conditions and agricultural practices 

within a target-region. In this thesis, to address the spatial variability of groundnut growth 

and yield, a crop simulation model “DSSAT- CROPGRO-Peanut model” was used and the 

simulated outputs are generated at spatially for twenty different groundnut field locations of 

the study area. The simulated values were validated with observed values. 

Precipitation level, vegetation cover and evapotranspiration considered as drought 

indicators were evaluated for assessing vulnerability of groundnut to agricultural drought. 

The present study investigated the use of remote sensing data for groundnut acreage 

monitoring, integrating with crop simulation model to estimate yield and assess vulnerability 

of groundnut to drought in rainfed districts of Tamilnadu. The aim was to support an 

operational satellite crop monitoring system that could assist farmers and land managers to 

better manage their groundnut cultivation in rainfed districts. 

A research study on ‘Mapping and Modeling growth and productivity of groundnut in 

Rainfed Areas of Tamilnadu’ was conducted during kharif 2015 (Salem and Namakkal 

districts) and rabi 2015 (Tiruvannamalai and Villupuram districts) to estimate groundnut 

area, model growth and productivity and assess the vulnerability of groundnut to drought. 

The results presented in the previous chapter are discussed in this chapter.  

5.1. Spatial assessment of groundnut area  

Groundnut is essentially a tropical plant. It requires a long and warm growing season. 

The most favourable climatic conditions for groundnuts are well-distributed rainfall of at 

least 50 cm during growing season, abundance of sunshine and relatively warm temperature. 

Groundnut varieties range in duration from 90 to more than 135 days and with three main 

crop phenological developments (emergence, flowering and podding).  



5.1.1. Radar backscattering signature generation  

SAR data have a proven ability to detect rainfed groundnut through the unique 

temporal signature of the backscatter coefficient (also termed sigma naught - σ°) exhibited by 

the crop. Research effort was taken to use multi-temporal C-band SAR data from Sentinel 

1A, semi-automated processing chains, in-season field monitoring and end-of-season 

validation points to map groundnut crop across major rainfed districts (Salem, Namakkal, 

Tiruvannamalai and Villupuram) of Tamilnadu. In the past years, lot of research efforts were 

taken for better understanding this relationship and applying it to crop detection and crop 

monitoring (Le Toan et al., 1997, Inoue et al., 2002, Suga and Konishi, 2008, and  

Bouvet et al., 2009).  

Temporal signatures were extracted for each monitoring site and used to generate the 

dB curves for groundnut fields shows the temporal signature for selected representative pixels 

to visualize the resulting maximum likelihood classification using Multi Temporal Features 

(MTF).  Groundnut crop showed significant temporal behaviour and a large dynamic range in 

Salem and Namakkal districts (-10.15 to -6.84 dB for VV and -20.04 to -14.95 for VH 

polarization) and Tiruvannamalai and Villupuram districts (-10.67 to -7.99 dB for VV and  

–18.18 to -14.98 for VH polarization) during its growth period. An increase in backscatter 

was observed during the growth period for the first six acquisitions that was typical of the 

seedling to maturity stage which was due to the interaction of microwave radiation with the 

crop canopy, increasing from the detection of σ° minimum (emerging) to the detection of σ° 

maximum (maturity) between acquisitions one and six for Salem and Namakkal districts and 

two and seven for Tiruvannamalai and Villupuram districts.  

The backscatter minimum was observed in the initial acquisition, indicating emerging 

conditions of groundnut crop in all the districts, followed by an increase in backscatter in the 

succeeding acquisitions, indicating growth of the groundnut crop. The field crop signal 

showed a distinctly different temporal evolution and the quick biomass production at 60 DAS 

which helped precise discrimination of groundnut crop pixel by pixel. In short, this temporal 

variation of SAR backscatter delineated groundnut fields from other land cover classes. 

A detailed analysis of temporal signatures of groundnut showed a minimum at 

emergence stage and a peak at maturity stage. At emergence stage, minimum dB values of  

-10.99 to -9.56 dB for VV and -20.04 to -16.47 for VH polarization were observed in Salem 

and Namakkal districts whereas a minimum of -11.74 to -9.72 dB for VV and -18.57 to  

-17.79 for VH polarization were observed in Tiruvannamalai and Villupuram districts at 



emergence stage of groundnut. The lowest values at emerging were due to less back 

scattering from less vegetation cover with rougher surface which was the moment to capture 

the start of the season for each pixel. This might be the due to soil moisture variation  

(Blaes et al., 2005) or sowing which made the soil surface smoother (Karjalainen et al., 2004). 

Nelson et al., 2014 recorded a similar minimum at early stage of rice crop with X-band 

(TerraSAR-X and Cosmosymed) SAR data across Asia in Philippines and Thailand. 

The average maximum value at maturity stage in VV polarization was found to be -

6.84 with a range of -5.60 to -8.12 and an average of -14.95 with a range of -13.05 to -14.95 

in VH polarization in the fields across Salem and Namakkal districts. Similar trend was 

observed in Tiruvannamalai and Villupuram districts where average maximum value at 

maturity stage was -7.99 with a range of -5.31 to -9.14 (VV) and average of -14.98 with a 

range of -14.15 to -15.71 (VH). A marginal increase was recorded in backscattering at 

seedling to vegetative stage and a steep increase from flowering to pod development (2.07 dB 

in VV polarization) followed by a decline thereafter at maturity. The similar trend of minimal 

increase in backscattering at vegetative stage and steep increase from flowering to pod 

development with a variation of 2.27 dB and a decline thereafter at maturity was observed in 

VH polarization. The decrease in backscatter value at later stages might have been probably 

caused by maturity of crop, which lowered the water content of vegetation (Lillesand and 

Kiefer, 1994) or related to the vegetation biomass (Skriver et al., 1999) and or related to the 

reduced volumetric scattering due to maturity (drying and fall of lower leafs) (Panigrahy and 

Mishra, 2003). 

The primary variation related to the growth from sowing to seedling stage where the 

addition in LAI and biomass and thereby ground coverage was less. However as the growth 

advanced, groundnut had the tendency to putforth more biomass and thereby resulting in 

more dB values with an addition of 2.07 for VV and 2.27 for VH polarization.  In all the 

fields the mean dB values tend to drop further from maturity to harvesting with values found 

to be reducing from -6.84 to -.7.70 (VV) and -13.90 to -14.77 (VH) in Salem and Namakkal 

districts. Whereas, the values were found to be reducing from -7.99 to -.8.95 (VV) and -14.98 

to -15.69 (VH) in Tiruvannamalai and Villupuram districts. Rice crop showed significant 

temporal behaviour and a large dynamic range (−14.4 to −8.41dB) during its growth period 

(Inoue et al. (2002), Suga and Konishi (2008), Oh et al., 2009 and Kim et al., (2009)). 

 

 



5.1.2. Multi Temporal Features (MTF) extraction  

The choice of parameters for classification was guided by a simple statistical analysis 

of the temporal signature of σ° values in the monitored fields. The Mean, Min, Max, Min 

Date and Max Date features for VV and VH polarizations were computed for the temporal 

signature of each monitored field. Among the features, maximum value for different 

groundnut fields ranged from -16.95 to -13.01 (VH Polarization) and -9.03 to -5.47  

(VV Polarization) in Salem and Namakkal districts. In Tiruvannamalai and Villupuram 

districts the range of maximum was from -16.93 to -12.59 for VH and -8.89 to -6.06 for VV 

polarization, respectively. Minimum value for Salem and Namakkal ranged from -19.86 to  

-16.77 for VH and -12.58 to -9.26 for VV polarizations. Similarly groundnut field of 

Tiruvannamalai and Villupuram districts recorded minimum values of -20.01 to -17.94 for 

VH and -12.36 to -8.61 for VV polarization, respectively.  Similarly, mean values for Salem 

and Namakkal groundnut fields ranged from -17.80 to -15.81 (VH) and -10.82 to -7.87 (VV). 

In Tiruvannamalai and Villupuram districts groundnut fields recorded a mean value of -17.96 

to -14.46 and -10.64 to -7.77 dB for VH and VV polarizations, respectively. Nelson e al. 

(2014) used X-band SAR data and successfully extracted MTF (in dB) from rice monitoring 

fields and used for the rice classification. 

Max Date (Date of the maximum) feature of Salem and Namakkal fields was found to 

be D6 (5th November, 2015) for both VH and VV polarization. Likewise, Min Date (Date of 

the minimum) for both VH and VV were found to be D1 (8th July, 2015) showing synchrony 

in sowing and maturity in these districts. In groundnut fields of Tiruvannamalai and 

Villupuram districts, the Max Date features for VH and VV polarization were recorded 

between D6 (30th December, 2015) and D8 (23rd January, 2016) with majority of the fields 

recording maximum date as D7 (11th January, 2016). The Min Date feature for VH 

polarization was between D1 (31st October, 2015) and D3 (24th November, 2015) and for VV 

polarization it occurred during D1 (31st October, 2015) and D2 (12th November, 2015) 

indicating a sowing window during October to November and a harvest window during 

January to February in these two districts. Further coherence in these dates might have helped 

precise segregation of groundnut pixels from other dry crops sown in these areas. These five 

statistics, called as temporal features, concisely characterized the key information in the 

groundnut signatures of the observed fields, and each one related directly to one parameter. 

Hence, the value of the five temporal features from the monitoring locations at each site were 

used to guide the choice of the five parameter values based on which the groundnut pixels 



were classified and the groundnut area maps were generated which was in line with work 

reported by Pazhanivelan et al., (2015). 

Further, short wavelengths (X-, C, Ka-, Ku-band), especially at large incident angles, 

are sensitive enough to detect even very small groundnut seedlings just after emergence. The 

correlation between σ° and groundnut biophysical parameters showed that lower frequencies 

were more closely related to total fresh weight, leaf area index (LAI) and plant height than 

other parameters. On the other hand, σ° derived from C-band can provide information on par 

with the normalized difference vegetation index (NDVI) (Inoue   et al., 2014).  

5.1.3. Groundnut area and accuracy assessment  

Groundnut area map was derived from multi-temporal C-band SAR imagery from 

Sentinel 1A for all the four districts. Groundnut area during kharif 2015 (Salem and 

Namakkal districts) and rabi 2015 (Tiruvannamalai and Villupuram districts) were 

distinguished in the maps below for discussion purposes. The total groundnut area across the 

four districts of Salem, Namakkal, Tiruvannamalai and Villupuram districts was estimated to 

be 88023 ha. In Salem and Namakkal districts during kharif 2015, groundnut area map 

showed an accuracy of 78.3% with overall accuracy of 85.2% with reliability of 85.9% and 

kappa score of 0.70 with 46 groundnut and 42 non-groundnut validation points. Whereas, 

Tiruvannamalai and Villupuram districts during rabi 2015 showed a good accuracy of 85.5% 

for groundnut and 93.5% for other land types. The overall accuracy of 88.9% with reliability 

of 88.7% and kappa score of 0.78 with 62 groundnut and 46 non-groundnut validation points. 

The overall classification accuracy was done for the study area with the 196 validation points 

covering 108 groundnut and 88 non-groundnut points and accuracy was consistently high 

(87.2 %), with Kappa score of 0.74. Estimation of rice area in Tamilnadu, India at district 

level an accuracy of 99% was achieved in Cuddalore followed by Sivaganga and Thanjavur 

districts respectively with 88 and 86.7%. At block level it was interesting to come across an 

accuracy of 85 to 96% indicating the suitability of these products for policy decisions 

(Pazhanivelan et al., 2015). 

Among the 19 blocks of Salem district, Thalaivasal block recorded the highest 

groundnut area whereas Yercaud followed by Salem recorded the lowest groundnut area. In 

Namakkal district (15 blocks), Tiruchengodu block recorded the highest groundnut area 

followed by Mallasamudram, Elachipalayam and Puduchatram blocks with an area of nearly 

2000 ha (Fig. 45) indicating the predominance of these blocks cultivating groundnut 

historically. 



 

Fig.45. Blockwise Groundnut area during kharif 2015 in Salem and Namakkal districts 
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Fig.46. Blockwise Groundnut area during rabi 2015 in Tiruvannamalai and Villupuram districts 
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In Tiruvannamalai district (18 blocks), Thurinjipuram and Thandrampattu blocks 

recorded the higher groundnut area whereas the lowest groundnut area was recorded in 

Jawadhu hills block followed by Anakkavur block. In Villupuram district (21 blocks), 

Melmalaiyanur and Chinnasalem blocks recorded higher area of groundnut and the lowest 

groundnut area was recorded in Kalrayan hills block followed by Thiruvennainallur and 

Koliyanur blocks respectively (Fig. 46). The lowest groundnut area in blocks spread over 

hilly undulating region in these districts showed the unsuitability caused by slope and other 

soil characteristics. 

The consistently high accuracy of the groundnut area classification across these 

rainfed districts of Tamilnadu demonstrated that the methodology was appropriate for 

groundnut detection across the most common rainfed ecosystem. The classification was based 

on a temporal analysis of the spectral signature, including a detection of emergence stage 

followed by a rapid increase in biomass relative to the duration of the vegetative stage of the 

varieties in the sensor footprint. The monitoring site data were critical for the correct 

interpretation of the spectral signature. 

5.2. Modeling growth and productivity of groundnut using DSSAT  

Simulation models are useful in deciding the best possible management options for 

optimum growth and yield of any crop against available climatic variables along with soil and 

water inputs. Uses of these models are gaining importance particularly for spatial simulation 

models which can facilitate identification of production constraints and assist in technology 

transfer. PNUTGRO model was used a successful tool to evaluate effects of climate, soil, 

hydrologic and agronomic factors on groundnut yield and its variability (Boote et al., 1987) 

which could be extrapolated spatially. 

The generated data sets of weather, soil, genetic coefficients of cultivars and 

management files from DSSAT were used to simulate the growth and productivity of 

groundnut at spatial level across the study area. Davenport et al. (2015) found that models 

with spatially varying coefficients were better able to simulate distributions than basic linear 

regression models. 



5.2.1. Input files generation in DSSAT model 

The DSSAT family of crop models required model input files that were written in a 

very specific format. For applications, the soil file containing unique blocks of text in the 

specified DSSAT format were generated to define the necessary soil properties for each 

management zone. Cultivar files for individual cultivar containing the co-efficient for each 

cultivar for use in model calibration are described in detail below. These methods had been 

used successfully in several studies (Thorp et al., 2006 & 2007), DeJonge et al. (2007) and 

Miao et al. (2006) but have not yet been fully explained. 

It is a common practice to use crop models with long time historical weather data to 

study the impact of climatic variability on agricultural production (Hammer et al. (1987), 

Chipanshi et al. (1999) and Mavromatis et al. (2002). Using ‘weatherman’ in DSSAT, the 

weather input files were generated for 20 locations during kharif 2015 in Salem and 

Namakkal districts with a value of 30.6 to 36.3ºC  as compared to rabi 2015in 

Tiruvannamalai and Villupuram districts which recorded values of 28.9 to 31.7 ºC. Jones and 

Thornton (2013) also successfully generated weather files for crop simulation model. 

Nevertheless, the variation in spatially simulated yields mainly reflected the intra-annual 

weather variability (Hansen and Jones, 2000). 

Using ‘S’ build in DSSAT (Hoongenboom et al., 2010), the input files for soil were 

generated with 13 parameters viz., Depth until base of layer, Lower limit of plant extractable 

soil water, Drained upper limit, Saturated upper limit, Root growth factor, Saturated 

hydraulic conductivity, Bulk density, Soil organic carbon concentration, Clay, Silt, Coarse 

fraction, pH in water and Soil Cation Exchange Capacity. In the study area of four districts a 

total of twelve soil series were found to be predominantly present. The input files generated 

using ‘S’ build showed that the bulk density (SBDM) of the study area ranged from 1.44 to 

1.62 g cm-3 whereas the soil organic carbon concentration ranged from 0.20 to 0.92, pH 

ranged from 6.0 to 8.9, Cation Exchange Capacity ranged from 7.3 to 39.5 and soil depth 42 

to 276 cm. Thorp et al. (2008) reported that the DSSAT uses common modules for soil 

dynamics regardless of the plant growth module selected. 

In DSSAT ‘GENCAL’ using the observed value from monitoring fields, the model 

was calibrated for genetic coefficients of cultivars CO 6, TMV 7 and VRI 2 determining their 

phenology and growth, as well as for soil and weather variation at spatial level. Singh et al. 

(1994) successfully generated all the input files such as weather, soil and genetic co-efficient 

files for spatial simulation of groundnut growth and productivity. The inputs requirement for 



PNUTGRO (DSSAT4.5) model and values of genetic coefficients as derived from calibration 

of the model were successfully validated for cultivars of groundnut during kharif in Anand of 

middle Gujarat region (Yadav et al., 2012). 

5.2.2. Simulation of growth and development variables of groundnut by DSSAT 

CROPGRO-Peanut model was used to quantify the impact of spatial variability on 

groundnut productivity at rainfed groundnut area of study districts. Growth and development 

variables of groundnut viz., days to emergence, days to anthesis, pod development, seed 

development and physiological maturity, yield at harvest  (kg ha-1), pod  weight (kg ha-1), pod 

number m-2  were simulated by DSSAT-PNUTGRO model for twenty monitoring locations 

across the study area and presented. Besides maximum LAI, Harvest index, Threshing per 

cent, N content in grain, tops and stem at maturity and canopy height (m) were also simulated 

in each location spatially. Nokes and Young (1991) showed that the ‘PNUTGRO’ model 

efficiently simulated the groundnut growth and development. DSSAT model accurately 

simulated crop growth development and yield for groundnut and various legume crops at 

different location as reported by Mote et al. (2016).  

The CROPGRO-Peanut simulated the days for different physiological process of 

groundnut. The days to emergence ranged from 7 to 9 days across locations while the days to 

anthesis varied from 25 to 32 days. Among the locations Nochokarakadu with the variety Co 

6 registered a minimum 107 days to maturity while Melsevalambadi with the variety TMV 7 

recorded a maximum number of 117 days to maturity. Similarly the simulations were made 

for days to first pod development to first seed development and physiological maturity and 

they showed that groundnut took 36 to 44 days anthesis, 43 to 51 days for first pod 

development and 107 to 117 days to physiological maturity. The result were in good 

agreement with the findings of Akula (2003) for days to anthesis in wheat as simulated by 

WTGROWS and INFOCRO model at Anand.  Kumar et al. (2014) reported that CROPGRO 

model satisfactorily simulated phenological events like anthesis, first pod day, physiological 

maturity and harvest maturity at Pantnagar. DSSAT model resulted in a simulated canopy 

height of 0.63 to 0.70 m and maximum LAI of 1.12 to 3.07. Vellapillakovil and Kakapalayam 

resulted in higher simulation of LAI with values of 3.07 followed by Velagavundanpatti and 

Pappambadi registering maximum LAI of 3.05. However the model simulated a lesser LAI of 

1.12 to 1.48 at Keelravandavadi and Arkandanallur sites. These simulation results were in 

line with the findings of Gilbert et al. (2002) who opined that when independent crop and soil 



datasets were used to evaluate, PNUTGRO model was influenced by seasons and location on 

simulating growth and yield.  

The crop growth model also simulated the leaf number per stem at maturity. As 

influenced by the canopy height, leaf number and maximum LAI, the tops weight at maturity 

(kg ha-1), was also simulated by the model and found to be in the range 4176 to 9576 kg ha-1. 

The yield parameters viz., pod weight (kg ha-1), number of pods m-2 and seed weight were 

also simulated. Kaur and Hundal, (1999) at Ludhiana studied ‘PNUTGRO’ model to predict 

phenological events of groundnut growth and yield parameters in Punjab and Gadgil et al., 

(1999) used the ‘PNUTGRO’ model, to study the growth and development of groundnut at 

ARS Anantapur. CROPGRO peanut model was used by Parmar et al. (2013) to simulate the 

phenological events, yield and yield attributing characters of groundnut cultivars of GG 2 and 

GG 20 in Gujarat precisely. 

Groundnut pod yield was simulated by DSSAT-PNUTGRO and found to be in the 

range of 1796 to 3060 kg ha-1 across the study area with a harvest index of 0.28 to 0.43. 

Bhatia et al. (2005) who simulated the potential yield of rainfed groundnut across major 

production zones and the yield ranged from 2320 to 3170 kg ha-1 which was highly 

correlating with the results obtained in the present study across four districts with twenty 

locations. Similar finding on pod yield simulation by DSSAT in different location was 

reported by Gilbert et al. (2002). In the past years, lot of research efforts were taken for 

simulation of growth and productivity of groundnut and different other crops. Akula (2003) 

simulated growth and productivity of wheat using WTGROWS and INFOCROP at Anand 

and a spatial model for simulating wheat crop phenology across Europe was developed by 

Harrison et al. (2000). 

5.2.3. Observed values of growth and yield 

Observations were made on growth and yield parameters such as LAI, biomass, pod 

yield and harvest index at twenty monitoring locations regularly. LAI and biomass was 

positively correlated with pod yields of groundnut. In case of maximum LAI, Salem district 

recorded LAI of 3.45 to 4.04 with a mean of 3.67 and biomass of 7554 to 9959 kg ha-1 with a 

mean of 9060 kg ha-1. In the monitoring sites of the district pod yield of 2115 to 2750 kg ha-1 

were recorded while the harvest index was observed to be between 0.26 to 0.28. These results 

were in agreement with the findings of Vindhiyavarman et al. (2010) who reported higher 

pod yields of groundnut with higher LAI values. 



Monitoring locations in Namakkal district registered a maximum LAI of 3.35 to 4.05 

with a mean of 3.68 with biomass of 7222 to 9600 kg ha-1. The resultant pod yield was 

observed to be 1950 to 2607 kg ha-1 with a harvest index of 0.25 to 0.29. Similarly in 

Tiruvannamalai the maximum LAI and biomass were observed to be in the range of 2.01 to 

2.62 and 4620 to 7290 kg ha-1. Similar finding on groundnut growth and yield was reported 

by Reddy et al., (2003). The resultant pod yields were between 1450 to 2187 kg ha-1 with a 

harvest index of 0.30 to 0.37. Whereas Villupuram district was recorded a comparatively 

lesser LAI of 2.44 to 2.80 with biomass of 4652 to 7403 kg ha-1. Lesser LAI coupled with 

reduced biomass resulted in comparatively lower pod yields which were observed to be 

between 1535 to 2221 kg ha-1 with a harvest index of 0.30 to 0.34. The similar results were 

reported by Igbadun et al., (2005). In all the locations the harvest index was related to 

biomass and the yield of groundnut. 

5.2.4. Model calibration and validation  

The capability of the DSSAT-PNUTGRO model to predict growth and development 

of the three different groundnut cultivars (CO 6, TMV 7 and VRI 2) were assessed in terms 

of its ability to predict crop response as influenced by season, weather and soil distribution at 

spatial level. In order to accomplish this in a spatial level simulation, this process was 

repeated for every location. Observed values of groundnut growth and yield from monitoring 

fields during both kharif and rabi seasons in study area were used to validate the model 

performance in groundnut growth and yield. Model response for different environments in 

these monitoring fields is discussed below. 

5.2.5. Validation of DSSAT model for groundnut growth variables 

Growth data such LAI collected during the both seasons at study area were used to 

illustrate the model performance across seasons. The LAI simulated by model in all the twenty 

monitoring fields were validated with observed values. The maximum LAI in all the fields 

were slightly underestimated, but there was a significant correlation between observed and 

simulated values. These results were in agreement with those obtained by Singh et al. (1994). 

The individual agreement for all field locations ranged from 43 to 83 per cent  

(Fig. 47). The overall agreement between simulated and observed LAI values was 66 per cent. 

Negative significant association was observed between simulated and observed values. These 

results were in tune with those obtained by Kaur and Hundal (1999). Underestimation of LAI 

of groundnut regardless of sowing dates and varieties was also reported by Yadav et al. (2012). 



 

Fig.47. Validation of DSSAT-PNUTGRO model for groundnut Leaf Area Index 
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Fig.48. Validation of DSSAT-PNUTGRO model for groundnut biomass yield 
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 The observed and model simulated groundnut biomass production for 20 monitoring 

fields during both kharif and rabi 2015 were compared and presented in Fig. 48. The figure 

showed that the observed biomass production ranged from 5246 kg ha-1 to 8969 kg ha-1 as 

compared to 4516 kg ha-1 to 9576 kg ha-1 of simulated values. The simulation of final biomass 

showed good agreement with the observed values as reported by Anothai et al. (2008).  

The agreement between simulated and observed values was more acceptable for 

almost all monitoring field locations. The agreement of fields ranged from 78 to 98 per cent. 

The maximum level of agreement of 98 per cent was recorded in Moongathur followed by 97 

and 96 per cent in Pothiyampatti and Pudhupuliyampatti. The model prediction for biomass 

production at maturity was considered excellent and the average errors as computed by R2, 

RMSE and NRMSE were 0.79, 844 kg ha-1 and 11 per cent respectively and overall 

agreement between simulated and observed values was 89 per cent (Fig. 51). The model 

prediction was in close agreement with measured values. Similar results were also reported 

by Soler et al. (2007). Singh et al. (1994) also found similar trend of biomass simulation for 

groundnut by PNUTGRO model at Patancheru (ICRISAT) and at Anantapur. 

5.2.7. Validation of model for groundnut pod yield and Harvest Index 

Pod yield of groundnut was observed in twenty locations across four districts of 

Tamilnadu and presented along with model simulated values in Fig. 49 and 50.  

The performance of DSSAT CROPGRO-Peanut model was good in simulating the 

pod yield of groundnut during both kharif and rabi 2015. The results showed that error 

percent remain in good confidence level during both the seasons. Positive significant 

association was noticed between simulated and observed mean yield with R2 value of 0.81. 

Among the twenty monitoring fields model slightly overestimated the pod yield in all the 

monitoring fields except Morepalayam. However, the simulated pod yields for the all the 

monitoring fields were close to the observed yields as water stress was the dominating factor 

rather than disease in those late sown fields of Tiruvannamalai and Villupuram districts. During 

rabi 2015 at Tiruvannamalai and Villupuram districts, in many fields, the crops were affected 

by late leaf spot or rust during the later phases of crop growth, especially in Keelravandavadi, 

Thandrampattu and Padiyandhal which were affected by tikka leaf spot. This resulted in 

significantly lower pod yields than the simulated pod yields in this season. Observed pod yield 

data from all twenty locations were pooled for correlation with the model predictions. As the 

model does not incorporate the influence of diseases and pests, the locations in which the 

influence of diseases and pests was severe were excluded for comparison.  



 

 

Fig.49. Validation of DSSAT-PNUTGRO model for groundnut pod yield 
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Fig.50. Validation of DSSAT-PNUTGRO model for groundnut Harvest Index 
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Fig.51. Comparison of groundnut growth and yield simulated by the DSSAT model with 

measured values 
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Simulated pod yields across the locations ranged from 1796 to 3060 kg ha-1 

depending upon agro climatic conditions of the study sites, soil parameters and the cultivar 

grown. Higher mean yields were obtained in kharif 2015 (2705 kg ha-1) as compared to rabi 

2015 (2054 kg ha-1). Singh et al. (2012) also observed similar variations in simulated yields 

(100 to 3370 kg ha-1) of groundnut between different locations and regions. Regression of 

simulated pod yields of two seasons against observed data of the test sites showed a strong 

relationship between simulated and observed pod yields.  

The average errors between simulated and observed values as computed by R2, RMSE 

and NRMSE were 0.81, 342 kg ha-1 and 16 per cent respectively. The individual agreement 

of pod yield for all field locations ranged from 77 to 98 per cent. The maximum agreement of 

98 per cent was recorded in Morepalayam field location. Even though the model predicted 

slow increase with underestimation in case of LAI, the model takes into consideration of 

effects of temperature on SLA and predicted the growth in terms of biomass and yield 

accurately at various stages and overestimates by 10 to 15% at maturity. Moongathur, 

Pothiyampatti, Nochokarakadu and Velagavundanpatti also recorded a fairly good agreement 

of 91 per cent of pod yield in groundnut between observed values and the values simulated by 

DSSAT PNUTGRO crop growth model. The lowest agreement of 67 per cent was recorded 

in Manathi and Vellapillakovil locations followed by Padiyandhal and Keelravandavadi with 

74 and 76 per cent agreement and the remaining sites recording an agreement of above 80 per 

cent on groundnut pod yield.  This meant that predicted pod yields were not significantly 

different from observed yields. The PNUTGRO model was able to reasonably simulate pod 

yield and final biomass with low normalized root mean square error (RMSE), low absolute 

root mean square error (RMSE) and high coefficient of determination (R2 >0.7) as reported 

by Halder et al. (2017).  

Considering the variation in monitoring fields and the range in environments in which 

groundnut was grown, it is concluded that PNUTGRO can be used to predict groundnut yields as 

influenced by several factors such as water availability, sowing dates, and seasons. Simulation of 

groundnut yield in monitoring sites showed that simulated pod yields followed a similar trend as 

observed yields. The differences between simulated and observed yields were less than 400 kg 

ha-1 in most monitoring fields. This analysis further confirms that PNUTGRO can be used to 

predict changes in yield caused by variation in seasons, sowing dates and moisture availability. 

Similar result were obtained by Singh et al., (1994) at four different locations, Padma et al., (1991) 

at Hyderabad and Patil et al., (1993) at Raichur in kharif groundnut.  



Results of validation of groundnut Harvest Index simulated by model showed that the 

values of simulated harvest index were found to have been overestimated as compared to 

corresponding observed values of all the monitoring fields. During both the season of kharif 

and rabi 2015, the individual agreement between simulated and observed values was fairly 

well for all twenty field locations.  The results were in accordance with Anothai et al., (2008). 

The individual agreement of harvest index in all field locations ranged from 40 to 97 per cent. 

The lowest agreement was recorded in Tindivanam field with 40 per cent and followed by 

Keelravandavadi and Padiyandhal, fields with 42 and 51 per cent respectively. These four 

fields were located in Tiruvannamalai and Villupuram districts. 

A positive significant association was observed between simulated and observed 

mean harvest index with a R2, RMSE and NRMSE (%) values were 0.70, 0.070 and 24 per 

cent and overall agreement 76 per cent between simulated and observed values showed that 

the model prediction was in fairly good agreement with the measured values (Fig. 51). The 

results are in agreement with the findings of the study by Halder et al. (2017) and  

Singh et al., (1994). 

5.3. Integrating Remote Sensing products with DSSAT for yield estimation at spatial level  

Integrating remote sensing data and crop model is one of the solutions for expanding 

point based simulations to large area by putting remotely sensed products as proxy to crop 

variables. In this study remotely sensed LAI values were assimilated spatially with inputs 

from DSSAT model as a driving variable (Rui et al., 2011). Through integration of remotely 

sensed data and simulated values from DSSAT- CROPGRO-Peanut model, field level yields 

were estimated for monitoring locations and yield map at spatial level across study area had 

been executed. It was shown that the combination of satellite derived LAI and simulated 

growth parameters of groundnut could improve field level yield prediction. It was found that 

the weather distribution, availability of water, soil type, date of sowing and the groundnut 

varieties contributed to groundnut LAI variability at field level and explained the yield 

variability. In the present study, therefore suitable regression models were used to generate 

groundnut LAI from dB image using simulated LAI from DSSAT model at spatial level 

generate from different monitoring sites across study area as an explanatory variable for 

spatial yield estimation.  

The LAI of groundnut was derived from SAR at spatial level for each monitoring site 

across study area and compared with corresponding observed LAI. Validation referred to 

assessment of agreement of satellite derived LAI through comparisons with ground 



 

Fig.52. Validation of remote sensing based groundnut LAI with observed LAI 
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measurements. Fig. 52 represents an overview of the satellite (Sentinel-1A) derived LAI data 

with observed LAI of groundnut at pod development.  

Irrespective of the configuration, the satellite derived LAI against observed LAI have 

acceptable results, with the R2, RMSE and NRMSE were 0.86, 0.78 and 24 per cent 

respectively (Fig. 54). When compared with the observed LAI of 2.01 to 4.05 of groundnut 

the estimation from satellite derived values ranged from 1.31 to 3.23 with an agreement 55 to 

93 per cent for point based observation with an overall agreement of 76 per cent. Tripathi et 

al. (2004) reported the field LAI values were related to satellite based LAI estimations and a 

strong relationship was indicated with a coefficient of correlation of 0.76. Thus, satellite 

based LAI values could be effectively used for yield prediction model.  

The best results were obtained at Morepalayam with LAI of 3.13 as against the observed 

LAI of 3.35 with an agreement 93 per cent and Melsevalambadi recorded a slightly poor LAI 

of 1.51 against observed LAI (2.74) with an agreement of 55 percent which showed that the 

SAR imagery could be used to retrieve the LAI with acceptable limit as a fine-resolution LAI 

map when aggregated to the resolution of the MODIS LAI product serving as the reference 

field. It further showed that it was important to account for precision of the fine resolution 

satellite sensor product, such as the Sentinel-1A, while comparing it to reference values. 

Myneni et al. (2002) reported a good agreement between a satellite derived LAI with 

measured LAI from the fields. Xu et al. (1996) also compared predicted LAI and measured 

LAI and reported that ERS-l SAR data could be used in the model for estimation of LAI to an 

accuracy of 0·5 to 1 and have the potential for operational application in crop monitoring.  

Only a few studies have addressed the performances of empirical relationships between 

LAI and backscattering coefficients for fields with analogous cultivation practices (i.e. except 

rice, grown on flooded area).  Leonard et al. (2013) found SAR sensor offer multi-polarized 

C-band information that could directly be used in order to retrieve LAI. Chen et al. (2009) 

reported that Advanced Synthetic Aperture Radar (ASAR) data could be used to estimate the 

LAI of crop for wide‐area monitoring of crop growth and suggested that C-band SAR data 

might be a promising alternative to optical remote sensing data for monitoring crop growth 

such as LAI in cloudy and rainy period where regular optical remote sensing data were 

difficult to acquire.  

Remote sensing based yield estimation was validated at district level with observed 

yield (point level) and illustrated in Fig. 53. Among all the Satellite derived LAI images of 

throughout the season LAI at the pod development stage during both the seasons were used 



 

Fig.53. Validation of remote sensing based groundnut yield with observed yield 
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Fig.54. Comparison of Remote Sensing based LAI and pod yield of groundnut with 

measured values 
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for yield estimation. The maximum pod yield of 2975 kg ha-1 was estimated in Kakapalayam 

and Moongathur fields. As against the remote sensing based groundnut yields of 1912 to 

2975 kg ha-1, the observed yields were 1450 to 2750 kg ha-1. At point level, the agreement 

was found to range from 67 to 92 per cent with a fairly good overall agreement of 80 per 

cent. The R2 was 0.60 with RMSE of 431 kg ha-1 and NRMSE of 20 per cent (Fig. 54). Yang 

et al. (2006) studied the utility of assimilating remote sensing based LAI in CERES model to 

estimate winter wheat yield at China. Pazhanivelan et al. (2015) used SAR derived LAI to 

assess yield of rice spatially integrating ORYZA crop growth model. 

5.4. Assessing drought classes of groundnut area using drought indices 

 Drought is an adverse climatic condition that affects all the climatic zones with  

semi-arid regions being highly susceptible to drought because of lower annual rainfall and 

sensitivity to climate change. Groundnut is a major crop widely grown under rainfed 

condition and vulnerable to drought during cropping period. Three drought indices viz., SPI, 

NDVI and WRSI were assessed in groundnut areas of four major districts viz., Salem and 

Namakkal, Tiruvannamalai and Villupuram districts in Tamilnadu during kharif and rabi 

2015. The spatial distribution of these indices were worked out and presented in Fig. 55 to 

58. In general, different studies have indicated the usefulness of the SPI to quantify different 

drought types (Edwards and McKee, 1997; Hayes et al., 1999). 

5.4.1. Assessing drought based on Standardized Precipitation Index (SPI) 

 In order to analyse the impact of rainfall deficiency and the development of drought, 

SPI (1-month time scale) was used to quantify the precipitation deficit in groundnut growing 

area in study districts to get a combined drought risk of meteorological and agriculture drought. 

Kwak et al. (2016) successfully analyzed the changing trend of meteorological drought due to 

climate change by using SPI collected from the 45 observatories all over Korea.  

In kharif 2015, the SPI classes of Salem district showed that during May 2015, most 

of the blocks (11 blocks) were classified as moderately dry except Idappadi, Attur and 

Gangavalli which were grouped as mildly dry. Remaining four blocks viz., Kadayampatti, 

Yercaud, Valapady and Veerapandi were found to be under severely dry condition based on 

SPI values. Thalaivasal was classified as normal with regard to rainfall in comparison with 

historical precipitation data. On temporal analysis of SPI during the cropping period of June 

to September, 2015, all the blocks were classified as normal to moderately wet classes of SPI. 

Similarly in Namakkal district also, SPI classes of mildly dry (11 Blocks) and severely dry (4 



 

 

Fig.55. District wise groundnut area (ha) under SPI classes 
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blocks) were observed during May, 2015 while normal to severely wet conditions prevailed 

during June to September, 2015 in all the blocks. Livada and Assimakopoulos (2007) used 

SPI to detect drought events in spatial and temporal basis in Greece.  

As a result of the SPI during rabi 2015, most of the blocks were found to normal to 

mildly wet across the cropping season with a few blocks registering moderately wet to 

severely wet condition. Similarly all the blocks in Villupuram district also recorded SPI 

classes corresponding to normal to mildly wet classes except Sankarapuram, Rishivandiyam 

and Koliyanur which recorded moderately wet condition during corresponding period. 

Several research works are in line with these findings of drought classification based on SPI 

classes. Findings of Nithya and Rose (2014) also, stated that SPI was useful to detection of 

agricultural vulnerability to drought. Wattanakij et al. (2006) successfully analysed spatial 

pattern of drought in the Northeast of Thailand using Multi-Temporal SPI. Hammouri and El-

Naqa (2007) concluded that the combination of various indices offer better understanding and 

better monitoring of drought conditions for semi-arid basins like Amman-Zarqa Basin. 

Considering the groundnut area in the study districts, the severity of drought based on 

composite SPI mainly classified into two groups of near normal was recorded in 99 per cent 

of total groundnut area in Salem district. Similarly in Namakkal district, most of the 

groundnut area was classified under near normal condition. During rabi season in 

Tiruvannamalai and Villupuram districts also, same trend was observed. In Tiruvannamalai 

district, out of 24475 ha of groundnut area, 24244 ha were classified under near normal 

condition (Fig. 55). However, the drought affected areas based on SPI classes were not more 

severe throughout the groundnut growing area of study districts. The severest drought 

episodes of 1984 and 1998 were more clearly captured by the aggregate drought index in all 

the regions classified. Sebenik et al. (2017) observed that the SPI on the annual time scale 

showed a similar pattern of occurrence of dry and wet periods at different places. 

5.4.2. Assessing drought based on Normalized Difference Vegetation Index (NDVI) 

For assessing spatial variability of drought level, composite NDVI data derived from 

satellite data could significantly help in determining the onset of drought, its severity and 

spatial extent. Satellite based information now provides effective drought monitoring and 

mitigation. NDVI images of cropping period during both seasons were generated using the 

imageries of MODIS acquired in May, 2015 to February, 2016. Tucker, (1979) first 

suggested NDVI as an index of vegetation health and density and it has been considered as 

the most important index for mapping of agricultural drought. Kaushalya et al. (2014) had 



assessed the agricultural vulnerability in rainfed agricultural area using NDVI data products 

and the results were discussed spatio-temporally at district level for the country. Likewise, 

Sumanta et al. (2013) had assessed the severity of drought using long term mean values of 

maximum NDVI in Bankura District, West Bengal. 

Compositing the NDVI time series for whole the period of groundnut growing at the 

study districts provided information about the relative health of the vegetation in a given 

period. Dense vegetation showed high value in the NDVI imagery, and the areas with little or 

no vegetation showed negative value and was also clearly identified. Groundnut area 

pertaining to each class was extracted from these images. Average NDVI image of cropping 

period for study districts are illustrated in Fig. 56. Senay et al. (2015) used the NDVI to 

monitor vegetation condition and combined several satellite data products using models to 

produce multiple short- and long-term indicators of droughts. 

Inter-seasonal variations in the magnitude and evolution of the NDVI for a particular 

location were mainly governed by meteorological variables such as precipitation, 

temperature, and relative humidity; however, changes in phenological growth of crops could 

also cause inter-seasonal variations. Comparing both seasons, during kharif 2015, NDVI 

images of Salem showed more area under good class covering approximately 86 per cent of 

groundnut area but in Namakkal district, approximately 60 per cent of groundnut area was 

only covered under class good based on NDVI values and remaining groundnut area (40 per 

cent) under stressed condition. During rabi 2015, NDVI image of Tiruvannamalai district 

showed more area under good vegetation class than stressed class with 97 per cent of 

groundnut area. Similarly in Villupuram also, 93 per cent of groundnut area was under class 

good class based on NDVI. This was because, high productive ecosystem had different 

radiometric properties than less productive ones due to differences in climate, soil, and 

topography as reported by Quiring and Ganesh (2010). 

Analysis of composite NDVI classes during kharif season showed that Salem district 

registered very less area i.e. 1.40 per cent of groundnut area under stressed condition whereas 

majority of the of groundnut area were found to be in the classes of very good and good 

based on NDVI. Smoothed NDVI, averaged over cultivated areas, provides a concise visual 

summary of seasonal performance as reported by Funk and Budde (2007). 

NDVI based on drought classes of groundnut area during rabi season of 

Tiruvannamalai and Villupuram districts. Tiruvannamali district recorded the lowest stressed 

groundnut area with larger groundnut area (24088 ha) classified under good condition. 



 

Fig.56. District wise groundnut area (ha) under NDVI classes 
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Considering NDVI level, representing the vegetation condition during the season, Villupuram 

district recorded only 7 per cent of groundnut area under stressed condition with 93 per cent 

of groundnut area under good condition. Stressed areas were found to be in five blocks viz., 

Ulundurpet, Thirunavalur, Vanur and Marakanam. Erdenetuya et al., (2010) processed 

MODIS product as Normalized Difference Vegetation Index and used to indicate deficiencies 

in rainfall and portray meteorological and/or agricultural drought patterns both timely and 

spatially, thus serving as indicator of regional drought pattern.  

5.4.3. Assessing drought based on Water Requirement Satisfaction Index (WRSI) 

The computation of the drought probability was done based on WRSI over each 

district for the period May, 2015 to January, 2016 combining historical weather data and 

satellite imageries. The results revealed that drought had occurred at different levels of 

severity during groundnut growing seasons of study districts. WRSI results were then 

reclassified based on drought severity classes as shown in Fig. 57. Based on this 

classification, WRSI distribution on groundnut area was assessed and district-wise area of 

groundnut under incidences of drought was extracted during both seasons.  

Jayanthi, et al. (2014) reported that vulnerability curve could quantitatively evaluate crop 

vulnerability to drought and water requirement satisfaction index (WRSI) to produce maize 

drought vulnerability curves for three countries viz., Kenya, Malawi, and Mozambique.  

In Salem and Namakkal districts, during the kharif season, the whole groundnut area 

was covered by three levels of WRSI viz., no risk, medium risk and high risk. In Salem 

district, the medium risk condition had more groundnut area followed by no risk and high 

risk. Among the 19 blocks of Salem district, under medium risk condition, Thalaivasal block 

covered maximum groundnut area followed by Tharamangalam and Valapady blocks. Three 

blocks were viz., Attur, Omalur and Sangakiri were covered under high risk condition. 

Valapady block alone had groundnut area under no risk condition. In Namakkal district, Low 

risk level of WRSI was registered in 75 per cent of groundnut area out of the total area of 

23063 ha. The other two levels of high risk and very high risk conditions were recorded at 

21.67 and 3.30 per cent of groundnut area respectively. Among the 15 blocks of Namakkal 

district, Mallasamudram block had more groundnut area under low risk condition followed 

by Elachipalayam. Under high risk condition, Tiruchengodu block had maximum area of 

groundnut. Rasipuram and Puduchatram block had no area of groundnut under high risk and  

 

 



 

 

Fig.57. District wise groundnut area (ha) under vulnerability level to drought based on WRSI 
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very high risk condition. All the blocks of Namakkal district had lower or none of groundnut 

area under very high risk condition except Kabilarmalai (356 ha) block. These results fit with 

findings of Shukla et al. (2014) who successfully used WRSI to forecast drought.  

During rabi 2015, Tiruvannamalai district registered 99 per cent of the groundnut area 

under chances of crop failure. Thurinjipuram block had maximum groundnut area under 

chance of crop failure condition followed by Thandrampattu and Keelpennathur blocks. 

Seasonal WRSI value less than 50 was regarded as a crop failure condition (Smith, 1995). All 

the 18 blocks were classified under chance of crop failure condition except Pudupalayam, 

Chengam, Keelpennathur, Tiruvannamalai and Thandrampattu blocks which had some 

groundnut area under very high risk condition also. In Villupuram district, out of total 

groundnut area of 22338 ha, 73 per cent of the area was classified as chances of crop failure 

condition followed by very high risk and high risk conditions. Especially the whole 

groundnut area of Melmalaiyanur block was found under condition of crop failure. In early 

semi-arid regions of southern Africa, WRSI anomalies were used to identify areas 

experiencing crop water stress as reported by Unganai and Kogan (1998). Moeletsi and 

Walker, (2012) successfully used WRSI to quantify drought affecting rain-fed maize 

production in the Free State Province of South Africa. Senay and Virdin, (2002) also worked 

on the temporal comparison between WRSI and yield, over different regions. 

5.5. Assessing vulnerability of groundnut to drought 

 Agricultural vulnerability of groundnut to drought was assessed using the modern 

methods of remote sensing and GIS by overlaying three different drought indices viz., SPI, 

NDVI and WRSI and the distribution of vulnerability of groundnut area to drought was 

estimated and presented in Fig. 58. Blockwise statistics were also generated for rainfed 

groundnut area of study districts. The agricultural vulnerability map will help in the preparation 

of the area for mitigation measures that will in turn reduce the impacts of climate variation on 

agriculture. Similarly, Jury, (2013) assessed the drought occurrence in many parts of the world 

and opined that the Southern African countries were highly susceptible to drought. 

During kharif season, in Salem district, out of total groundnut area 17938 ha, 67 per 

cent was found to be under low vulnerability level followed by 33 per cent under moderate 

level of vulnerability. Among the 19 blocks, most of the blocks were classified as low 

vulnerable except Kadayampatty, Salem and Attur which were moderately vulnerable to  

 

 



 

Fig.58. District wise groundnut area (ha) under vulnerability level to drought 
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drought. The results were in accordance with Nithya and Rose (2014) who stated that the 

different drought indices such as SPI, NDVI and NDWI were very useful for early detection 

of agricultural vulnerability in Srivilliputhur Taluk of Virudhunagar district, Tamil Nadu. 

Considering the overall vulnerability of groundnut to drought in Namakkal district, 

out of the total groundnut area of 23119 ha, 42 per cent was found to be less vulnerable 

whereas 52 per cent area was moderately vulnerable to drought. Major groundnut areas of 

Mallasamudram, Puduchatram, Rasipuram, Sendamangalam and Vennandur blocks were 

found to be less vulnerable to drought (Fig. 59), while major areas of Tiruchengodu, 

Elachipalayam and Erumaipatti blocks were moderately vulnerable to drought. Rama Rao et 

al. (2013) assessed agricultural vulnerability to drought in rainfed regions in India. 

During rabi 2015, the studies on vulnerability to drought in groundnut showed that all 

the 18 blocks of Tiruvannamalai district covering a groundnut area of 24294 ha were 

classified as moderately vulnerable to drought. In case of Villupuram district, all the 21 

blocks covering groundnut area of 22369 ha were found to be highly vulnerable to drought 

(Fig. 60.). Similar results were reported by Wilhelmi et al. (2002) which indicated that the 

most vulnerable areas to agricultural drought were non-irrigated cropland and rangeland with 

a very high probability of seasonal crop moisture deficiency.  

Considering overall vulnerability, whole district of Villupuram was adjudged as 

highly vulnerable to drought with regard to groundnut cultivation (Fig. 61.) whereas four 

blocks of Salem, eight blocks of Namakkal and all the blocks of Tiruvannamalai were found 

to be moderately vulnerable to drought.  

 



 

Fig.59. Blockwise vulnerability level of groundnut to drought in Salem and Namakkal districts 

 

Fig.60. Blockwise vulnerability level of groundnut to drought in Tiruvannamalai and  

Villupuram districts 



 

Fig.61. WRSI based risk areas for groundnut cultivation in this study area 
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Summary and Conclusion  



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

A research study was conducted at TamilNadu Agricultural University, Coimbatore 

during kharif and rabi 2015 to estimate groundnut area, model growth and productivity and 

assess the vulnerability of groundnut to drought using remote sensing techniques. 

Multi temporal Sentinel 1A satellite data at VV and VH polarization with 20 m spatial 

resolution was acquired from May, 2015 to January, 2016 at 12 days interval and processed 

using MAPscape-RICE software. Continuous monitoring was done for ground truth on crop 

parameters in twenty monitoring sites and validation exercise was done for accuracy 

assessment. Input files on soil, weather and management practices were generated and crop 

coefficients pertaining to varieties were developed to assess growth and productivity of 

groundnut using DSSAT CROPGRO-Peanut model. Outputs from remote sensing and 

DSSAT model were assimilated to generate LAI thereby groundnut yield spatially and 

validated against observed yields. 

Being a rainfed crop, vulnerability of groundnut to drought was assessed integrating 

different meteorological and spectral indices viz., Standardized Precipitation Index (SPI), 

Normalized Difference Vegetation Index (NDVI) and Water Requirement Satisfaction Index 

(WRSI). 

The important inferences from the research study are summarized and conclusions 

drawn are furnished below. 

6.1. Summary 

 Spectral dB curve of groundnut was generated using temporal multi date Sentinel  

1A data.  A detailed analysis of temporal signatures of groundnut showed a minimum at 

sowing and a peak at pod development stage and decreasing thereafter towards maturity. 

Groundnut crop expressed a significant temporal behaviour and large dynamic range (-11.74 

to -5.31 in VV polarization and -20.04 to -13.05 in VH polarization) during its growth period. 

At sowing, minimum dB value from -11.74 to -9.56 was recorded with a mean of -

10.41 was observed under VV polarization while the values were -20.04 to -16.47 at sowing 

of groundnut with a mean of -18.26 under VH polarization. The maximum dB values of -5.60 

to -5.31 under VV polarization and -14.15 to -13.05 under VH polarisation were observed at 

pod development stage irrespective of the districts. The multi temporal features viz., max, 



min, mean, max date, min date and span ratio were generated using seven to eight 

acquisitions to classify groundnut pixels. Groundnut area map was generated using maximum 

likelihood classifier integrating multi temporal features with a classification accuracy of 87.2 

percent and a kappa score of 0.74. The total classified groundnut area in the study districts 

was 88023 ha covering 17817 and 22582 ha in Salem and Namakkal districts during kharif 

2015 while Villupuram and Tiruvannamalai districts accounted for 22722 and 24903 ha 

respectively during rabi 2015. Blockwise statistics on groundnut area during both seasons 

were also generated. 

 To model growth and productivity of groundnut in DSSAT, weather and soil 

input files were generated using weatherman and ‘S’ build respectively besides deriving 

genetic coefficients for CO 6, TMV 7 and VRI 2 varieties of groundnut. 

 Growth and development variables of groundnut were simulated using 

CROPGRO-Peanut model i.e., days to emergence (7-9 days) and anthesis (25-32 days), 

canopy height (63 to 70 cm), maximum LAI (1.12 to 3.07) and biomass (4176 to 9576 kg ha-1 

across twenty monitoring locations spatially. The resultant pod yield was simulated to be 

1796 to 3060 kgha-1 with a harvest index of 0.28 to 0.43. 

 On comparison of LAI between observed (2.01 to 4.05) and simulated values 

(1.12 to 3.07) the CROPGRO-Peanut model was found to under estimate the values with R2, 

RMSE and NRMSE of 0.82, 1.10 and 34 per cent. However, the model predicted the biomass 

of groundnut with an agreement of 89 per cent through the simulated values of 4176 to9576 

kgha-1 as against the observed biomass to 4620 to 9959 kg ha-1. 

 The simulated pod yields of groundnut in the study area were 1796 to 3060 

kgha-1 as compared to the observed yields of 2115 to 2750 kg ha-1. The overall agreement 

between simulated and observed yields was 84 per cent with the average errors of 0.81, 342 

kgha-1 and 16 percent for R2, RMSE and NRMSE respectively. 

 LAI values of groundnut, generated spatially through suitable regression models 

using dB from satellite images and LAI from DSSAT, ranged from 1.31 to 3.23 with R2, RMSE 

and NRMSE of 0.86, 0.78 and 24 per cent respectively on comparison with observed values. 

Remote sensing based spatial estimation resulted in groundnut pod yields of 1570 to 3102 kg ha-1 

across the study districts of Salem, Namakkal, Tiruvannamalai and Villupuram. In the  

20 monitoring locations, the pod yields were estimated to be 1912 to 2975 kg ha-1 as against 

the observed pod yields of 1450 to 2750 kg ha-1 with a fairly good agreement of 80 per cent. 



The vulnerability of groundnut was assessed using different drought indices viz., SPI, 

NDVI and WRSI. Considering SPI, out of the total groundnut area of 88023 ha, an area of 

86607 ha was found to be under near normal condition based on deviation of rainfall received 

during cropping season from historical precipitation. Similarly NDVI, an indicator of 

vegetation condition during the cropping season, showed that 14272 ha of groundnut area 

were under stressed condition during 2015. 

With regard to Water Requirement Satisfaction Index (WRSI) another critical index 

to assess the vulnerability, an area of 40981 (mainly covering Villupuram and 

Tiruvannamalai districts) showed the chances of crop failure. An area of 8781 and 6932 ha 

were under high and very high risk zones respectively. Only an area of 17300 ha was found 

to be under low risk mainly spreading across Namakkal district. Major groundnut areas of 

Salem district (14188 ha) were under medium risk zone. 

Considering overall vulnerability, 14 blocks of Salem and 6 blocks Namakkal were 

found to be less vulnerable to drought for groundnut cultivation whereas four and eight 

blocks of Salem and Namakkal districts were moderately vulnerable to drought. The results 

of this study revealed that all the blocks of Tiruvannamalai were moderately vulnerable to 

drought while the whole district of Villupuram was highly vulnerable to drought with regard 

to groundnut cultivation. 

6.2 Conclusions 

The following conclusions were drawn from the results obtained in the present 

investigation 

 Spectral dB curve of groundnut generated using multi date Sentinel 1A SAR data 

showed a minimum at sowing and a peak at pod development stage and decreasing 

thereafter towards maturity with dB values of -11.74 to -5.31 in VV polarization and  

-20.04 to -13.05 in VH polarization during its growth period. 

 Groundnut area map was generated with a classification accuracy of 87.2 per cent and 

a kappa score of 0.74 and the total groundnut area of the study districts was 88023 ha 

covering 17817 and 22582 ha in Salem and Namakkal districts (kharif 2015) and 

22722 and 24903 ha in Villupuram and Tiruvannamalai districts (rabi 2015).  

 DSSAT model predicted the biomass (4176 to 9576 kgha-1) and pod yields (1796 to 

3060 kgha-1)of groundnut with an agreement of 89  and 84 per cent as compared to 

the observed values. 



 LAI and pod yield of groundnut were also estimated spatially assimilating dB from 

satellite images and DSSAT model with LAI values of 1.31 to 3.23 and pod yields of 

1570 to 3102 kgha-1 with a fairly good agreement of 80 per cent as compared to 

observed values. 

 An area of 40981 ha in Villupuram and Tiruvannamalai districts was found to be 

under chances of crop failure based on Water Requirement Satisfaction index (WRSI). 

Major groundnut areas of Salem district (14188 ha) was under medium risk zone. 

 Considering overall vulnerability, whole district of Villupuram was adjudged as 

highly vulnerable to drought with regard to groundnut cultivation whereas four blocks 

of Salem, eight blocks of Namakkal and all the blocks of Tiruvannamalai were found 

to be moderately vulnerable to drought.  

6.3 Recommendations 

 Hence, considering the overall accuracy, it is concluded that multi date Sentinel 1A 

Synthetic Aperture Radar data can be recommended for estimating Groundnut area at 

regional scale. 

 DSSAT CROPGRO-Peanut model can be used as an effective tool to simulate growth 

and yield of groundnut and on integration with remote sensing it can be recommended 

to generate yields at spatial scale. 

 The vulnerability of groundnut to drought can be assessed at regional scale using 

drought indices viz., SPI, NDVI and WRSI. 

6.4 Future line of Work 

 Necessary spatial data sets on weather, soil, varieties and management practices have 

to be created on groundnut ecosystem to integrate them with remote sensing based 

database for spatial estimation yield and to improve accuracy. 

 Developing interface to assimilate remote sensing products into DSSAT crop 

simulation modules.  

 Establishing a regular monitoring mechanism to generate temporal database on 

drought with continuous generation of maps and statistics on drought indices.  
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Appendices 



APPENDIX I 

Weekly weather data prevailed in Mecheri of Salem district during kharif 2015 

 

Standard Week 

Temperature 

Rainfall (mm) 
Solar Radiation  

(cal/cm2min-1) 

Max (ºC) Min (ºC) 

19 37.9 23.0 7.0 432.5 

20 34.8 22.9 59.5 323.7 

21 39.0 24.5 0.0 455.0 

22 37.6 22.5 29.0 380.3 

23 38.9 23.8 8.0 448.2 

24 35.9 23.2 1.5 435.8 

25 38.3 23.6 0.0 402.0 

26 38.8 23.3 0.0 396.1 

27 39.4 23.4 0.0 457.0 

28 38.7 24.7 0.0 423.9 

29 32.4 22.8 0.0 371.8 

30 33.4 23.9 22.5 430.6 

31 36.2 24.0 17.5 400.9 

32 35.3 23.9 0.0 372.7 

33 35.4 23.8 35.5 343.9 

34 33.9 23.4 37.0 328.2 

35 35.4 23.3 0.5 440.1 

36 34.7 24.2 18.5 355.0 

37 34.7 22.4 6.5 437.0 

 



APPENDIX II 

Weekly weather data prevailed in Namakkal during kharif 2015 

 

Standard Week 

Temperature 

Rainfall (mm) 
Solar Radiation  

(cal cm2min-1) 

Max (ºC) Min (ºC) 

19 36.0 25.4 16.5 382.7 

20 33.0 24.7 73.5 290.8 

21 36.3 26.0 0.0 388.2 

22 35.2 24.5 26.5 331.4 

23 36.2 24.9 12.0 398.4 

24 35.2 26.0 4.2 339.5 

25 35.0 26.3 3.2 360.5 

26 36.4 26.1 0.0 388.7 

27 37.0 25.3 0.0 397.1 

28 36.6 25.6 0.0 405.8 

29 36.3 25.4 21.5 390.9 

30 34.9 24.7 24.5 406.9 

31 36.5 24.7 31.0 413.3 

32 36.1 25.4 0.0 360.8 

33 35.7 25.0 22.5 388.2 

34 35.1 24.6 26.5 376.4 

35 36.9 24.9 0.0 460.4 

36 34.7 24.8 52.0 384.7 

37 35.9 25.4 0.0 447.6 

 



APPENDIX III 

Weekly weather data prevailed in Thandrampattu of Tiruvannamalai district during rabi  2015 

 

Standard Week 

Temperature 

Rainfall (mm) 
Solar Radiation  

(cal/cm2min-1) 

Max (ºC) Min (ºC) 

42 33.6 23.9 0.0 438.3 

43 32.7 23.1 1.5 387.0 

44 30.9 24.2 15.5 303.0 

45 28.6 23.6 97.0 195.5 

46 26.5 22.6 84.0 178.0 

47 27.6 23.1 99.5 198.5 

48 28.0 22.9 66.0 259.1 

49 26.5 22.6 20.0 147.2 

50 28.9 23.4 14.0 364.4 

51 30.0 21.8 0.0 492.6 

52 29.2 20.9 0.0 508.5 

1 29.6 19.2 0.0 494.7 

2 29.2 18.3 0.0 348.1 

3 29.2 20.4 0.0 364.3 

4 29.3 21.3 0.0 275.1 

5 31.1 18.2 0.0 426.0 

6 30.9 20.4 0.0 379.9 

7 31.0 20.7 0.0 509.1 

 



APPENDIX IV 

Weekly weather data prevailed in Melmalaiyanur of Villupuram district during rabi 2015 

 

Standard Week 

Temperature 

Rainfall (mm) 
Solar Radiation  

(cal/cm2min-1) 

Max (ºC) Min (ºC) 

42 43.5 30.6 0.0 457.1 

43 38.5 25.9 0.0 385.7 

44 38.5 28.7 21.5 318.8 

45 28.8 23.5 182.5 174.2 

46 26.5 21.5 94.0 212.1 

47 28.0 22.8 128.0 179.6 

48 28.2 22.7 107.5 254.8 

49 26.8 22.6 58.5 177.9 

50 32.5 22.7 8.0 326.9 

51 34.6 21.0 0.0 434.3 

52 34.0 19.9 0.0 422.0 

1 28.6 21.0 0.0 393.6 

2 29.4 18.7 0.0 398.1 

3 29.4 19.9 1.0 376.6 

4 29.9 21.3 1.0 322.6 

5 31.2 18.8 0.0 444.6 

6 31.3 20.6 0.0 425.1 

7 31.5 20.1 0.0 430.7 

 



APPENDIX V 

Values of Multi Temporal Features (MTF) for groundnut during kharif 2015 in test sites of 

Salem and Namakkal districts 

S. No. 

V
H

_
m

a
x

 

(d
B

) 

V
V

_
m

a
x

 

(d
B

) 

V
H

_
m

in
 

(d
B

) 

V
V

_
m

in
 

(d
B

) 

V
H

_
m

ea
 

(d
B

) 

V
V

_
m

ea
 

(d
B

) 

V
H

_
m

a
D

 

(d
B

) 

V
V

_
m

a
D

 

(d
B

) 

V
V

_
m

iD
 

(d
B

) 

V
H

_
m

iD
 

(d
B

) 

1 -16.00 -8.59 -18.96 -10.83 -17.49 -9.97 6 6 1 1 

2 -15.77 -6.83 -17.64 -11.57 -16.99 -9.81 7 6 1 2 

3 -14.12 -7.82 -18.22 -10.22 -16.22 -8.99 6 6 1 1 

4 -13.01 -7.47 -17.82 -11.14 -16.00 -9.66 6 6 1 1 

5 -16.07 -9.71 -19.39 -12.14 -17.41 -10.88 6 7 2 2 

6 -14.57 -9.03 -18.70 -11.93 -16.97 -10.83 6 6 1 1 

7 -13.94 -8.76 -18.64 -10.94 -16.87 -10.13 6 6 1 1 

8 -16.21 -6.13 -18.69 -10.62 -17.80 -7.87 6 6 1 1 

9 -16.95 -7.05 -18.53 -10.97 -17.76 -9.51 6 6 1 1 

10 -14.87 -6.83 -16.77 -9.26 -15.81 -8.36 6 6 1 1 

11 -14.45 -7.94 -19.67 -12.47 -17.71 -10.72 7 6 1 2 

12 -14.10 -7.74 -19.86 -12.58 -17.48 -10.82 6 6 1 1 

13 -14.67 -8.63 -18.98 -11.24 -17.03 -10.27 6 6 1 1 

14 -13.70 -7.63 -19.36 -11.79 -16.91 -10.01 6 6 1 1 

15 -13.97 -5.47 -18.38 -9.33 -16.83 -7.85 7 5 1 3 

16 -13.54 -7.57 -18.82 -11.78 -16.75 -10.28 6 6 1 1 

17 -14.35 -8.80 -18.31 -11.19 -16.63 -10.16 6 6 3 1 

18 -13.87 -8.49 -18.33 -11.05 -16.46 -10.02 6 6 1 1 

19 -14.67 -6.82 -17.78 -11.56 -16.25 -9.35 7 7 2 1 

20 -13.58 -8.04 -17.86 -11.59 -16.06 -10.44 6 6 1 1 

 



APPENDIX VI 

Values of Multi Temporal Features (MTF) for groundnut during rabi 2015 in test sites of 

Tiruvannamalai and Villupuram districts 
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1 -14.09 -7.91 1.12 -12.11 -16.50 -10.13 8 7 1 1 

2 -14.96 -8.01 1.12 -10.73 -16.19 -9.68 7 7 2 1 

3 -14.74 -8.16 1.12 -10.77 -16.03 -9.63 7 7 1 1 

4 -16.93 -8.20 1.07 -11.74 -17.91 -9.80 7 7 1 1 

5 -16.23 -8.14 1.06 -10.56 -17.96 -9.43 7 7 1 2 

6 -12.59 -6.15 1.14 -9.40 -14.49 -7.77 7 7 1 1 

7 -15.41 -8.89 1.11 -11.83 -17.79 -10.56 7 7 1 1 

8 -12.93 -7.07 1.18 -10.31 -15.46 -8.84 8 7 1 3 

9 -14.65 -6.75 1.08 -10.47 -16.19 -8.92 7 7 1 1 

10 -12.74 -6.76 1.20 -9.72 -14.46 -8.48 7 7 1 2 

11 -14.28 -8.16 1.20 -10.97 -16.02 -9.47 6 7 1 1 

12 -14.43 -8.69 1.09 -11.03 -15.63 -9.72 7 7 1 1 

13 -15.12 -8.42 1.06 -11.24 -15.97 -9.67 7 7 2 1 

14 -13.71 -7.23 1.08 -8.61 -15.21 -8.01 7 7 1 1 

15 -14.75 -7.30 1.06 -9.70 -15.73 -8.63 7 7 1 2 

16 -15.49 -8.73 1.08 -12.36 -17.80 -10.64 6 7 1 1 

17 -14.71 -7.74 1.09 -10.51 -16.06 -9.24 7 7 1 1 

18 -14.64 -6.06 1.08 -10.76 -16.54 -9.33 7 8 2 1 

19 -12.96 -7.37 1.12 -9.02 -14.85 -8.24 8 7 1 3 

20 -13.59 -6.32 1.11 -10.07 -15.53 -8.53 7 7 1 1 

 

 



APPENDIX VII 

List of Ground truth points collected over Salem and Namakkal districts 

S.no. Date Village Time Latitude Longitude Land use 

1 26/06/2015 Velammal valasu 9.26 11.571426 77.856563 Groundnut 

2 26/06/2015 Mecheri 11.35 11.809098 77.970682 Groundnut 

3 26/06/2015 Parjukalipatti before 12.09 11.771720 78.003294 Groundnut 

4 26/06/2015 karuppanampatti 12.17 11.756645 78.020592 Groundnut 

5 26/06/2015 Pappambadi 1.04 11.655283 77.957917 Groundnut 

6 26/06/2015 Moongathur 1.22 11.623707 77.958709 Groundnut 

7 26/06/2015 Kakapalayam 2.00 11.546713 78.017546 Groundnut 

8 26/06/2015 Kandarkulamanickam 2.09 11.541459 78.033784 Groundnut 

9 26/06/2015 Vellapillakovil 3.15 11.510652 78.097157 Groundnut 

10 26/06/2015 Masakalipatti 3.49 11.433090 78.156064 Groundnut 

11 26/06/2015 Rasakavundanur 4.04 11.382642 78.161031 Groundnut 

12 26/06/2015 Pudhuchatthiram 4.14 11.360763 78.165834 Groundnut 

13 26/06/2015 karungal palayam 4.36 11.295544 78.167221 Groundnut 

14 26/06/2015 Chinna thalaigai 6.16 11.259429 78.100833 Groundnut 

15 26/06/2015 Manikattiputhur 6.24 11.266464 78.089792 Groundnut 

16 26/06/2015 Velagavundmpatti 6.29 11.268051 78.087769 Groundnut 

17 26/06/2015 Manathi 6.39 11.293850 78.051275 Groundnut 

18 26/06/2015 Ilangar 6.43 11.297486 78.048509 Groundnut 

19 26/06/2015 Manickam palayam 6.49 11.316942 78.033453 Groundnut 

20 26/06/2015 Rayar palayam 6.56 11.337090 77.998696 Groundnut 

21 26/06/2015 Rayar palayam 7.02 11.341351 77.974940 Groundnut 

22 26/06/2015 Unjanai 7.08 11.356170 77.951266 Groundnut 



S.no. Date Village Time Latitude Longitude Land use 

23 23/05/2015 Chinnathambipalayam 1.11 11.414363 77.937111 Groundnut 

24 23/05/2015 Morepalayam 1.36 11.444336 77.959987 Groundnut 

25 23/05/2015 Mallasamudram 2.23 11.473452 78.002817 Groundnut 

26 23/05/2015 Kalipatti 3.35 11.509074 78.032101 Groundnut 

27 23/05/2015 Kalipatti 3.5 11.514806 78.035464 Groundnut 

28 23/05/2015 Pudhupalayam 4.18 11.546494 78.061454 Groundnut  

29 23/05/2015 Kakkapalayam 6.44 11.560000 78.012161 Groundnut 

30 23/05/2015 Kakkapalayam 6.55 11.564265 78.013356 Groundnut 

31 23/05/2015 Kakkapalayam 7.01 11.564216 78.014321 Groundnut 

32 07/06/2015 Nayakanpatti 10.20 11.646526 78.056082 Groundnut 

33 07/06/2015 Thirumalaigiri 11.54 11.652846 78.065313 Groundnut 

34 07/06/2015 Pumandapatti 12.13 11.657795 78.061124 Groundnut 

35 07/06/2015 Nallampatti 12.32 11.651394 78.045709 Groundnut 

36 08/07/2015 Pudhupuliyampatti 1.30 11.330955 77.924786 Groundnut 

37 08/07/2015 Pudhupuliyampatti 1.55 11.330010 77.924838 Groundnut 

38 08/07/2015 Pudhupuliyampatti 3.28 11.332088 77.930249 Groundnut 

39 08/07/2015 Chittalandur 4.06 11.322477 77.920182 Groundnut 

40 08/07/2015 Pudhupuliyampatti 5.05 11.330754 77.921886 Groundnut 

41 08/10/2015 Poochangadu 7.09 11.437659 77.863974 Groundnut 

42 08/10/2015 Madur 7.23 11.426982 77.862792 Groundnut 

43 08/10/2015 Puthu puliyampatti 8.20 11.331562 77.921435 Groundnut 

44 08/10/2015 Puthu puliyampatti 9.50 11.330589 77.922949 Groundnut 

45 08/10/2015 Elachipalayam 10.12 11.343268 77.930540 Groundnut 

46 08/10/2015 Mavurettipatti 10.30 11.338799 77.984533 Groundnut 



S.no. Date Village Time Latitude Longitude Land use 

47 07/06/2015 Puthu puliyampatti 12.23 11.65165 78.0526 Barren land 

48 26/06/2015 Velammal valasu 9.12 11.532157 77.853182 Coconut 

49 26/06/2015 Velammal valasu 9.21 11.562509 77.858512 Rock mine 

50 26/06/2015 Idappadi main 9.46 11.572192 77.831997 Water body 

51 26/06/2015 A.V. Palayam 10.04 11.619307 77.840124 Green gram 

52 26/06/2015 Moola kadai 10.16 11.657946 77.853195 Green gram 

53 26/06/2015 Soorapalli 10.37 11.719214 77.876635 Coconut 

54 26/06/2015 Vanavasi 10.43 11.737434 77.877517 Mango orchard 

55 26/06/2015 Vanavasi 10.48 11.744788 77.878690 Mango orchard 

56 26/06/2015  Nangavalli 11.02 11.772549 77.897750 Cassava 

57 26/06/2015 2KM from Nangavalli 11.10 11.788316 77.909922 Coconut 

58 26/06/2015 Saatthapadi 11.41 11.803532 77.976495 Green gram 

59 26/06/2015 Sindhamaniyur 12.03 11.774166 77.998834 Cowpea 

60 26/06/2015 Settimedu  12.31 11.722653 78.015184 Sugarcane 

61 26/06/2015 Sikkampatti 12.37 11.717334 77.998231 Barren land 

62 26/06/2015 Tharamangalam 12.47 11.696175 77.971781 Bus stand 

63 26/06/2015 Thattampatti 12.54 11.678604 77.967864 Sorghum 

64 26/06/2015 Kindakanoor 1.19 11.625432 77.959846 Green gram 

65 26/06/2015 Kandarkulamanikam 1.49 11.544846 78.022840 Cassava 

66 26/06/2015 Aattayampatti main 2.55 11.526237 78.062273 Water body 

67 26/06/2015 Aattayampatti main 2.59 11.525769 78.067918 Sugarcane 

68 26/06/2015 Vennandhur near 3.04 11.525370 78.072058 Bhendi 

69 26/06/2015 Alavaaipatti 3.21 11.506508 78.106485 Cassava 

70 26/06/2015 Atthanur 3.28 11.499337 78.123559 Fodder sorghum 



S.no. Date Village Time Latitude Longitude Land use 

71 26/06/2015 Masakalipatti 3.37 11.484827 78.154129 Sugarcane 

72 26/06/2015 Kalangavi 4.27 11.338568 78.171082 Sorghum 

73 26/06/2015 Chinna thalaigai 6.19 11.259842 78.100051 Barren land 

74 23/05/2015 Trichengodu 12.40 11.383536 77.895415 Builtup 

75 23/05/2015 Pudhupalayam 4.18 11.546922 78.061131 Coconut 

76 23/05/2015 Pudhupalayam 4.28 11.549778 78.064821 Sugarcane 

77 23/05/2015 Pudhupalayam 4.41 11.552852 78.065612 Coconut 

78 23/05/2015 Kakkapalayam 6.49 11.563661 78.011286 Built up 

79 07/06/2015 Vattamuthampatti 11.57 11.657487 78.066011 Fodder sorghum 

80 07/06/2015 Thirumalaigiri 12.04 11.656966 78.078078 Onion 

81 07/06/2015 Nayakanpatti 12.23 11.651655 78.052604 Barren land 

82 07/06/2015 Kurukkapatti 12.57 11.689038 77.977486 Water body 

83 07/06/2015 Tharamangalam 1.13 11.711443 77.956167 Greengram 

84 07/06/2015 M.Cheetipatti 1.38 11.721674 78.013681 Green gram 

85 08/07/2015 Thiruchengode 10.00 11.378019 77.894136 Built up 

86 08/10/2015 Kalinayakkanpatti 11.00 11.280741 78.074415 Fodder sorghum 

87 08/10/2015 Kalinayakkanpatti 11.03 11.280638 78.073568 Prosopis 

88 08/11/2015 Erumapatti 12.00 11.149297 78.325211 Prosopis 

 



APPENDIX VIII 

List of Ground truth points collected over Tiruvannamalai and Villupuram districts 

S.No. Date Village Time Latitude Longitude Land use 

1 18/11/2015 Melsevalambadi 4.20 12.410479 79.309562 Groundnut 

2 18/11/2015 Sanandhal 3.33 12.292294 79.113635 Groundnut 

3 18/11/2015 Mel Kunnumurunji 3.25 12.276867 79.099469 Groundnut 

4 18/11/2015 Nambiyandhal 1.21 12.373645 78.980164 Groundnut 

5 18/11/2015 Thandarampattu 11.40 12.194233 78.935033 Groundnut 

6 18/11/2015 Radhapuram near 11.2 12.155403 78.972889 Groundnut 

7 18/11/2015 Radhapuram near 11.14 12.151058 78.978829 Groundnut 

8 18/11/2015 S. Koodalur 10.52 12.128628 79.008918 Groundnut 

9 18/11/2015 Vanapuram 10.30 12.102401 79.029849 Groundnut 

10 05/11/2015 Kaviriyampoondi 10.30 12.223407 79.018986 Groundnut 

11 05/11/2015 Kaviriyampoondi 10.40 12.212892 79.015384 Groundnut 

12 05/11/2015 Pandithapattu 10.45 12.212895 79.016765 Groundnut 

13 05/11/2015 Perumbakkam 11.00 12.224921 79.002171 Groundnut 

14 05/11/2015 Thandrampattu 11.30 12.156439 78.936109 Groundnut 

15 05/11/2015 Thandrampattu 11.33 12.189638 78.966859 Groundnut 

16 05/11/2015 Keelaravundambadi 12.2 12.158204 78.930508 Groundnut 

17 05/11/2015 Keelaravundambadi 12.45 12.170157 78.940905 Groundnut 

18 05/11/2015 Moraiyaru, Sengam 1.35 12.287627 78.826578 Groundnut 

19 05/11/2015 Arattavadi 1.58 12.234930 78.791851 Groundnut 

20 05/11/2015 Arattavadi 2.10 12.261953 78.809132 Groundnut 

21 05/11/2015 Kadaladi 3.56 12.415488 78.983143 Groundnut 

22 05/11/2015 Kalapakkam,  4.00 12.428494 79.005069 Groundnut 



S.No. Date Village Time Latitude Longitude Land use 

23 05/11/2015 Mottur 4.15 12.445679 79.062369 Groundnut 

24 05/11/2015 Nayudumangalam,  4.40 12.406068 79.103258 Groundnut 

25 11/04/2016 Satthanur 6.53 12.190039 78.928131 Groundnut 

26 11/04/2016 Malsettipattu 7.21 12.188118 79.019647 Groundnut 

27 11/04/2016 Vediappanoor 08.01 12.255982 79.015196 Groundnut 

28 11/04/2016 Atthiyandhal road 08.11 12.243122 79.007214 Groundnut 

29 11/04/2016 Devanandal 08.28 12.265187 79.009978 Groundnut 

30 11/04/2016 Paliapattu 09.04 12.280667 79.007695 Groundnut 

31 11/04/2016 Vasoor 10.58 12.485022 79.116029 Groundnut 

32 11/04/2016 Keelkovalaimedu 02.01 12.558310 79.534471 Groundnut 

33 11/04/2016 Keelkovalaimedu 02.10 12.556368 79.539175 Groundnut 

34 11/04/2016 Puthur 04.02 12.426093 79.504722 Groundnut 

35 11/04/2016 Sanjeevirayan pettai 05.53 12.413674 79.314014 Groundnut 

36 11/04/2016 Kunthalampattu 06.16 12.363806 79.263631 Groundnut 

37 11/04/2016 Erumpundi 06.34 12.330794 79.238224 Groundnut 

38 11/04/2016 Erumpundi 06.41 12.314077 79.236959 Groundnut 

39 11/04/2016 Mekalur 06.53 12.264624 79.226987 Groundnut 

40 12/04/2016 Tindivanam  07.07 12.212747 79.669543 Groundnut 

41 12/04/2016 Endiyur 08.16 12.197063 79.681723 Groundnut 

42 12/04/2016 Endiyur 08.28 12.201015 79.683162 Groundnut 

43 12/04/2016 Mariyamangalam 09.01 12.230407 79.708463 Groundnut 

44 12/04/2016 Nolambur 09.42 12.253718 79.730477 Groundnut 

45 12/04/2016 Eappakkam 09.57 12.269941 79.743944 Groundnut 

46 12/04/2016 Kambur 10.43 12.296935 79.760438 Groundnut 



S.No. Date Village Time Latitude Longitude Land use 

47 12/04/2016 Avanipur 10.57 12.279366 79.809350 Groundnut 

48 12/04/2016 Nallur 11.18 12.246802 79.826471 Groundnut 

49 12/04/2016 Nerkunnam 11.27 12.229536 79.815432 Groundnut 

50 12/04/2016 Ulagapuram 11.52 12.165214 79.763134 Groundnut 

51 12/04/2016 Kiliyanur 12.20 12.105762 79.742008 Groundnut 

52 12/04/2016 Semangalam 01.12 12.069286 79.710646 Groundnut 

53 12/04/2016 Thazhuthali 01.38 12.082946 79.647766 Groundnut 

54 12/04/2016 V. Chithamur 04.43 11.992155 79.281995 Groundnut 

55 12/04/2016 Arakandanallur 04.56 11.988111 79.238246 Groundnut 

56 12/04/2016 Kanakanandhal 05.30 11.934875 79.170418 Groundnut 

57 12/04/2016 Vadiyankuppam 05.42 11.919440 79.152208 Groundnut 

58 12/04/2016 Padiyandhal 05.56 11.896331 79.126536 Groundnut 

59 12/04/2016 Agaram 12.46 12.084496 79.718819 Groundnut 

60 12/04/2016 Agaram 12.46 12.083370 79.717923 Groundnut 

61 12/04/2016 Kadaganur 04.46 11.993849 79.269378 Groundnut 

62 12/04/2016 Arakandanallur 05.00 11.987574 79.232481 Groundnut 

63 18/11/2015 Putthiyandhal 9.30 12.19629 79.07024 Rice 

64 18/11/2015 Manalurpettai  10.00 12.14508 79.07661 Forest 

65 18/11/2015 Putthiyandhal 9.46 12.17678 79.07227 Sugarcane 

66 18/11/2015 Pavupattu 10.13 12.11518 79.06509 Sugarcane 

67 05/11/2015 Kadaladi 3.45 12.41105 78.97597 Rice 

68 10/04/2016 Ettipatti, Harur 5.43 12.08967 78.44775 Mango 

69 10/04/2016 Theerthamalai 6.09 12.10097 78.54736 Forest 

70 10/04/2016 Theerthamalai 6.31 12.08415 78.63159 Forest 



S.No. Date Village Time Latitude Longitude Land use 

71 11/04/2016 Satthanur Dam 6.58 12.18328 78.86434 Forest 

72 11/04/2016 Satthanur 6.44 12.20245 78.89014 Sugarcane 

73 11/04/2016 Kanchi 10.15 12.38928 78.95511 Rice 

74 11/04/2016 Parvathiagaram 10.24 12.41001 78.975 Rice 

75 11/04/2016 Sozhavaram 10.42 12.4361 79.04275 Rice 

76 11/04/2016 Thatchambadi 11.45 12.4815 79.27827 Rice 

77 11/04/2016 Idayankulatthur 11.57 12.46647 79.32696 Rice 

78 11/04/2016 Thiruvaganallur 12.18 12.53083 79.33507 Rice 

79 11/04/2016 Randham 12.38 12.57623 79.31472 Casuarina 

80 11/04/2016 Aagaram 12.58 12.61036 79.32101 Rice 

81 11/04/2016 Thellur 02.23 12.53537 79.57225 Rice 

82 11/04/2016 Settikulam 03.37 12.41212 79.52852 Rice 

83 11/04/2016 Desur 04.17 12.43205 79.4798 Rice 

84 11/04/2016 Esakolatthur 04.55 12.44396 79.43785 Rice 

85 11/04/2016 Sanjeevirayan pettai 05.44 12.42661 79.32631 Rice 

86 11/04/2016 Sanjeevirayan pettai 05.49 12.41906 79.3176 Sugarcane 

87 11/04/2016 Unnamanandhal 06.04 12.39328 79.29562 Sugarcane 

88 11/04/2016 Avalurpettai 06.29 12.33189 79.23863 Sugarcane 

89 12/04/2016 Vetlapuram 08.53 12.23725 79.69081 Rice 

90 12/04/2016 Annambakkam 10.50 12.28833 79.79041 Barren land 

91 12/04/2016 Avanipur 11.07 12.27756 79.82907 Rice 

92 12/04/2016 Pudhukuppam 12.05 12.12132 79.75364 Rice 

93 12/04/2016 Vikravandi 02.55 12.02698 79.54144 Sugarcane 

94 12/04/2016 Alathur 03.26 11.9477 79.46905 Sugarcane 



S.No. Date Village Time Latitude Longitude Land use 

95 12/04/2016 Alathur 03.37 11.94357 79.45986 Rice 

96 12/04/2016 Perumbakkam 04.15 11.94165 79.4345 Rice 

97 12/04/2016 Arakandanallur 04.58 11.98763 79.23756 Sugarcane 

98 12/04/2016 Kallakurichi 07.00 11.73027 78.97864 Rice 

99 12/04/2016 Avanipur 10.55 12.28541 79.81171 Water body 

100 12/04/2016 Avanipur 11.06 12.28155 79.83069 Rice 

101 12/04/2016 Agaram 12.47 12.07994 79.71436 Rice 

102 12/04/2016 Agaram 12.47 12.07906 79.71351 Rice 

103 12/04/2016 Vinayagapuram 01.16 12.05833 79.70959 Tapioca 

104 12/04/2016 Salai 02.20 12.07975 79.55317 Rice 

105 12/04/2016 Alathur 03.20 11.94983 79.47286 Rice 

106 12/04/2016 Alathur 03.22 11.94699 79.47005 Barren land 

107 12/04/2016 Alathur 03.22 11.94815 79.46831 Banana 

108 12/04/2016 Chitteripattu 06.30 11.80183 79.06452 Eucalyptus 

 



APPENDIX IX 

Groundnut map validation confusion matrix for Salem and Namakkal districts 

Point 

ID 
Date Time 

Latitude 

(Y) 

Longitude 

(X) 

Groundnut 

(1 for yes) 

Non-

Groundnut  

(1 for yes) 

Non 

Groundnut 

class 

Map 

value 
Map class 

Groundnut-

Groundnut? 

Groundnut-

non 

Groundnut? 

Non 

Groundnut-

Groundnut? 

Non 

Groundnut-

non 

Groundnut? 

Groundnut Points 

1 26-06-2015 9.26 11.571426 77.856563 1 0  0 Groundnut 0 1 0 0 

2 26-06-2015 11.35 11.809098 77.970682 1 0  1 Groundnut 1 0 0 0 

3 26-06-2015 12.09 11.77172 78.003294 1 0  1 Groundnut 1 0 0 0 

4 26-06-2015 12.17 11.756645 78.020592 1 0  1 Groundnut 1 0 0 0 

5 26-06-2015 1.04 11.655283 77.957917 1 0  1 Groundnut 1 0 0 0 

6 26-06-2015 1.22 11.623707 77.958709 1 0  1 Groundnut 1 0 0 0 

7 26-06-2015 2.00 11.546713 78.017546 1 0  1 Groundnut 1 0 0 0 

8 26-06-2015 2.09 11.541459 78.033784 1 0  1 Groundnut 1 0 0 0 

9 26-06-2015 3.15 11.510652 78.097157 1 0  0 Groundnut 0 1 0 0 

10 26-06-2015 3.49 11.43309 78.156064 1 0  1 Groundnut 1 0 0 0 

11 26-06-2015 4.04 11.382642 78.161031 1 0  1 Groundnut 1 0 0 0 

12 26-06-2015 4.14 11.360763 78.165834 1 0  1 Groundnut 1 0 0 0 

13 26-06-2015 4.36 11.295544 78.167221 1 0  0 Groundnut 0 1 0 0 

14 26-06-2015 6.16 11.259429 78.100833 1 0  0 Groundnut 0 1 0 0 

15 26-06-2015 6.24 11.266464 78.089792 1 0  0 Groundnut 0 1 0 0 

16 26-06-2015 6.29 11.268051 78.087769 1 0  0 Groundnut 0 1 0 0 

17 26-06-2015 6.39 11.29385 78.051275 1 0  1 Groundnut 1 0 0 0 

18 26-06-2015 6.43 11.297486 78.048509 1 0  0 Groundnut 0 1 0 0 

19 26-06-2015 6.49 11.316942 78.033453 1 0  1 Groundnut 1 0 0 0 

20 26-06-2015 6.56 11.33709 77.998696 1 0  1 Groundnut 1 0 0 0 

21 26-06-2015 7.02 11.341351 77.97494 1 0  1 Groundnut 1 0 0 0 
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ID 
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Latitude 

(Y) 
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(X) 
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(1 for yes) 
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22 26-06-2015 7.08 11.35617 77.951266 1 0  1 Groundnut 1 0 0 0 

23 23-05-2015 1.11 11.414363 77.937111 1 0  1 Groundnut 1 0 0 0 

24 23-05-2015 1.36 11.444336 77.959987 1 0  1 Groundnut 1 0 0 0 

25 23-05-2015 2.23 11.473452 78.002817 1 0  1 Groundnut 1 0 0 0 

26 23-05-2015 3.35 11.509074 78.032101 1 0  1 Groundnut 1 0 0 0 

27 23-05-2015 12:00 11.514806 78.035464 1 0  1 Groundnut 1 0 0 0 

28 23-05-2015 04:19 11.546494 78.061454 1 0  1 Groundnut 1 0 0 0 

29 23-05-2015 10:33 11.56 78.012161 1 0  1 Groundnut 1 0 0 0 

30 23-05-2015 13:12 11.564265 78.013356 1 0  1 Groundnut 1 0 0 0 

31 23-05-2015 00:14 11.564216 78.014321 1 0  1 Groundnut 1 0 0 0 

32 07-06-2015 04:48 11.646526 78.056082 1 0  1 Groundnut 1 0 0 0 

33 07-06-2015 12:57 11.652846 78.065313 1 0  1 Groundnut 1 0 0 0 

34 07-06-2015 03:07 11.657795 78.061124 1 0  1 Groundnut 1 0 0 0 

35 07-06-2015 07:40 11.651394 78.045709 1 0  1 Groundnut 1 0 0 0 

36 08-07-2015 07:12 11.330955 77.924786 1 0  1 Groundnut 1 0 0 0 

37 08-07-2015 13:12 11.33001 77.924838 1 0  1 Groundnut 1 0 0 0 

38 08-07-2015 06:43 11.332088 77.930249 1 0  1 Groundnut 1 0 0 0 

39 08-07-2015 01:26 11.322477 77.920182 1 0  1 Groundnut 1 0 0 0 

40 08-07-2015 01:12 11.330754 77.921886 1 0  1 Groundnut 1 0 0 0 

41 08-10-2015 02:09 11.437659 77.863974 1 0  0 Groundnut 0 1 0 0 

42 08-10-2015 05:31 11.426982 77.862792 1 0  1 Groundnut 1 0 0 0 

43 08-10-2015 04:48 11.331562 77.921435 1 0  0 Groundnut 0 1 0 0 

44 08-10-2015 9.5 11.330589 77.922949 1 0  1 Groundnut 1 0 0 0 

45 08-10-2015 10.12 11.343268 77.93054 1 0  0 Groundnut 0 1 0 0 

46 08-10-2015 10.30 11.338799 77.984533 1 0  1 Groundnut 1 0 0 0 
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47 07-06-2015 12.23 11.65165 78.0526 0 1 Barren land 0 Non Groundnut 0 0 0 1 

48 26-06-2015 9.12 11.532157 77.853182 0 1 Coconut 0 Non Groundnut 0 0 0 1 

49 26-06-2015 9.21 11.562509 77.858512 0 1 Rock mine 0 Non Groundnut 0 0 0 1 

50 26-06-2015 9.46 11.572192 77.831997 0 1 Water body 0 Non Groundnut 0 0 0 1 

51 26-06-2015 10.04 11.619307 77.840124 0 1 Green gram 0 Non Groundnut 0 0 0 1 

52 26-06-2015 10.16 11.657946 77.853195 0 1 Green gram 1 Non Groundnut 0 0 1 0 

53 26-06-2015 10.37 11.719214 77.876635 0 1 Coconut 0 Non Groundnut 0 0 0 1 

54 26-06-2015 10.43 11.737434 77.877517 0 1 Mango 0 Non Groundnut 0 0 0 1 

55 26-06-2015 10.48 11.744788 77.87869 0 1 Mango  0 Non Groundnut 0 0 0 1 

56 26-06-2015 11.02 11.772549 77.89775 0 1 Cassava 0 Non Groundnut 0 0 0 1 

57 26-06-2015 11.1 11.788316 77.909922 0 1 Coconut 0 Non Groundnut 0 0 0 1 

58 26-06-2015 11.41 11.803532 77.976495 0 1 Green gram 0 Non Groundnut 0 0 0 1 

59 26-06-2015 12.03 11.774166 77.998834 0 1 Cowpea 0 Non Groundnut 0 0 0 1 

60 26-06-2015 12.31 11.722653 78.015184 0 1 Sugarcane 0 Non Groundnut 0 0 0 1 

61 26-06-2015 12.37 11.717334 77.998231 0 1 Barren land 0 Non Groundnut 0 0 0 1 

62 26-06-2015 12.47 11.696175 77.971781 0 1 Bus stand 0 Non Groundnut 0 0 0 1 

63 26-06-2015 12.54 11.678604 77.967864 0 1 Sorghum 0 Non Groundnut 0 0 0 1 

64 26-06-2015 1.19 11.625432 77.959846 0 1 Green gram 1 Non Groundnut 0 0 1 0 

65 26-06-2015 1.49 11.544846 78.02284 0 1 Cassava 0 Non Groundnut 0 0 0 1 

66 26-06-2015 2.55 11.526237 78.062273 0 1 Water body 0 Non Groundnut 0 0 0 1 

67 26-06-2015 2.59 11.525769 78.067918 0 1 Sugarcane 0 Non Groundnut 0 0 0 1 

68 26-06-2015 3.04 11.52537 78.072058 0 1 Bhendi 0 Non Groundnut 0 0 0 1 

69 26-06-2015 3.21 11.506508 78.106485 0 1 Cassava 0 Non Groundnut 0 0 0 1 

70 26-06-2015 3.28 11.499337 78.123559 0 1 Sorghum 0 Non Groundnut 0 0 0 1 
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(X) 

Groundnut 

(1 for yes) 

Non-

Groundnut  

(1 for yes) 

Non 

Groundnut 

class 

Map 

value 
Map class 

Groundnut-

Groundnut? 

Groundnut-

non 

Groundnut? 

Non 

Groundnut-

Groundnut? 

Non 

Groundnut-

non 

Groundnut? 

71 26-06-2015 3.37 11.484827 78.154129 0 1 Sugarcane 0 Non Groundnut 0 0 0 1 

72 26-06-2015 4.27 11.338568 78.171082 0 1 F. Sorghum 1 Non Groundnut 0 0 1 0 

73 26-06-2015 6.19 11.259842 78.100051 0 1 Barren land 0 Non Groundnut 0 0 0 1 

74 23-05-2015 12.4 11.383536 77.895415 0 1 Built up 0 Non Groundnut 0 0 0 1 

75 23-05-2015 4.18 11.546922 78.061131 0 1 Coconut 0 Non Groundnut 0 0 0 1 

76 23-05-2015 4.28 11.549778 78.064821 0 1 Sugarcane 0 Non Groundnut 0 0 0 1 

77 23-05-2015 4.41 11.552852 78.065612 0 1 Coconut 0 Non Groundnut 0 0 0 1 

78 23-05-2015 6.49 11.563661 78.011286 0 1 Built up 0 Non Groundnut 0 0 0 1 

79 07-06-2015 11.57 11.657487 78.066011 0 1 F. Sorghum 0 Non Groundnut 0 0 0 1 

80 07-06-2015 12.04 11.656966 78.078078 0 1 Onion 0 Non Groundnut 0 0 0 1 

81 07-06-2015 12.23 11.651655 78.052604 0 1 Barren land 0 Non Groundnut 0 0 0 1 

82 07-06-2015 12.57 11.689038 77.977486 0 1 Water body 0 Non Groundnut 0 0 0 1 

83 07-06-2015 1.13 11.711443 77.956167 0 1 Green gram 0 Non Groundnut 0 0 0 1 

84 07-06-2015 1.38 11.721674 78.013681 0 1 Green gram 0 Non Groundnut 0 0 0 1 

85 08-07-2015 10.05 11.378019 77.894136 0 1 Built up 0 Non Groundnut 0 0 0 1 

86 08-10-2015 11.00 11.280741 78.074415 0 1 F. Sorghum 0 Non Groundnut 0 0 0 1 

87 08-10-2015 11.03 11.280638 78.073568 0 1 Prosopis 0 Non Groundnut 0 0 0 1 

88 08-11-2015 12.00 11.149297 78.325211 0 1 Prosopis 0 Non Groundnut 0 0 0 1 

 

 

 

 



APPENDIX X 

Groundnut map validation confusion matrix for Tiruvannamalai and Villupuram districts 

Point ID Date Time 
Latitude 

(Y) 

Longitude 

(X) 

Groundnut 

(1 for yes) 

Non 

Groundnut 

(1 for yes) 

Non Groundnut 

class 

Map 

value 
Map class 

Groundnut-

Groundnut? 

Groundnut-

Non 

Groundnut? 

Non 

Groundnut-

Groundnut? 

Non 

Groundnut-

Non 

Groundnut? 

Groundnut Points 

1 18-11-2015 4.2 12.410479 79.3095620 1 0   1 Groundnut 1 0 0 0 

2 18-11-2015 3.33 12.292294 79.1136350 1 0   1 Groundnut 1 0 0 0 

3 18-11-2015 3.25 12.276867 79.0994690 1 0   1 Groundnut 1 0 0 0 

4 18-11-2015 1.21 12.373645 78.9801640 1 0   1 Groundnut 1 0 0 0 

5 18-11-2015 11.4 12.194233 78.9350330 1 0   1 Groundnut 1 0 0 0 

6 18-11-2015 11.2 12.155403 78.9728890 1 0   0 Groundnut 0 1 0 0 

7 18-11-2015 11.14 12.151058 78.9788290 1 0   0 Groundnut 0 1 0 0 

8 18-11-2015 10.52 12.128628 79.0089180 1 0   1 Groundnut 1 0 0 0 

9 18-11-2015 10.3 12.102401 79.0298490 1 0   1 Groundnut 1 0 0 0 

10 05-11-2015 10.3 12.223407 79.0189860 1 0   1 Groundnut 1 0 0 0 

11 05-11-2015 10.4 12.212892 79.0153840 1 0   1 Groundnut 1 0 0 0 

12 05-11-2015 10.45 12.212895 79.0167650 1 0   1 Groundnut 1 0 0 0 

13 05-11-2015 11 12.224921 79.0021710 1 0   1 Groundnut 1 0 0 0 

14 05-11-2015 11.3 12.156439 78.9361090 1 0   1 Groundnut 1 0 0 0 

15 05-11-2015 11.33 12.189638 78.9668590 1 0   0 Groundnut 0 1 0 0 



Point ID Date Time 
Latitude 

(Y) 

Longitude 

(X) 

Groundnut 

(1 for yes) 

Non 

Groundnut 

(1 for yes) 
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Map 
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16 05-11-2015 12.2 12.158204 78.9305080 1 0   1 Groundnut 1 0 0 0 

17 05-11-2015 12.45 12.170157 78.9409050 1 0   1 Groundnut 1 0 0 0 

18 05-11-2015 1.35 12.287627 78.8265780 1 0   1 Groundnut 1 0 0 0 

19 05-11-2015 1.58 12.234930 78.7918510 1 0   1 Groundnut 1 0 0 0 

20 05-11-2015 2.1 12.261953 78.8091320 1 0   1 Groundnut 1 0 0 0 

21 05-11-2015 3.56 12.415488 78.9831430 1 0   1 Groundnut 1 0 0 0 

22 05-11-2015 4 12.428494 79.0050690 1 0   1 Groundnut 1 0 0 0 

23 05-11-2015 4.15 12.445679 79.0623690 1 0   1 Groundnut 1 0 0 0 

24 05-11-2015 4.4 12.406068 79.1032580 1 0   1 Groundnut 1 0 0 0 

25 11-04-2016 6.53 12.190039 78.9281310 1 0   1 Groundnut 1 0 0 0 

26 11-04-2016 7.21 12.188118 79.0196470 1 0   1 Groundnut 1 0 0 0 

27 11-04-2016 8.01 12.255982 79.0151960 1 0   0 Groundnut 0 1 0 0 

28 11-04-2016 8.11 12.243122 79.0072140 1 0   1 Groundnut 1 0 0 0 

29 11-04-2016 8.28 12.265187 79.0099780 1 0   0 Groundnut 0 1 0 0 

30 11-04-2016 9.04 12.280667 79.0076950 1 0   1 Groundnut 1 0 0 0 

31 11-04-2016 10.58 12.485022 79.1160290 1 0   1 Groundnut 1 0 0 0 

32 11-04-2016 2.01 12.558310 79.5344710 1 0   1 Groundnut 1 0 0 0 

33 11-04-2016 2.1 12.556368 79.5391750 1 0   0 Groundnut 0 1 0 0 

34 11-04-2016 4.02 12.426093 79.5047220 1 0   1 Groundnut 1 0 0 0 



Point ID Date Time 
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(Y) 

Longitude 

(X) 

Groundnut 

(1 for yes) 
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Groundnut 

(1 for yes) 
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35 11-04-2016 5.53 12.413674 79.3140140 1 0   1 Groundnut 1 0 0 0 

36 11-04-2016 6.16 12.363806 79.2636310 1 0   1 Groundnut 1 0 0 0 

37 11-04-2016 6.34 12.330794 79.2382240 1 0   1 Groundnut 1 0 0 0 

38 11-04-2016 6.41 12.314077 79.2369590 1 0   1 Groundnut 1 0 0 0 

39 11-04-2016 6.53 12.264624 79.2269870 1 0   1 Groundnut 1 0 0 0 

40 12-04-2016 7.07 12.212747 79.6695430 1 0   0 Groundnut 0 1 0 0 

41 12-04-2016 8.16 12.197063 79.6817230 1 0   1 Groundnut 1 0 0 0 

42 12-04-2016 8.28 12.201015 79.6831620 1 0   1 Groundnut 1 0 0 0 

43 12-04-2016 9.01 12.230407 79.7084630 1 0   1 Groundnut 1 0 0 0 

44 12-04-2016 9.42 12.253718 79.7304770 1 0   1 Groundnut 1 0 0 0 

45 12-04-2016 9.57 12.269941 79.7439440 1 0   1 Groundnut 1 0 0 0 

46 12-04-2016 10.43 12.296935 79.7604380 1 0   1 Groundnut 1 0 0 0 

47 12-04-2016 10.57 12.279366 79.8093500 1 0   1 Groundnut 1 0 0 0 

48 12-04-2016 11.18 12.246802 79.8264710 1 0   1 Groundnut 1 0 0 0 

49 12-04-2016 11.27 12.229536 79.8154320 1 0   1 Groundnut 1 0 0 0 

50 12-04-2016 11.52 12.165214 79.7631340 1 0   1 Groundnut 1 0 0 0 

51 12-04-2016 12.2 12.105762 79.7420080 1 0   1 Groundnut 1 0 0 0 

52 12-04-2016 1.12 12.069286 79.7106460 1 0   1 Groundnut 1 0 0 0 

53 12-04-2016 1.38 12.082946 79.6477660 1 0   0 Groundnut 0 1 0 0 



Point ID Date Time 
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(Y) 

Longitude 

(X) 

Groundnut 

(1 for yes) 

Non 

Groundnut 

(1 for yes) 

Non Groundnut 
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Non 
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54 12-04-2016 4.43 11.992155 79.2819950 1 0   1 Groundnut 1 0 0 0 

55 12-04-2016 4.56 11.988111 79.2382460 1 0   1 Groundnut 1 0 0 0 

56 12-04-2016 5.3 11.934875 79.1704180 1 0   1 Groundnut 1 0 0 0 

57 12-04-2016 5.42 11.919440 79.1522080 1 0   0 Groundnut 0 1 0 0 

58 12-04-2016 5.56 11.896331 79.1265360 1 0   1 Groundnut 1 0 0 0 

59 12-04-2016 12.46 12.084496 79.7188190 1 0   1 Groundnut 1 0 0 0 

60 12-04-2016 12.46 12.083370 79.7179230 1 0   1 Groundnut 1 0 0 0 

61 12-04-2016 4.46 11.993849 79.2693780 1 0   1 Groundnut 1 0 0 0 

62 12-04-2016 5 11.987574 79.2324810 1 0   1 Groundnut 1 0 0 0 

Non-Groundnut Points 

63 18-11-2015 9.3 12.196290 79.0702400 0 1 Rice 0 Non Groundnut 0 0 0 1 

64 18-11-2015 10 12.145080 79.0766100 0 1 Forest 0 Non Groundnut 0 0 0 1 

65 18-11-2015 9.46 12.176780 79.0722700 0 1 Sugarcane 0 Non Groundnut 0 0 0 1 

66 18-11-2015 10.13 12.115180 79.0650900 0 1 Sugarcane 0 Non Groundnut 0 0 0 1 

67 05-11-2015 3.45 12.411050 78.9759700 0 1 Rice 0 Non Groundnut 0 0 0 1 

68 10-04-2016 5.43 12.089670 78.4477500 0 1 Mango  0 Non Groundnut 0 0 0 1 

69 10-04-2016 6.09 12.100970 78.5473600 0 1 Forest 0 Non Groundnut 0 0 0 1 

70 10-04-2016 6.31 12.084150 78.6315900 0 1 Forest 0 Non Groundnut 0 0 0 1 

71 11-04-2016 6.58 12.183280 78.8643400 0 1 Forest 0 Non Groundnut 0 0 0 1 



Point ID Date Time 
Latitude 

(Y) 

Longitude 

(X) 

Groundnut 

(1 for yes) 

Non 

Groundnut 

(1 for yes) 

Non Groundnut 

class 

Map 

value 
Map class 

Groundnut-

Groundnut? 

Groundnut-

Non 

Groundnut? 

Non 

Groundnut-

Groundnut? 
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72 11-04-2016 6.44 12.202450 78.8901400 0 1 Sugarcane 0 Non Groundnut 0 0 0 1 

73 11-04-2016 10.15 12.389280 78.9551100 0 1 Rice 0 Non Groundnut 0 0 0 1 

74 11-04-2016 10.24 12.410010 78.9750000 0 1 Rice 0 Non Groundnut 0 0 0 1 

75 11-04-2016 10.42 12.436100 79.0427500 0 1 Rice 0 Non Groundnut 0 0 0 1 

76 11-04-2016 11.45 12.481500 79.2782700 0 1 Rice 0 Non Groundnut 0 0 0 1 

77 11-04-2016 11.57 12.466470 79.3269600 0 1 Rice 0 Non Groundnut 0 0 0 1 

78 11-04-2016 12.18 12.530830 79.3350700 0 1 Rice 0 Non Groundnut 0 0 0 1 

79 11-04-2016 12.38 12.576230 79.3147200 0 1 Casuarina 0 Non Groundnut 0 0 0 1 

80 11-04-2016 12.58 12.610360 79.3210100 0 1 Rice 0 Non Groundnut 0 0 0 1 

81 11-04-2016 2.23 12.535370 79.5722500 0 1 Rice 0 Non Groundnut 0 0 0 1 

82 11-04-2016 3.37 12.412120 79.5285200 0 1 Rice 0 Non Groundnut 0 0 0 1 

83 11-04-2016 4.17 12.432050 79.4798000 0 1 Rice 1 Non Groundnut 0 0 1 0 

84 11-04-2016 4.55 12.443960 79.4378500 0 1 Rice 0 Non Groundnut 0 0 0 1 

85 11-04-2016 5.44 12.426610 79.3263100 0 1 Rice 1 Non Groundnut 0 0 1 0 

86 11-04-2016 5.49 12.419060 79.3176000 0 1 Sugarcane 0 Non Groundnut 0 0 0 1 

87 11-04-2016 6.04 12.393289 79.2956290 0 1 Sugarcane 1 Non Groundnut 0 0 1 0 

88 11-04-2016 6.29 12.331896 79.2386350 0 1 Sugarcane 0 Non Groundnut 0 0 0 1 

89 12-04-2016 8.53 12.237250 79.6908100 0 1 Rice 0 Non Groundnut 0 0 0 1 

90 12-04-2016 10.5 12.288330 79.7904100 0 1 Barren land 0 Non Groundnut 0 0 0 1 
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91 12-04-2016 11.07 12.277560 79.8290700 0 1 Rice 0 Non Groundnut 0 0 0 1 

92 12-04-2016 12.05 12.121320 79.7536400 0 1 Rice 0 Non Groundnut 0 0 0 1 

93 12-04-2016 2.55 12.026980 79.5414400 0 1 Sugarcane 0 Non Groundnut 0 0 0 1 

94 12-04-2016 3.26 11.947700 79.4690500 0 1 Sugarcane 0 Non Groundnut 0 0 0 1 

95 12-04-2016 3.37 11.943570 79.4598600 0 1 Rice 0 Non Groundnut 0 0 0 1 

96 12-04-2016 4.15 11.941650 79.4345000 0 1 Rice 0 Non Groundnut 0 0 0 1 

97 12-04-2016 4.58 11.987630 79.2375600 0 1 Sugarcane 0 Non Groundnut 0 0 0 1 

98 12-04-2016 7 11.730270 78.9786400 0 1 Rice 0 Non Groundnut 0 0 0 1 

99 12-04-2016 10.55 12.285410 79.8117100 0 1 Water body 0 Non Groundnut 0 0 0 1 

100 12-04-2016 11.06 12.281550 79.8306900 0 1 Rice 0 Non Groundnut 0 0 0 1 

101 12-04-2016 12.47 12.079940 79.7143600 0 1 Rice 0 Non Groundnut 0 0 0 1 

102 12-04-2016 12.47 12.079060 79.7135100 0 1 Rice 0 Non Groundnut 0 0 0 1 

103 12-04-2016 1.16 12.058330 79.7095900 0 1 Tapioca 0 Non Groundnut 0 0 0 1 

104 12-04-2016 2.2 12.079750 79.5531700 0 1 Rice 0 Non Groundnut 0 0 0 1 

105 12-04-2016 3.2 11.949830 79.4728600 0 1 Rice 0 Non Groundnut 0 0 0 1 

106 12-04-2016 3.22 11.946990 79.4700500 0 1 Barren land 0 Non Groundnut 0 0 0 1 

107 12-04-2016 3.22 11.948150 79.4683100 0 1 Banana 0 Non Groundnut 0 0 0 1 

108 12-04-2016 6.3 11.801830 79.0645200 0 1 Eucalyptus 0 Non Groundnut 0 0 0 1 

 



APPENDIX XI - A 

View of Weather file in DSSAT V4.5 

 

 



APPENDIX XI - B 

View of generated soil file in DSSAT V4.5 

 

 



APPENDIX XI - C 

Major Soil Series present in monitoring locations across study area 

Field ID Village Latitude Longitude Soil Series 

1 Palayapuliyampatti 11.3291 77.9241 Elavamalai 

2 Pudhupuliyampatti 11.3313 77.9223 Elavamalai 

3 Kakapalayam 11.5467 78.0178 Irugur 

4 Kandarkulamanickam 11.5405 78.0336 Irugur 

5 Velagavundmpatti 11.2684 78.0876 Palladam 

6 Manathi 11.2934 78.0522 Tolurpatti 

7 Morepalayam 11.4413 77.9698 Perundurai 

8 Nochokarakadu 11.4264 77.8637 Vellalur 

9 Pudhuchatram 11.3607 78.1664 Tolurpatti 

10 Pothiyampatti 11.8095 77.9693 Katripatti 

11 Pappambadi 11.6551 77.9573 Chickarasampalaiyam 

12 Moongathur 11.6244 77.9591 Katripatti 

13 Vellapillakovil 11.5105 78.0972 Palladam 

14 Keelravandavadi 12.1564 78.9361 Meyyur 

15 Manmalai 12.2877 78.8266 Perapperi 

16 Thandrampattu 12.1702 78.941 Kollattur 

17 Arkandanallur 11.9875 79.234 Meyyur 

18 Padiyandhal 11.8961 79.1264 Vetavalam 

19 Tindivanam 12.2126 79.6695 Vetavalam 

20 Melsevalambadi 12.4103 79.3098 Vetavalam 



APPENDIX XI - D 

View of Genetic co-efficient file in DSSAT V4.5 

  

 

 

 



APPENDIX XI – E 

View of Management file in DSSAT V4.5 

  



 

 

 

 

 

 

 

 

 

 

 

 

Plates 



 

a) CO 6 

 

b) TMV 7 

 

c) VRI 2 

Plate.1. Different groundnut varieties grown in study area 



 

Plate.2. Visiting farmer’s field and collection of data in Tiruchengodu, Namakkal  

 

Plate.3. Collecting Ground-truth in farmer’s field at Santhiyur, Salem 

 



 

Plate.4. Collecting Ground-truth in farmer’s field at Thandrampet, Tiruvannamalai 

 

Plate.5. Collecting Ground-truth in farmer’s field at Thirukkovilur, Villupuram 
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ABSTRACT

The present investigation was carried out in contiguous
area of groundnut in adjoining Tiruvannamalai and
Villupuram districts of Tamil Nadu State. Simulation
models, such as the DSSAT (Decision Support System for
Agrotechnology Transfer) Crop System Models are often
used to characterize, develop and assess field crop
production practices. We have developed methods to use
the DSSAT family of crop growth models to understand
causes of spatial yield variability, conduct yield gap analysis
for factors that limit yield, and estimate the economic
consequences of moving from uniform to spatially variable
management. In this study, one of the DSSAT Cropping
System Model, CROPGRO-Peanut, was employed to
characterize groundnut (Arachis hypogae) yield during
2015 under rainfed condition at different locations of
Tiruvannamalai and Villupuram districts. The DSSAT
software was used to forecast the groundnut yield for rabi
season in study area. To simulate the groundnut yield
DSSAT required data sets of crop growth and management,
daily weather data and soil data. Crop management data
were obtained from farmers’ fields which were located in
Tiruvannamalai and Villupuram districts. The simulated
yield values during 2015 agreed well with the observed
data (85%) from the farmer’s field experiments with R2

value of 0.81 (yield) and RMSE value of 275 kg ha”1. These
results indicate that plant growth, development and yield
of groundnut can be simulated efficiently using DSSAT
crop growth model spatially.

Key words DSSAT, groundnut, simulation

Crop models have been developed and used
worldwide as operational or strategic research and decision
support tools in crop production and resources
management. Simulation models are useful tools in deciding
the best possible management options for optimum growth
and yield of any crop against available climatic variables
along with soil and water inputs. Crop growth simulation
models, like Decision Support System for Agrotechnology
Transfer (DSSAT) (Jones et al. 1998), have been widely
applied to assess climate change impacts on cropping
systems and agricultural production. Daily maximum and
minimum temperature, precipitation and incident solar
radiation are required as minimum climate input to drive
crop models.

Groundnut (Arachis hypogaea L.) is an important
oilseed crop grown by small and marginal farmers. In India

the crop is mainly grown under rainfed conditions during
the main rainy season (June–October). As climate change
is becoming more intense and demand for edible oil and
vegetable protein in India is increasing, the groundnut
production needs to be improved to meet the future demand.
The CROPGRO-Peanut model was developed by Boote et
al., (1998) at University of Florida and University of Georgia
on the basis of IBSNAT (International Benchmark Sites
Network for Agro-technology Transfer). It is a dynamic
computer model that simulates crop growth and
development and pod and seed yield for peanut (Boote et
al., 1998; Jones et al., 2003). DSSAT is a popular crop model
that is used worldwide for modeling growth and yield of 30
different crops including rice under given soil and daily
weather conditions. Crop simulation models are valuable
tools for evaluating the potential effects of environmental,
biological and management factors on crop growth and
development. They have been evaluated and used for many
soil and environmental conditions across the world and
have in the past, been successfully used in yield predictions
(Jagtap and Jones, 2002), irrigation planning for crops
(Behera and Panda, 2009), optimization of irrigation water
use (Fortes et al., 2005; Bulatewicz et al., 2009).

For future yield prediction, it is required to calibrate
and validate the DSSAT model by adjusting the cultivar
genetic coefficients. For groundnut, several genetic
coefficients are available and they describe the genotype
and environmental interactions. Validated DSSAT model
can be used to predict future groundnut yields with
different soil profiles and weather conditions and find the
suitable adaptation measures for increasing yields (Jones
et al., 2003). Therefore this study was conducted to identify
the changes of groundnut yield and growth in
Tiruvannamalai and Villupuram districts, Tamilnadu under
different field locations and weather conditions using
DSSAT model. In the present investigation, the CROPGRO-
Peanut model was used to simulate yield at spatial level for
groundnut cv. TMV-7 and VRI-2 in rainfed areas of study
area.

MATERIALS AND METHODS

Crop yield simulation using crop simulation model
(DSSAT)

Decision Support System for Agrotechnology
Transfer (DSSAT) is a micro-computer software product
that combines crop, soil and weather data-bases into
standard formats for access by crop model and application
programs. The user can then simulate multi-year outcomes
of crop management strategies for different crops at any
location in the world and hence the DSSAT was used in the

mailto:devedeva07@gmail.com
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present investigation. Fig.1. describes components of
DSSAT crop simulation model.

(a) Weather file
The daily weather data on maximum temperature (°C),

minimum temperature (°C), solar radiation
(MJ m-2 day-1) and rainfall (mm) for the year 2015 and

2016 (upto March) for the study area collected from
Automatic Weather Stations (AWS) and regular
observatories situated at the study districts was used to
create weather file for running CROPGRO-Peanut model.

DSSAT model requires weather data for the entire
growing season of the crop to predict the yield. In this
study, yield estimates are given during North East Monsoon
(Tiruvannamalai and Villupuram districts). The actual
weather data during the crop growth period was used for
simulations. For the missing data, the weather data is
generated either from the historical mean or using analogue
technique, wherein, the past years weather that behaved
similar to the current season was chosen to fill the missing
or erroneous data.

(b) Soil data file
Soil information for creating the soil files was obtained

from the Remote Sensing and Geographical Information
system Department of TNAU. The profile details as required
in DSSAT are extracted from the above remote sensing
database using ArcGIS (GIS Tool) and were fed into S-Build
tool in DSSAT to create soil file.

(c) Experimental detail file
This file documents the inputs to the models for the

seven fields from the study area to be stimulated. Details of

fields are listed in Table.2. The details of the experimental
conditions and field characteristics such as weather station
name, soil, and field description details, initial soil, water
and inorganic nitrogen conditions, planting geometries,
irrigation and water management, fertilizer management
details, organic residue application, chemical applications,
tillage operations, environmental modifications, harvest
management, simulation controls (specification of
simulation options e.g. starting dates, on/off options for
water and nitrogen balances, symbiosis) and output options
are given in the experimental file.

(d) Estimation of genetic co-efficient groundnut
Model calibration or parameterization is the adjustment

of genetic parameters so that simulated values compare
well with observed values. Data obtained from the
experiments were used to estimate genetic parameters. The
genetic coefficients that influence the occurrence of
developmental stages in the CROPGRO-Peanut model
embedded in DSSAT model were derived iteratively, by
manipulating the relevant coefficients to achieve the best
possible match between the simulated and observed
number of days to the phonological events and grain yield
at harvest. A detailed description of the cultivar coefficients
used by CROPGRO-Peanut for TVM-7 and VRI-2 is
presented in Table.1.
(e) Model calibration, validation and future yield

simulations
Three input files were created to run the DSSAT model

using collected data.
a. Weather file: ‘Weatherman’ program in DSSAT and

collected weather data

Fig. 1. Diagram of database, application, and support software components and their use with crop models for
applications in DSSAT
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b. Soil file: ‘S Build’ program in DSSAT and soil data
c. Experimental data file: ‘X Build’ program in DSSAT

and crop management data
The model was calibrated using collected data from

the experimental trials in rabi season 2015 through
determination of genetic coefficient for both TMV-7 and
VRI-2 varieties with spatial analysis mode in DSSAT. The
model was validated using the experimental data in rabi
season 2015 by comparing the observed results with
simulated results. Yields from trials (hereafter referred to as
observed) conducted at farmers fields in rainfed areas of
Tiruvannamalai and Villupuram districts were considered
as observed data.

RESULT AND DISCUSSION
DSSAT’s spatial analysis option which allowed

multiple locations run with the different initial conditions
was used to simulate the effects of soil profile and climate
variability on groundnut yields for the seven locations to
study the impact of virtual cultivars and management
scenarios using baseline weather data.

Model calibration and validation
DSSAT does not offer any automated procedures for

calibration. Changes to parameters of the model in order to
calibrate it for specific conditions must be done one-by-
one, manually. Quantitative comparisons of model output

to observations required the data to be exported to an
analysis package. In order to accomplish this in a yield
simulation, this process was repeated for every management
zone. Likewise, to validate a calibrated model, running the
model and analysing the output quantitatively was a
tedious exercise when more than one homogeneous unit
were simulated. The data collected from the field experiments
was used for model evaluation.

Model calibration and validation were described as
different ways of model evaluation by Otter-Nacke et al.
(1987). Specific cultivar coefficients for the genotypes used
in this experiment was not in the list of genotypes available
with the model, therefore, evaluation was done using basic
information for the cultivar coefficients provided with the
model. The cultivar coefficients were adjusted, until main
growth and development stages were simulated within 10%
of the measured values. Simulated observed comparisons
were made for growth and development parameters, the
purpose being sensitivity analyses of the model and
improvement of the coefficients. Coefficients were increased
or decreased using a small step if needed.

Models were tested by validation using Root mean
square error (RMSE) and R2 which allow comparative
assessment of model performance at particular location
whereas, linear regression line expressed model stability
across variable field conditions. The DSSAT model

Code Description TMV-7 VRI-2 

CSDL Critical Short Day Length below which reproductive development progresses with no 
day length effect (for short-day plants) (hour) 11.84 11.84 

PPSEN Slope of the relative response of development to photoperiod with time (positive for 
short day plants) (1/hour) 0.00 0.00 

EM-FL Time between plant emergence and flower appearance (R1)  
(photothermal days). 16.40 16.40 

FL-SH Time between first flower and first pod (R3) (photo thermal days) 7.00 7.00 

FL- SD Time between first flower and first seed (R5) (photo thermal days) 17.00 16.50 

SD-PM Time between first seed (R5) and physiological maturity (R7) stages (photothermal 
days) 62.00 62.00 

FL-LF Time between first flower (R1) and end of leaf expansion  
(photothermal days) 66.00 66.00 

LFMAX Maximum leaf photosynthesis rate at 300 C, 350 vpm CO2, and high light 
(mgCO2/m2/s) 1.23 1.34 

SLAVR Specific leaf area of cultivar under standard growth conditions (cm2/g) 245.00 220.00 

SIZLF Maximum size of full leaf (three leaflets) (cm2) 16.00 16.00 

XFRT Maximum fraction of daily growth that is partitioned to seed + shell 0.80 0.76 

WTPSD Maximum weight per seed (g) 0.360 0.38 

SFDUR Seed filling duration for pod cohort at standard growth conditions (photothermal days) 29.00 29.00 

SDPDV Average seed per pod under standard growing conditions (#/pod) 1.55 1.55 

PODUR Time required for cultivar to reach final pod load under optimal conditions 
(photothermal days) 16.00 15.00 

THRSH The maximum ratio of (seed/(seed+shell)) at maturity. Causes seed to stop growing as 
their dry weights increase until shells are filled in a cohort.(Threshing percentage) 78.00 74.00 

SDPRO Fraction protein (g) per g seed 0.27 0.27 

SDLIP Fraction oil (g) per g seed 0.51 0.51 

 

Table. 1. Genetic coefficients for groundnut cv. TMV-7 and VRI-2 at study area condition
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performed well to simulate groundnut growth and yield.
However, predicted results derived from DSSAT model were
much better to observed ones for many of the parameters.
The simulated groundnut yields were at the range of 1796
to 2519 kg /ha for VRI-2 and 1806 to 2340 kg ha-1 for TMV-7
across the locations in the study area whereas the observed
yields were at 1450 to 221 kg ha-1. In case of yields the mean
agreement was found to be 86 % with a range of 82-92%.
The spatial analysis of weather and soil profile impacts on
groundnut indicates that similar trends were observed in
almost all the regions of Tiruvannamalai and Villupuram
districts with a decline in yields with two locations and
increase with five locations. (Fig. 1&2). The overall
prediction of grain yield by model was reported satisfactory
by Singh et al., (2008) with R2 values (0.88). The R2 and
RMSE values, respectively, of the regression between the
simulated (using the two assimilation variables method)
and measured yield were 0.81 and 275 kg ha”1.

Crop models provide a mechanistic way to estimate
the interaction of spatial differences in soil properties and
weather parameters on yield variability within a field. Once
calibrated to simulate the spatial yield variability between
different fields, crop models are a powerful tool to develop
risk management strategies that can balance economic risk
incurred by the producer with environmental risks that
impact society. This study developed and tested a tool for
investigating the spatial implications of climate change on
groundnut production in Tiruvannamalai and Villupuram
districts. The CROPGRO-Peanut model that has been
calibrated and validated for many groundnut growing
regions of the world, was found to estimate the spatial
responses to various genetic and agronomic management
practices under different weather and soil profile
conditions precisely as indicated from higher agreement
(85%) between simulated and observed yields with high R2

values(0.81).

Table.2. Details of experiment farmers’ fields

S.No. District Field/Village Latitude Longitude Cultivar 
Simulated 

Yield 
(kg/ha) 

Observed 
Yield 

(kg/ha) 
1 Tiruvannamalai Keelravandambadi 12.156439 78.936109 VRI-2 1796 1450 
2 Tiruvannamalai Manmalai 12.287727 78.826555 VRI-2 2519 2187 
3 Tiruvannamalai Thandrampattu 12.170185 78.941016 VRI-2 1825 1710 
4 Villupuram Arkandanallur 11.987534 79.233982 TMV-7 2340 2221 
5 Villupuram Padiyandhal 11.896108 79.126351 TMV-7 2088 1660 
6 Villupuram Tindivanam 12.212579 79.669527 TMV-7 1806 1535 
7 Villupuram Melsevalambadi 12.410316 79.309791 TMV-7 2005 1885 

 

Fig.1. Validation of simulated (DSSAT) and observed data (Field)
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ABSTRACT

Drought is considered as one of the main forces driving
current and likely future ecosystem productivity loss and
vegetation mortality. Therefore, understanding where,
when and which vegetation type would be most vulnerable
to drought is a prerequisite for developing effective
adaptation strategies. The drought vulnerability pattern
is closely associated with land use types. Generally,
cropland, wetland and saline and alkaline land showed a
much higher vulnerability, as vegetation growing on them
had low ground cover and was more affected by accumulated
drought conditions. The agricultural drought monitoring,
assessment as well as management can be done more
accurately with the help of geospatial techniques like
Remote Sensing and Geographical Information System.
This paper presents the drought by using the Normalized
Difference Vegetation Index (NDVI) and Land Surface
Temperature (LST) during 2015 over the Salem and
Namakkal districts of Tamil Nadu (India) which fall in a
plateau region and located between 11° 00' and 12° 00'
North latitude and 77° 40' and 78° 50' of East longitude.
The Combination of NDVI and LST derived from MODIS
satellite data, provides very useful information for
agricultural drought monitoring and early warning
system for the farmers. The correlation between LST and
NDVI are highly negative. The correlation between LST
and NDVI of Salem and Namakkal districts are -0.528
and -0.647, respectively for the year 2015.

Key words  Drought, Vulnerability assessment, LST and
NDVI

Periods of persistent abnormally dry weather, known
as droughts, can produce a serious agricultural, ecological,
or hydrological imbalance. Drought harshness depends
upon the degree of moisture deficiency, duration and the
size of the affected area. Drought may be broadly defined
as a long-term average condition of balance between
precipitation and evapotranspiration in a particular area,
which also depends on the timely onset of monsoon as
well as its potency (Wilhite and Glantz, 1985). Drought is
expected to get worsen with predicted climate change and
the aerial extent of drought-affected regions are projected
to increase, which could have adverse effects on agriculture
(IPCC, 2007); Mir et al. (2012).

Combined and interacting influences of climate
change and its variations in rainfall and temperature
conditions directly affects Indian agriculture mainly plant

and animal production. It indirectly affects agricultural
production through changes in soil, water, pests and
diseases incidence making agriculture more vulnerable. The
main factor for agricultural vulnerability is drought. Drought
always starts with the lack of precipitation, but may (or
may not, depending on how long and severe it is) affect
soil moisture, streams, groundwater, ecosystems and human
beings.

The role of remote sensing and GIS in agricultural
drought detection, assessment and management is
becoming crucial these days as they provide up to date
information in different range of spatial and temporal scales
which is hectic and time consuming when done by traditional
methods such as Field survey, and sampling questionnaires,
(Thenkabail et al. (2004), Arshad et al. (2008) and Wardlo
et al. (2012)). Satellite-derived drought indices typically
use observations in multispectral bands, each of which
provides different information about surface conditions.
Since droughts are naturally associated with vegetation
state and cover, vegetation indices (VIs) are commonly used
for this purpose (Tucker and Choudhury, 1987), utilizing
data in the visible red (R), near infrared (NIR), and the
shortwave infrared bands. Some drought indices are based
on observations in the thermal infrared (TIR) spectral region,
which conveys information about vegetation health and
soil moisture status. The remote sensing based monitoring
of drought can get frequent and sustained information on
the surface characteristics over time, space and direction.
It can provide data sources for real-time and dynamic
monitoring of drought (Zhang et al. 2011).

Different kinds of vegetation indices are available,
but Normalized Difference Vegetation Index (NDVI) is the
simplest, efficient and commonly used (Liu and Huete,
1995). NDVI was first suggested by Tucker in 1979 as an
index of vegetation health and density. Using the NDVI
data of the region, the changes in vegetation cover present
in the area and also the trend in occurrence of agricultural
drought can be studied Sruthi and Aslam (2014). This index
is not free from defects such as data error during rainy
season, saturation effect on dense vegetation, etc. So it is
always better to merge it with other parameters to ensure
more accuracy. It is seen that there exist a strong correlation
between surface temperature and NDVI. LST is a good
indicator of the energy balance at the Earth’s surface which
can provide important information about the surface
physical properties and climate. Goetz (1997) reported that
the negative correlation between LST and NDVI,

Zhengming et al. (2004), observed at several scales
(25 m2 to 1.2 km2), was largely due to changes in vegetation

mailto:devedeva07@gmail.com
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Fig. 1. Study area

Fig. 2. (a) Mean NDVI of Namakkal District Fig. 2. (b) Mean LST (ºC) of Namakkal District

cover and soil moisture, and indicted that the surface
temperature can rise rapidly with water stress. Thus it can
be noticed that the ratio of LST/NDVI increases during
times of drought.

This study focus on assessment of agricultural
drought in Salem and Namakkal districts of Tamil Nadu
through the analysis of vegetation stress caused by the
lower precipitation, higher temperature etc., using the multi
temporal MODIS derived NDVI and LST.

MATERIALS AND METHODS

Study Area
The study area is located in North Western zone of

Tamilnadu (India) situated between 11° 00' and 12° 00' North
latitude and 77° 40' and 78° 50' of East longitude (Fig.1).
The districts are drought prone with annual mean rainfall is
845 mm. South West and North East monsoon season
contributes 338 and 341 mm respectively (Jegankumar et
al. 2012). Major agricultural crops are groundnut, rice,
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Fig. 3. NDVI change over LST (ºC) for Namakkal District

Fig. 4. (a) Mean NDVI of Salem District Fig. 4. (b) Mean LST (ºC) of Salem District

Fig. 5. NDVI change over LST (ºC)  for Salem District

sugarcane, sorghum, cotton, tapioca and pulses.

NDVI Data
The study uses a time series 8-day composite of

MODIS 250-m NDVI data (MOD09Q1 V005) spanning from
January to December, 2015 (10 composite periods) were
acquired. The NDVI data for MODIS tile h25v07 was
extracted for each composite period, reprojected to the WGS
84 projection and sequentially stacked to create the 8-date

NDVI time series for the year 2015. The label of this product
is “MODIS/Terra Surface Reflectance 8-Day L3 Global 250m
SIN Grid V005”. The spatial resolution of this product is
approximately 250 m, and atmospheric correction has already
been carried out (Vermote and Vermeulen, 1999). This 8-
days average data is delivered as a composite product called
MOD09 which took the best surface spectral-reflectance
within this period with the least effect of aerosols and other
atmospheric ingredients.
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Fig.6. (a) LST (ºC) for March, 2015 Fig.6. (b) NDVI for March, 2015

Fig.6. (a) LST (ºC) for November, 2015 Fig.6. (b) NDVI for November, 2015
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LST Data
The MODIS derived MOD11A2 Land Surface

Temperature and Emissivity (LST/E) products provided at
per-pixel temperature and emissivity values was used. This
level-3 MODIS global Land Surface Temperature (LST) and
Emissivity data were composed from the daily 1 kilometer
LST product (MOD11A1) with a spatial resolution of 1km
and temporal resolution of 8 days in sinusoidal projection
represented as the average values of clear-sky LSTs during
8-day period.

MATERIALS AND METHODS
Satellite remote sensors can quantify fraction of the

photosynthetically active radiation which is absorbed by
vegetation. Since green vegetation had strong absorption
of spectrum in red region and high reflectance in infrared
region, vegetation index was thus generally formulated as
various combinations of red and infrared bands. The
region’s absorption and reflection of photosynthetically
active radiation over a given period of time was used to
characterize the health of the vegetation there, relative to
the calculation of NDVI, for the study area.

NDVI = (NIR - RED) / (NIR + RED)
Where, ëNIR and ëRED are the reflectance in the near

infrared (NIR) and Red bands respectively.
One 8-day composite MODIS dataset comprised

NDVI, quality, acquisition image, acquisition table and
metadata files. From the global data, the study area was
being subset and NDVI data has been analysed. NDVI and
quality data were used to calculate the NDVI metrics. NDVI
values ranged from “-0.2” to “1.0”, where valid NDVI range
was from “0.0” to “1.0” (Zhu et al. 2013). Time-series NDVI
profile of the study area was derived from the calculation of
NDVI using the MODIS NDVI data for the year 2015 and
used to generate the Maximum, Minimum and Average
monthly NDVI values for the year.

LST of the study area for the year 2015 calculated
from the MOD11A2 data. In this data, temperatures were
extracted in Kelvin with a view-angle dependent algorithm
applied to direct observations. This method yielded 1 K
accuracy for materials with known emissivities. The digital
numbers (DN) of LST data was converted to degree Celsius
by using following formula,

Temperature = (DN * 0.02) - 273.15 ºc
Monthly mean temperature of the region was

calculated and the values were correlated with monthly NDVI
values in order to understand changes in vegetation growth
with respect to rainfall and temperature, thereby indicating
intensity of agricultural drought.

RESULTS AND DISCUSSION
The mean values of NDVI and LST of study area for

each month for the year of 2015 were computed a line graph
(Fig. 2 (a), 2 (b), 4 (a) and 4 (b). Figures 3 and 5 represents
the line graph obtained for mean LST and mean NDVI of
Namakkal and Salem districts for every month during 2015.
The Figures 4 (a) and 4 (b) shows the LST and NDVI maps
of Namakkal and Salem districts for the year 2015. It was
clearly noticed that both the parameters were inversely
proportional to each other. When the temperature was

greater, the NDVI value was lesser which indicated a decline
in vegetation density. To be specific higher NDVI values of
>0.4 was recorded during May to October, 2015 in Namakkal
district, corresponding to the groundnut crop growth
period. During this period LST values were found to be
decreasing.  The decrease in soil moisture due to lack or
untimely onset of rainfall along with the increased
temperature caused the agricultural drought to be severe.
Similar results of inverse relationship between NDVI and
LST has also been reported by Sruthi and Aslam, (2015).
The NDVI values were lesser during the hottest months of
March and April whereas October and November showed
higher vegetation density. A clearly high negative
correlation was observed between LST and NDVI. The
correlation between LST and NDVI of Salem and Namakkal
districts were -0.528 and -0.647, respectively for the year
2015. (Fig.3 and Fig. 5)

Satellite remote sensing technology is widely used
for monitoring crops and agricultural drought assessment.
Different vegetation indices are available today, but none
of the major indices is considered inherently superior to
the rest in all circumstances, some indices are better suited
than others for certain uses. NDVI due to its simple
calculation is largely used for the vegetation studies in a
regional as well as global level. It is always advisable to
combine the NDVI along with other parameters to get better
results. The LST when correlated with the vegetation index,
can be used to detect the agricultural drought of a region,
as demonstrated in this work.
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