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Abstract

A germplasm assembly of 128 finger millet genotypes from 18 countries was evaluated for

seedling-stage phosphorus (P) responses by growing them in P sufficient (Psuf) and P defi-

cient (Pdef) treatments. Majority of the genotypes showed adaptive responses to low P con-

dition. Based on phenotype behaviour using the best linear unbiased predictors for each

trait, genotypes were classified into, P responsive, low P tolerant and P non-responsive

types. Based on the overall phenotype performance under Pdef, 10 genotypes were identi-

fied as low P tolerants. The low P tolerant genotypes were characterised by increased shoot

and root length and increased root hair induction with longer root hairs under Pdef, than

under Psuf. Association mapping of P response traits using mixed linear models revealed

four quantitative trait loci (QTLs). Two QTLs (qLRDW.1 and qLRDW.2) for low P response

affecting root dry weight explained over 10% phenotypic variation. In silico synteny analysis

across grass genomes for these QTLs identified putative candidate genes such as Ser-Thr

kinase and transcription factors such as WRKY and basic helix-loop-helix (bHLH). The

QTLs for response under Psuf were mapped for traits such as shoot dry weight (qHSDW.1)

and root length (qHRL.1). Putative associations of these QTLs over the syntenous regions

on the grass genomes revealed proximity to cytochrome P450, phosphate transporter and

pectin methylesterase inhibitor (PMEI) genes. This is the first report of the extent of pheno-

typic variability for P response in finger millet genotypes during seedling-stage, along with

the QTLs and putative candidate genes associated with P starvation tolerance.
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Introduction

The major plant nutrient, Phosphorus (P) has a plentiful distribution in the soil, but is the

most limiting nutrient, because of predominant P fixation [1–3], reaching up to 80% as or-

ganic P [4]. P is a unique nutrient element which forms the building block of most of the life

bio-molecules. P nutrition has recently received strong focus for two contrasting reasons [5];

P deficiency is constantly on the rise worldwide, and excess P application in some areas has

become a major socioeconomic concern due to environmental pollution [5]. Additionally,

source of P fertilizers, natural rock phosphate, is declining at an alarming rate due to continu-

ous mining [6] and may get exhausted in near future [7]. This has resulted in intermittent esca-

lation of P fertilizer cost, pushing the poor and marginal farmers in the developing countries

to resort to skipping of P fertilization [8].

To sustain agriculture under P scarce systems, it is imperative that P application should be

reduced in the future. This may help in reducing P fertilizer requirement of crops, while help-

ing to prevent environmental degradation [9] due to excess applied P, as well as in reducing

anti-nutritional factors such as Phytate accumulation in grains that reduces the bioavailability

of mineral elements such as Ca2+, Mg2+, Zn2+, Fe2+, Cu2+ and Mn2+ [10]. This can be achieved

by improving the genetic potential of crop varieties to grow under P minimal conditions [11,

12], as well as to reduce grain phytate content [13–15].

Small millets, the earliest domesticated crop species of the world are heterogeneous group

of cereals, often grown under harsher environments and subsist millions of poor people. They

are nutritionally rich, genetically diverse and are recognised as crops for new green revolution

[16] in the wake of impending climate change [17]. The finger millet (Eleusine coracana L.

Gaertn.), a food staple of millions [18], is spread in about 12% of the global small millet area,

across arid to semi-arid tropics of Asia and Africa [19]. It is rich in calcium content in contrast

to rice and wheat [20]. Because of its nutritional prominence, genetic improvement of finger

millet is a major breeding objectives worldwide [21]. Currently, this crop is being improved

for calcium accumulation [22, 23] and nitrogen use efficiency [24–27]. However, efforts to

improve tolerance to P deficiency have received less attention [28].

Using the recent molecular marker technology, development of genetic maps [29, 30] and

mapping quantitative trait loci (QTLs) for traits such as morphological, agronomic and blast

tolerance [31–34] has been reported in finger millet. Although reports from other cereals are

available for P starvation tolerance [35, 36], no information on this is so far available in finger

millet. P starvation response is a complex trait, and therefore, improvement of crop yield

under low soil available P has been challenging due to various factors such as forms of P, in-

trinsic soil factors and environmental conditions. Despite this lacunae, P-related QTLs were

reported by linkage mapping in rice [6], but only one QTL, Pup1 (Phosphorus uptake 1) [37] is

used for improving P starvation tolerance [12]. Pup1 is located on chromosome 12 in rice,

which harbours the key candidate gene OsPSTOL1 coding for a Ser/Thr kinase protein that

plays a key physiological role associated with crown root primordia in young seedlings en-

hancing early root growth and development [38]. Although Pup1 does impart P starvation

tolerance, it does not hold any P homeostasis related genes, implying that P homeostatic path-

ways are not the regulators for P starvation tolerance. Perhaps the external signals that drive

the root system development do play a significant role in boosting P uptake from P limited

soils [11].

Association mapping (AM) is a recent technique, to identify genomic regions in crops

where linkage based mapping is still a challenge [39]. AM for different agro-morphological

traits, protein and tryptophan contents and blast tolerance has been reported in finger millet

[31–34]. AM uses linkage disequilibrium (LD) at the adjacent loci to locate the genomic
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regions associated with a trait, originated from evolutionary recombinations. By using genetic

diversity and population structure along with their genetic relations, false discovery of marker

trait association is controlled [40, 41]. Among other small millets, recently, QTLs for yield and

other agronomic traits has been reported from foxtail millet [41] and for drought tolerance in

pearl millet [42].

For improving P deficiency tolerance, identification of response traits that drive yield under

P starved situations is crucial such as those related to the root system [43–45]. For instance,

manipulation of root system architecture improves P foraging [36, 46] as observed in Arabidop-
sis thaliana, wherein increase in root hair density was reported under P starvation [47]. It is well

established that a vigorous root system with enhanced nutrient uptake capabilities can lead to

yield increase under optimized fertilizer management [6]. The major root architecture related

traits for which QTLs have been reported are in crops such as rice [8, 48], corn [49, 50], soybean

[51], wheat [52, 53], and common bean [54]. Nevertheless, target traits for low P tolerance can

be different for different crops [55], as seen in the case of onion, wherein root system architec-

ture seldom gets altered on exposure to P deficiency [56]. Since early crop establishment is cru-

cial in crop success under nutrient limited conditions, the present study was aimed at mapping

P deficiency responses in the finger millet genotypes at seedling stage. The germplasm assembly

has diverse origin and had a distinct population structure [57]. The genotype responses were

tested under two contrasting P levels and the microsatellite based genetic fingerprints were asso-

ciated to identify marker-phenotype association.

Materials and methods

Plant material

One hundred and twenty-eight finger millet genotypes from major centres of diversity (India,

Uganda, Zimbabwe, Germany, Malawi, USA, Nepal, Kenya, Burundi, Nigeria, Malaya, Mal-

dives, Tanzania, Somalia, Tanganyika, Ethiopia, Senegal and Sri Lanka) were collected from

the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), University of

Agricultural Sciences (UAS) Bangalore, and Tamil Nadu Agricultural University (TNAU),

Coimbatore. The details of 128 genotypes of finger millet and their origins can be found in

Ramakrishnan et al. [58].

Phenotyping under contrasting P levels

The genotypes were grown in horticultural grade perlite filled plastic pots (23 cm diameter at

top and 14 cm diameter at bottom with 20 cm depth) for 30 days. Two levels of P were main-

tained, the Pdef containing 0.3 ppm of P (10 μM of KH2PO4) and the Psuf having 9.3 ppm of P

(300 μM of KH2PO4) in nutrient solution. The remaining composition of the nutrient solution

was kept constant, and contained 0.1 mM KCl, 0.1 mM K2SO4, 2.0 mM Ca(NO3)2, 0.5 mM

MgSO4, 0.5 μM MnCl2, 0.5 μM ZnCl2, 0.2 μM CuCl2, 10 μM H3BO3, 0.1 μM Na2MoO4 and 0.1

mM Fe-EDTA prepared and diluted using demineralised water [59]. The pH of the solutions

was adjusted to 6.0 using 0.1 M H2SO4 or 0.1 M NaOH. The perlite filled pots were irrigated

with 500 ml of nutrient solution once in four days. The freshly harvested seeds of the genotypes

were surface sterilised by immersing in 0.5% sodium hypochlorite (NaOCl) solution for 3 min-

utes. The seeds were then washed thoroughly using demineralised water several times and

sown directly in the pots. After germination, the seedlings were thinned to maintain a popula-

tion of 15 seedlings per pot. The experiment was conducted in the greenhouse at Entomology

Research Institute, Loyola College, Chennai, during March-June 2015. The green house was

maintained with 27 ± 2˚C and 85% relative humidity under well-lit and aerated conditions.

Three replications were used for each genotype for two P concentrations.

Association mapping in finger millet for low P tolerance
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Three 15-day old uniform sized seedlings from each pot were carefully extracted with intact

roots, washed with demineralised water and blotted dry using lint free filter paper. After sepa-

rating shoot and root portions using a fine scissor, the shoots and roots were then placed sepa-

rately in paper sleeves and dried for 72 hours in a hot air oven at 65˚C. At the end, shoot and

root dry weights (SDW and RDW respectively) were determined. After 30 days of growth,

three uniform looking seedlings per pot were carefully extracted intact, and the roots were

cleaned free of perlite granules and washed with demineralised water. For the measurement of

root length (RL), the roots were blotted dry using lint free filter paper and carefully stretched

over a stainless steel ruler using forceps and the length was measured. Similarly, shoot length

(SL) was also measured immediately after extraction from the pots as the distance between col-

lar and shoot tip. Root portions of the seedlings were separated and preserved in de-ionized

water immediately after the measurement of SL and RL. Root hair measurements were based

on the method earlier described [60] with some minor modifications. To improve the preci-

sion, pot culture was repeated thrice. Since the data were consistent across the repeats, average

data was used for further analysis.

About 5 cm from the primary root cap was chosen for root hair analysis in all genotypes.

The root portions were placed on a stage micrometre with a scale (10 μm) and observed in a

Stereo Microscope (Leica Stereo Microscope; Wetzlar, Germany) with 10x magnification. The

images were captured with the help of a digital camera (Sony CyberShot DSC-WX200). The

length of root hairs and density were counted using ImageJ Scientific Software [61].

Statistical analyses

Descriptive statistics were computed for phenotypic traits under both Pdef and Psuf treatments.

Analysis of variance (ANOVA) was performed using a mixed model, in which genotypes were

taken as fixed and the P levels as random. Based on the traits that had significant genotype x P

level interaction, using the best linear unbiased predictors (BLUP) for genotype-by-P level

means, genotype behaviours under P levels were empirically grouped as P responsive, low P

tolerant and P non-responsive for individual traits. The frequency of genotypes that deviated

from the upper tail value critical difference was taken as P responsive, and those deviated from

the lower tail value were taken as low P tolerant, based on the relative deviation computed in

percentage based on the performance under Pdef. The intermediate behaviours shown by the

genotypes falling within the upper and lower tail limits were taken as P non-responsive. The

shoot and root traits that were taken on 15 days after germination were dropped from further

analysis to ascertain low P tolerants. Since the major focus of the study was on identification of

low P tolerance of genotypes after 30 days of germination, a graphical comparison of list of

genotypes showing low P tolerant behaviour for the traits SL, RL, RHD and RHL, was done

using a Venn diagram drawn in VennPainter 1.2.0 [62]. Correlation coefficients were also

determined among different traits using the BLUPs.

Genotyping and population structure

The genomic DNA was extracted from young leaves of finger millet genotypes using Doyle

and Doyle [63] method slightly modified by Ramakrishnan et al. [58]. Genotyping was per-

formed using 72 polymorphic SSR markers designed from the finger millet accession PI

321125 through the random genomic libraries generated from theHindIII, SalI and PstI
restriction digests through probe hybridisation [29].

The genotyping data from the test accessions were analysed to determine the population

structure using a model-based Bayesian statistics implemented to subdivide genotypes into

genetic sub-populations (SPs) using the software STRUCTURE v.2.3.4 [64, 65]. No prior
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information was used to determine SPs and it had been expected that the population is struc-

tured, because of the diverse origin of the members of the panel. However, an admixture

model was assumed with correlated allele frequencies with implication of migration from a

common centre of origin. The proposed model was run by considering a population substruc-

ture (K) ranging from 1 to 10 with three independent runs per K. The model was run with

100000 Markov Chain Monte Carlo (MCMC) simulations [66] preceded by a burn-in length

of 100000 to bring in the unbiasedness of the starting point which is a representative of the

equilibrium distribution [67]. The optimum K was determined by an ad hoc statistic ΔKwhich

is a ratio (modal value) of the absolute value of the rate of change of the mean log likelihood,

LnP(K) between sequential K values to its standard deviation [68]. The K with tallest ΔK is

selected as the optimum K. Parsing of the results of Structure was done through the online ver-

sion of the program Structure Harvester web v0.6.94 [69].

Association mapping

The sub-population membership coefficients (inferred ancestry) of the genotypes for the three

significant sub-populations (k = 3) were used as the Q-matrix for AM. The finger millet geno-

types’ genetic relatedness was calculated as kinship by weighing identical by state (IBS) of the

common alleles among the accessions [70] through the software TASSEL v5.2 [71]. The geno-

types were scored as 2, 1, or 0 equal to the count of one of the alleles at that locus. The missing

genotypes were assigned using average genotype score. The score data estimated the relation-

ship matrix.

AM of genotype and phenotype data was performed to identify robust marker-trait associa-

tion using the software TASSEL v5.2, following mixed linear model (MLM) approach [71].

Since MLM method showed better false association control than general linear model (GLM)

method [72], the AM was restricted to MLM alone. The significant threshold for valid QTLs-

trait association was determined by applying a Bonferroni correction by dividing the alpha of

0.05 by the number of markers. The p-values lower than the computed threshold was used for

identifying valid QTLs [73]. In addition, a multi-locus mixed model (MLMM) association was

carried out using a forward step wise approach [74] to obtain consensus associations between

different methods. The analysis was performed using SVS v8.7 (GoldenHelix1 Software).

Cross genome synteny search

Since the whole genome sequence of finger millet is not yet available, we have used cross

genome synteny search for orthologous regions, an in silico comparative genomics approach,

to explore the identified QTLs for candidate gene references. Nucleotide basic local alignment

search tool (nBLAST) was carried across ten cereal genomes included in Phytozome v. 11.0 [75]

to carry out the sequence alignment search using the original finger millet genome sequences

from which the microsatellite markers have been sourced [29]. The original random genomic

library sequences corresponding to each QTL linked marker obtained from Dr Ketrien Devos,

University of Georgia, were used as the search key. The length of each library sequence was

1164 bp (UGEP19), 1260 bp (UGEP13), 1203 bp (UGEP68), and 1544 bp (UGEP90). BLAST

engines are designed to search for a minimum of 22 nucleotide sequences or 6 amino acid

sequences. Significant hits were taken based on maximum threshold; E-value of 0.01 was empir-

ically fixed during the search to pick potentially coding elements [76] for the full length of target

sequence. The sequence alignment hits obtained on the cereal genomes were located on the

chromosomes of corresponding species, and analysed for the presence of annotated candidate

gene sequences near the query sequence. The functions of such closely associated putative genes

were further analysed for their significance to P starvation response. To identify the biochemical
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pathway in which the candidate genes are involved, an extensive search was conducted in the

Kyoto Encyclopaedia of Genes and Genomes (KEGG, http://www.kegg.jp) database [77]. The

positive hits of the searched genes were related to P starvation response in the germplasm.

Results

Agro-morphological response under different P levels

All the genotypes germinated within 4–5 days of sowing in the perlite filled plastic pots both

under Pdef and Psuf treatments. ANOVA showed significant genotypic variation within each

level by single environment analysis, but combined (multi-environment) analysis revealed sig-

nificant genotype x P level interaction for all the traits, and non-significant interaction for geno-

type and P level effects for most of the traits excluding SDW, RL, RHD and RHL (Table 1). At

15 days after germination, Pdef had significantly lower values for SDW and RDW (Table 2).

However, after 30 days of germination, under Pdef, average SL and RHD increased while RL

decreased than under Psuf. Similarly, RHL was also higher under Pdef as compared to Psuf. On

single environment analysis, coefficient of variation under the P levels was high for all the traits.

The mean performance of all the genotypes under two P levels is provided in S1 Table.

The SDW recorded under Psuf showed the genotype IE2606 (15.3 mg) having highest dry

weight. This was followed by the genotype MR2 (14.4 mg). The mean dry weight among all the

genotypes was 4.51 (Table 2). On the other hand, under Pdef, the mean SDW recorded was

3.53 mg among all the genotypes, with IE3104 recording the highest dry weight of 8.3 mg. The

RDW also showed similar trend as SDW, having a range of 0.7–5.0 mg with a mean value of

1.9 mg among all the genotypes under Psuf. Under Pdef, RDW ranged between 0.7 and 4.2 mg

with a mean value of 1.7 mg. Four genotypes MR2 (5.0 mg), IE7018 (4.4 mg), IE2606 (4.2 mg)

and IE4734 (4.1 mg) recorded high RDW under Psuf while two genotypes IE5106 (4.2 mg) and

IE3104 (4.0 mg) showed higher RDW under Pdef (S1 Table). SDW showed significant positive

correlations with RDW, SL and RL under both the P levels, while RDW was found correlated

to SL alone.

The RL decreased significantly under Pdef with a mean length of 8.1 cm, as against 9.9 cm

under Psuf. SL was more under Pdef recording a mean of 8.4 cm, while the average SL under

Psuf level was 6.9 cm. The RL under Psuf ranged from 4.1 cm (IE3945) to 21.5 cm (MR2) with a

mean value of 9.9 cm, whereas under Pdef, RL values were in the range of 3.5 cm (KRI00701) to

17.9 cm (RAU8) with a mean of 8.1 cm per plant (Table 2). Other than RAU8, TCUM1 (17.6

Table 1. Analysis of variance for testing the significance for genotype, P level and interaction effects using linear mixed model.

Traits Phenotypic variance (fixed effect) Chi Square values (random effect)

Psuf Pdef Pooled P level Genotype x P level

SDW 15.06** 5.90** 4.09* 8.60** 77.26**

RDW 1.71** 0.98** 0.75* 2.90ns 32.50**

SL 24.49** 24.81** 3.88ns 2.65ns 234.06**

RL 20.51** 11.74** 4.08 ns 11.22** 133.53**

RHD 151.92** 122.98** 23.67* 15.16** 249.79**

RHL 17.84** 10.35** 0.90ns 23.34** 519.71**

ns, non-significant

*; significant at p<0.05

**, significant at p<0.01

SDW, shoot dry weight in g; RDW, root dry weight in g; SL, shoot length in cm; RL, root length in cm; RHD, root hair density per 10 μm primary root length;

RHL, root hair length in μm

https://doi.org/10.1371/journal.pone.0183261.t001
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cm) produced longer roots under Pdef. Psuf also supressed RL in genotype IE3945 (4.1 cm), fol-

lowed by IE3618 (4.8 cm), SVK-1 (5.4 cm) and each GPU-28 and VL149 (6.0 cm). Under Psuf,

only one genotype MR2 (21.5 cm) showed maximum RL, which also produced the longest

shoot (21.4 cm) under Psuf. Under Pdef, IE6350 produced shoot of 22.2 cm length (S1 Table).

The genotypes under Pdef produced more root hairs than under Psuf, which was observed

from high values for RHD. The RHD ranged from 7.7 to 39.7 with a mean value of 23.7 per

10 μm length of primary roots under Psuf as against the range of 15.3 to 48.7 with a mean value

of 31.0 under Pdef level (Table 2). Under Pdef level, MR6 (48.7), IE4491 (46.3), IE5066 (45.7)

and L5 (45.3) were the top genotypes that recorded highest RHD, while under Psuf, the geno-

type IE4816 (39.7) followed by APSKK1 (38.7) produced better response for RHD. The geno-

typic response for RHL was similar to that of RHD, where longer root hairs were produced

under Pdef than under Psuf (Fig 1). RHL ranged from 4.0 to 14.7 μm under Pdef with a mean

value of 9.6 μm, wherein RHL ranged from 2.3 to 14.7 μm with an average value of 7.4 μm

under Psuf. The genotype IE2821 recorded an RHL of 14.7 μm under Psuf, whereas IE7320 pro-

duced similar RHL under Pdef (S1 Table). There was no correlation between RHD and RHL.

For example, the genotype MR6 produced maximum RHD (48.6) but the highest RHL was

obtained in genotype IE7320 (14.7 μm). Similar trend was obtained for other genotypes.

Empirical classification of genotypes based on P response

Comparisons based on the relative deviation of the BLUPs of each genotype’s performance

under Pdef and Psuf treatments were done empirically to classify genotype behaviours as P

responsive, P non-responsive and low P tolerant (Table 3). In grouping based on SDW, there

were 89 P responsive genotypes and 18 low P tolerant followed by 21 P non-responsive ones.

For RDW, 79 P responsive genotypes, 30 low P tolerants and 19 P non-responsive genotypes

were identified.

The remaining four traits RL, SL, RHD and RHL observed after 30 days of germination

showed almost similar pattern in the genotype classification. As a general response behaviour

in several genotypes, SL, RHD and RHL increased while RL decreased under P starvation.

There were 32 P responsive genotypes that produced longer shoot under Psuf, 85 low P tolerant

ones which had longer shoots under Pdef and 11 P non-responsive genotypes, which did not

show significant variation in SL under both P levels (Table 3). For RL, there were 96 genotypes

that produced shorter root length under Pdef that were recognised as P responsive ones; and of

the remaining 32 genotypes, 22 produced longer roots under Pdef which were identified as low

P tolerant and remaining 10 as P non-responsive genotypes. Similarly, 17 P responsive geno-

types were identified that had higher RHD under Psuf, whereas 105 genotypes had high RHD

Table 2. Candidate traits variation under Psuf and Pdef treatments among 128 genotypes of finger millet.

Traits Psuf Pdef

Mean Range CV % SE Mean Range CV % SE

SDW (mg) 4.5 1.2–15.3 60.1 1.53 3.5 1.0–8.3 51.6 1.16

RDW (mg) 1.9 0.7–5.0 52.7 0.68 1.7 0.7–4.2 43.9 0.49

SL (cm) 6.9 2.5–21.4 47.7 1.56 8.4 4.5–22.2 39.5 1.58

RL (cm) 9.9 4.1–21.5 31.4 1.70 8.1 3.5–17.9 29.4 1.35

RHD 23.7 7.7–39.7 33.2 3.38 31.0 15.3–48.7 23.0 3.18

RHL (μm) 7.4 2.3–14.7 34.6 0.75 9.6 4.0–14.7 21.0 0.81

CV, coefficient of variation; SE, standard error; SDW, shoot dry weights; RDW, root dry weights; SL, shoot length; RL, root length; RHD, root hair density

per 10 μm primary root length; RHL, root hair length

https://doi.org/10.1371/journal.pone.0183261.t002
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under Pdef, while 6 of them did not show significant variation for RHD under both the P levels.

For RHL, 99 were identified as low P tolerant genotypes, 22 as P responsive and 7 as P non-

responsive genotypes (Table 3).

The graphical comparison of lists of genotypes that were low P tolerant for traits SL, RL,

RHD and RHL identified 12 common genotypes constituting 9.40% of the total genotypes that

were low P tolerant based on all the lists, those which produced higher values for all the traits

under Pdef (Fig 2). These 12 genotypes were identified as low P tolerant genotypes. The root

hair images of all the low P tolerant genotypes are shown in Fig 1. The remaining genotypes

shared between different list combinations (Table 4). Among these, there were large groups of

Fig 1. Root hair responses in the selected low P responding finger millet genotypes showing low and

high number of root hairs under Psuf (*) and Pdef (**) conditions respectively.

https://doi.org/10.1371/journal.pone.0183261.g001

Table 3. Genotype behavior classes based on the BLUPs for genotype x P level interaction response on different traits (The values in parenthesis

show membership percentage in each class).

Behaviour class SDW RDW SL RL RHD RHL

P responsive 89.00 (69.53) 79.00 (61.72) 32.00 (25.00) 96.00 (75.00) 17.00 (13.28) 22.00 (17.19)

Low P tolerant 18.00 (14.06) 30.00 (23.44) 85.00 (66.41) 22.00 (17.19) 105.00 (82.03) 99.00 (77.34)

P non-responsive 21.00 (16.41) 19.00 (14.84) 11.00 (8.59) 10.00 (7.81) 6.00 (4.69) 7.00 (5.47)

CD (p<0.05) 7.50 4.34 6.22 5.28 3.80 5.19

SE, standard error; SDW, shoot dry weight; RDW, root dry weight; RL, root length; RHD, root hair density; RHL, root hair length; CD, critical difference

https://doi.org/10.1371/journal.pone.0183261.t003
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43 genotypes that had high values for SL, RHD and RHL, among which 39 had low values for

RL under Pdef (S2 Table). The remaining four genotypes were either showing intermediate or

non-responding behaviour for RL.

Inter-trait associations

Interrelations of same trait between two P levels showed significant association only for few

traits such as SDW, RDW, RL and RHD (Table 5). No association for SL and RHL was found

between P levels. Across P levels, SDW was found positively and significantly correlated with

RDW and RL. Few other significant associations were observed only under Psuf, leaving no

other significant traits association under Pdef. Under Psuf, SDW was found correlated to RDW.

Similar were the associations of SDW with SL and RDW with SL and RL. SL was also found

related to RL; RL showed a significant negative association with RHL under Psuf.

Population structure

The population structure analysis indicated that the maximum ΔK value determined was K = 3

(Fig 3) which showed that the 128 finger millet genotypes broadly grouped into three SPs

(SP1, SP2 and SP3). SP1 was found to contain exotic germplasm prominently while SP2 was

Fig 2. Venn diagram comparing the genotype list based on low P tolerance exhibited for traits SL, RL, RHD and RHL. The graphical

comparison was analyzed based on genotypes’ performance for SL, RL, RHD and RHL under Pdef. The SDW and RDW were not used for graphical

comparison. The graphical comparison identified 12 (9.40%) genotypes as low P tolerants, which produced higher values for traits SL, RL, RHD

and RHL.

https://doi.org/10.1371/journal.pone.0183261.g002
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predominated with indigenous collections. The pattern of genetic differentiation between SPs

revealed that SP3 was admixture of the first two SPs (Fig 4). The genetic relationship showed

various confirmations for gene flow between SPs. The expected heterozygosity of the SP1 was

maximum (0.48) followed by SP2 and SP3. The membership proportions of SP1 and SP2 were

48 and 47% respectively, while SP3 had 5% of the population. The allele frequency divergence

between SP1 with SP2 and SP3 was 0.106 and 0.102 respectively, while SP2 and SP3 had diver-

gence of 0.002.

Identification of QTLs for P tolerance by association mapping

AM identified four QTLs (markers) associated with three candidate traits namely RDW under

Pdef and SDW and RL under Psuf (Table 6). No other trait was significantly associated with

marker data. The QTL, qLRDW.1 associated with RDW under Pdef was relatively stronger than

other QTLs, explaining 14.3% of the phenotype variation for this trait. This was associated

Table 4. Genotypes having low P tolerance responses with different combinations of traits for positive responses for all the traits.

Trait

combinations

Members Genotype

RHD, RHL, RL, SL 12 GPU45, IE5201, IE2871, IE7320, GPU66, HOSUR1, TCUM1, IE2034, SVK1, RAU8, VR708, IE3391

RHD, RL, SL 3 IE6326, IE3945, IE3475

RHL, RL, SL 2 IE6337, GPU28

RHD, RHL, SL 43 IE5106, IE2043, PR202, IE4057, IE2457, VL149, GPU46, IE6240, IE2589, VIJAYAWADA, ML365, IE6514, KRI00701,

IE4797, IE4622, PAIYUR2, IE5367, IE2437, IE2957, MR6, IE4545, IE5306, IE5817, IE4671, IE501, KM252, IE6082,

TRY1, L5, IE2042, IE5870, INDOF7, IE2572, IE4757, INDOF9, IE3470, IE6350, INDOF5, IE4491, IE4570, IE3045,

IE3392, IE5066

RHD, RHL, RL 4 IE6221, IE4646, CO11, IE3618

RHD, SL 9 IE4816, IE2911, IE2872, IE2790, THRVP, IE4121, IE5091, IE7079, IE4709

RHL, SL 1 CO14

RHL, RL 23 HR911, IE4673, MR2, IE4795, IE6473, IE5537, IE2217, IE3973, IE7018, GPU26, IE2606, IE2619, IE6059, IE2430,

IE4329, THRP1, KMR301, IE4497, IE518, TCHIN1, INDOF8, KRI1311, IE4028

RHD, RHL 5 IE2710, CO12, IE6537, IE1055, GPU48

SL 9 IE4734, CONO1, IE3614, IE6165, APSSK1, DPI00904, IE6421, HR374, CO9

RHD 5 IE2296, THRVPP, IE3721, IE2312, IE3317

RHL 12 GPU45, IE5201, IE2871, IE7320, GPU66, HOSUR1, TCUM1, IE2034, SVK1, RAU8, VR708, IE3391

SL, shoot length; RL, root length; RHD, root hair density per 10 μm primary root length; RHL, root hair length

https://doi.org/10.1371/journal.pone.0183261.t004

Table 5. Pearson’s correlations among the predicted trait means under Psuf (lower diagonal) and Pdef (upper diagonal) conditions. The diagonal

values (bold) are the correlations between the P levels.

Trait Pdef

SDW RDW SL RL RHD RHL

P
s
u

f

SDW 0.574* 0.619* 0.097 0.277* 0.124 0.060

RDW 0.784* 0.688* 0.081 0.182 0.078 0.029

SL 0.446* 0.421* 0.191 0.060 0.114 0.064

RL 0.387* 0.368* 0.447* 0.340* 0.090 0.006

RHD 0.089 0.141 0.059 -0.001 0.336* 0.198

RHL -0.035 0.034 -0.145 -0.230* -0.036 0.064

SDW, shoot dry weight; RDW, root dry weight; RL, root length; RHD, root hair density; RHL, root hair length

* significant at p<0.01

https://doi.org/10.1371/journal.pone.0183261.t005
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with the marker UGEP19 with a very low probability of 4.69 x 10−5. The other QTL identified

for RDW under Pdef, qLRDW.2, was linked to marker UGEP68 and reported a proportion of

10.56% of the phenotype variation. Two other QTLs, identified for the responses under Psuf,

were related to SDW and RL. The QTL, qHSDW.1 was associated with UGEP13 at a probabil-

ity of 8.23 x1 0−5 and accounted for 12.71% of the phenotype variation for this trait. Further,

the QTL, qHRL.1 linked to UGEP90 was associated to the RL, and explained 9.23% of the total

phenotype variation (Table 6). Although, these four markers generated different alleles, the

QTL effects were identified only for specific alleles in each case. For marker UGEP19, the allele

of size 226 bp only was found associated with the response under low P condition. Similarly,

Fig 3. Identification of optimum population structure using Evanno’s method. The ΔK values showed the highest peak corresponding to

K = 3.

https://doi.org/10.1371/journal.pone.0183261.g003

Fig 4. Inferred ancestry coefficients of the genotypes forming the sub-populations, SP1, SP2 and SP3.

https://doi.org/10.1371/journal.pone.0183261.g004
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the allele of size 234 bp for UGEP68 was found associated with the same trait. For other mark-

ers, the allele 208 bp of UGEP13 was associated with qHSDW.1, while qHRL.1was associated

with 228 bp allele of UGEP90. Although MLMM procedure reduced the estimated probability

for two QTLs, qLRDW.2 and qHRL.1 significantly, all four QTLs were identified in both the

methods.

Exploring candidate genes by cross genome synteny

The original sequences of microsatellite regions associated with the QTLs were observed to be

syntenous (orthologues) on genomes of ten species from grass family such as O. sativa, Brachy-
podium distachyon (Purple false brome), B. stacei (Purple false brome), Panicum hallii (Hall’s

panicgrass), P. virgatum (Switchgrass), Setaria italica (Foxtail millet), Setaria viridis (Green

foxtail), Sorghum bicolor (Sorghum), Z.mays and T. aestivum (Table 7). For each of the

marker, significant hits ranged from 9 to 62 for UGEP19, 1 to 6 for UGEP68, 3 to 89 for

UGEP13 and 0 to 16 for UGEP90. The sequence search revealed 207 hits for UGEP19, fol-

lowed by 180 hits for UGEP13 across grass genomes. The other markers, UGEP90 exhibited

Table 6. SSR markers associated with candidate traits using MLM and MLMM based association mapping in 128 finger millet genotypes.

Trait Marker QTL Allele Size (bp) R2 (%) p VG

Mixed linear model mapping (MLM)

LRDW UGEP19 qLRDW.1 226 14.3 4.69E-05 0.33

LRDW UGEP68 qLRDW.2 234 10.6 4.19E-04 4.81

HSDW UGEP13 qHSDW.1 208 12.7 8.23E-05 0.33

HRL UGEP90 qHRL.1 228 9.2 6.32E-04 6.43

Multiple linear mixed model mapping (MLMM)

LRDW UGEP19 qLRDW.1 226 9.5 8.92E-05 0.06

HSDW UGEP13 qHSDW.1 208 12.7 1.53E-4 5.22E-5

LRDW UGEP68 qLRDW.2 234 6.5 1.05E-3 0.61

HRL UGEP90 qHRL.1 228 9.2 1.06E-3 2.94

HSDW, shoot dry weight under Psuf level; LRDW, root dry weight under Pdef level; HRL, root length under Psuf level, F, variance ratio; R2, phenotypic

variation explained; p, marker probability

https://doi.org/10.1371/journal.pone.0183261.t006

Table 7. Number of significant hits obtained during cross genome synteny search for orthologous sequences of the QTLs related to traits associ-

ated to P starvation tolerance in finger millet.

Common name Species No. of significant hits (E < 0.01) Pi homeostasis genes

qLRDW.1 qLRDW.2 qHSDW.1 qHRL.1

(UGEP19) (UGEP68) (UGEP13) (UGEP90)

Purple false brome Brachypodium distachyon 62 1 4 0 4

Purple false brome B. stacei 20 2 4 6 -

Rice Oryza sativa 15 4 23 3 3

Hall’s panicgrass Panicum hallii 13 1 14 8 1

Switchgrass P. virgatum 15 1 89 16 1

Foxtail millet Setaria italica 15 5 3 6 1

Green foxtail S. viridis 15 4 5 5 -

Sorghum Sorghum bicolor 9 6 3 8 -

Corn Zea mays 14 4 22 7 -

Wheat Triticum aestivum 29 4 13 6 1

Total 207 32 180 65 11

https://doi.org/10.1371/journal.pone.0183261.t007
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65 hits and UGEP68 showed 32 hits. The genomes of B. distachyon and P. virgatum had maxi-

mum hits spread across chromosomes. Except UGEP90, which did not have a hit on the B. dis-
tachyon genome, all markers were identified on the chromosome of all species. Few sequences

also showed multiple hits on the same chromosome (S3 Table). For instance, UGEP19 dis-

played maximum of 24 hits on chromosome Bd4 in the B. distachyon genome. Further, the

search for annotated genes related to low P tolerance, could be putatively associated with 11

candidate genes in 6 grass species that were located in close proximity of the query sequences.

Eleven candidate genes were located on the genomes of O. sativa, B. distachyon, P. halli, P. vir-
gatum, S. italica and T. aestivum. Four candidate genes were identified on B. distachyon ge-

nome, followed by three on O. sativa, and one each on other genomes.

Of the eleven candidate genes, seven genes were found associated with P-use efficiency traits,

such as Pi homeostasis and P starvation tolerance (Table 8). The remaining genes were associ-

ated with morphological traits such as shoot and root growth under Psuf. For the marker linked

to the QTL qHSDW.1, significant candidate gene hits included the cytochrome P450 gene (LOC_

Os12g09790.1) which was located 5233.2 kb upstream from marker on Chr12 andO. sativa inor-
ganic PHosphate Transporter1;8 (OsPHT1;8) gene (LOC_Os10g30790.2) which was located

16005.7 kb downstream on Chr10 from the UGEP13 sequences inO. sativa genome. Basic helix-
loop-helix (bHLH) transcription factor (TF) gene was found on two loci (Bradi1g28230.3 and

Bradi4g29990.1) at 23449.2 kb upstream and 35621.2 kb downstream on the linkage groups Bd1

and Bd4 respectively from QTL qLRDW.1 (UGEP19) in B. distachyon genome. Additionally, two

WRKYTF genes were found in the same genome proximal to UGEP19 sequences at 13056.5 kb

and 26426.4 kb upstream on the linkage group Bd1. The Panicum genomes contained Ser/Thr
kinase genes downstream from UPEP19 sequences at 1123.3 kb and 48862.2 kb distances respec-

tively on Chr06 of P. hallii and Chr06a of P. virgatum (Pahal.F00213.1 and Pavir.Fa02162.1). The

score values were also higher with 248.3 and 223.1 in P. hallii and P. virgatum respectively for

marker UGEP19 with very low E-values. From the QTL qLRDW.2 related sequence of UGEP68,

there was a bHLH TF gene located 33833.2 kb downstream atO. sativa Chr2.WRKYTF gene

was also located 26336.2 kb downstream from qLRDW.2 in Scaffold 2 in S. italica. The marker

sequences of UGEP90 linked to the QTL qHRL.1were found proximal to the pectin methylester-
ase inhibitor (PMEI) (Traes_4DL_E3AE59EA9.2) gene located 17.1 kb upstream in the scaffold

ta_iwgsc_4dl_v3_14404266 in T. aestivum (Table 8).

Discussion

Globally, the phosphatic fertilizer applied to agricultural soils in the year 2000 totalled 14.2 ter-

agram per year, more than half of which was applied to cereal crops [78]. Although an addi-

tional manurial input of P approximating to 9.6 teragram per year collectively surpassed the

12.3 teragram of P per year removal through crop harvests, approximately 30% of the global

cropland suffered P deficiency [79]. Developing P deficiency tolerant varieties therefore is crit-

ical to all crops, to make them resilient to future threats of P starvation [4, 80]. Therefore, the

present study, first of its kind in finger millet, details low P stress responses of a small but

diverse panel of cultivars, and identify QTLs for seedling stage genotype responses under P

deficient and sufficient conditions. To control the seedling growth, we used perlite as the

medium in the present study which was known to be an ideal material substrate to study the

genotype responses [81]. Perlite is an inert volcanic glass, highly porous, light weight and ster-

ile that can support high water retention and drainage along with proper aeration supporting

healthy root growth and anchorage [82].

Information on low P response of small millets is scanty in literature. In a recent attempt,

Ceasar et al. [59] made maiden effort in foxtail millet and standardised Pi concentration of
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300 μM and 10 μM as ideal levels for P sufficiency and P deficiency respectively for plant

growth under hydroponic and perlite system. We have used the same Pi concentrations in this

study to emulate P sufficiency and P deficiency in our study. Further, genotype constitution

used was wide enough, comprising of finger millet genotypes sourced from 18 countries

worldwide, having an average genetic distance of 74% [57]. We have also chosen to measure

phenotypic traits such as root and shoot biomass and root architecture traits that are proven to

respond to low P conditions in other crop species [45, 83–86] to evaluate the P starvation

response of finger millet genotypes.

The phenotypic P response of genotypes

The phenotypic performance of genotypes showed distinct response under Psuf and Pdef condi-

tions, indicating variation in adaptive responses to P starvation. Although finger millet is a

hardy crop capable of surviving under marginal conditions, the number of genotypes showing

P starvation tolerance response can be expected to be high. By and large, under Pdef, the plants

which responded positively to tolerate P starvation produced longer shoots, and induced sev-

eral root hairs that were longer than those produced under Psuf. However, root length showed

a general trend of shortening among most of the genotypes which produced higher SL, RHD

and RHL. This trend is similar to O. sativa genotypes exposed to low P condition wherein

increase in RHL and RHD have been reported [87]. Root hairs are well known to play a major

role in nutrient uptake especially in P acquisition under Pdef [44, 88, 89], and also in root pene-

tration in hard soil pans [90]. However, increased root length under Pdef can be of additional

benefit as it can drive nutrient foraging to wider and deeper areas [91].

P deficiency stress inhibited biomass production

Significant reduction in shoot and root biomass was seen among the genotypes by 15th day

after germination in low P condition. Since biomass accumulation depends on P uptake, rela-

tive reduction in biomass can be expected under P deficiency. Root biomass has been recog-

nised as one of the key traits for determining P starvation responses in Z.mays [92] and G.

max [93]. In O. sativa, Wissuwa et al. [94] observed decrease in dry weight, tillering ability and

P uptake to the tune of 50.4%, 46.7% and 61% respectively after 125 days of sowing among 98

backcross inbred lines under P starvation. In the present study, we have observed that the

fresh weight of the samples had erratic variations, and hence we have limited the data to shoot

and root dry weights. This can be attributed to experimental error rather than biological rea-

sons, because the size of the plant samples handled was very small and therefore moisture level

was beyond control in fresh samples [93]. Moisture and humidity are considered to affect cor-

relation between fresh and dry weights in biological samples [95]. Considering this, among

biomass traits, dry weight of the samples was more reliable than fresh weight. Other than the

root and shoot biomass traits, relative tillering ability was also considered as an efficient

parameter of P deficiency tolerance in O. sativa [96]. However, in the present work, tillering

ability was not studied as the evaluation was confined to seedling stage. Since, there is no infor-

mation available pertaining to P starvation response in finger millet, it may be interesting to

observe tillering response under P starvation in future studies.

Shoot length increased under Pdef vis-à-vis Psuf

The finger millet genotypes under Pdef produced longer shoots than under Psuf until 30 days

after germination. Further, the increased shoot length did not reflect in increased shoot weight

under Pdef, indicating the possible role of cell elongation rather than cell multiplication in

inducing the shoot length at early seedling stage in finger millet, corroborating tissue and cell
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type dependent plant response to P deficiency [4]. This observation was interesting, since

reports from other grass species showed decline in shoot length under Pdef condition. Cell pro-

duction was found to be reduced by 19% and cell elongation by 20% in Lolium perenne after

growing for 60 days under P deficiency [97]. InO. sativa, Luquet et al. [98] opined that under P

deficiency, decrease in shoot growth gave advantage to the root system manifestation. It is well

documented that plants preferentially allocate resources to increase below ground biomass and

growth under P deficiency [99]. Even it has been proved in many plants that the resource alloca-

tion to below ground occurs during P deficiency at the expense of growth and photosynthesis

[13, 100, 101]. In our study, root system manifestation under Pdef treatment was primarily

through root hair growth, while root length decreased. These observations provide new leads

for further investigations of phenological behaviour in finger millet under P starvation.

Root length under Pdef condition

Plants under P starvation tend to modify their nutrient foraging behaviour through architec-

tural manifestations of primary and lateral roots [86]. Major root traits that show modifica-

tions on low P stress are RL, lateral branching, branching angle, RHL and RHD [84, 102, 103].

In this study, RL behaviour under Pdef treatment showed two distinct patterns among low P

tolerant genotypes that showed positive responses with respect to traits such as SL, RHD and

RHL. Among the 55 genotypes, 39 genotypes had reduced RL under Pdef while 12 genotypes

showed increased RL. Increased RL among P efficient genotypes clearly indicated adaptive

response that would be useful for primary screening for P deficiency tolerance in finger millet.

Accordingly, genotypes GPU45, IE5201, IE2871, IE7320, GPU66, HOSUR1, TCUM1, IE2034,

SVK1, RAU8, VR708 and IE3391 can be considered as most efficient low P tolerant genotypes

in this study, among which RAU8 and TCUM1 were having the longest roots under Pdef treat-

ment. In Z.mays, P efficient genotypes produced comparatively larger root system and showed

higher total RL under P deficiency [104]. However, genotypes that had lower RL but low P

response for other traits are also to be considered as good candidate varieties for Pdef soils. In

O. sativa, Wissuwa et al. [43] opined that the reduction of root growth under P deficiency was

not affected by source limitations, but was due to a direct negative effect of P starvation on

root growth.

Induction of root hairs under P starvation

Most conspicuous observation in the present study was the enhanced root hair production

under Pdef treatment among several finger millet genotypes. Both RHD and RHL showed

increased trend under P deficiency, indicating this to be a key adaptive behaviour against stress

[105, 106]. The role of root hairs in significantly increasing P acquisition and utilization has

been reported inHordeum vulgare (Barley) [107], O. sativa [87] and T. aestivum [108]. Under

P starvation, root hair production is triggered from production of trichoblasts by ectopic

differentiation of root epidermal cells in root hair and non-root hair positions as well as by

elongation suppression of root epidermal cells [85]. However, measurement of root hair pa-

rameters is a cumbersome process, especially under field grown conditions. There was no cor-

relation between RHD and RHL in this study. In G.max, there was a negative correlation

observed between the RHL and RHD which might be interpreted as a trade-off in terms of car-

bon use efficiency since combining both RHL and RHD would be too costly in terms of carbon

usage [109]. But both higher RHL and RHD were found in P-efficient genotypes of Phaseolus
vulgaris (Common bean) [54]. Wissuwa et al. [45] warned that leveraging of the measurement

process could associate with errors of non-conformity since RHL and RHD varied tremen-

dously between field-grown and hydroponic conditions [110].
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QTLs for P response traits

Selection of candidate traits is important for the identification of precise markers linked to

the trait. AM is more precise than the linkage based mapping because it uses multitude of evo-

lutionary recombination and strict filtering of false associations from an array of markers.

Marker density depends on breeding behavior of the species; hence allogamous species require

dense markers covering the entire genome while autogamous species require relatively less

dense marker coverage [111, 112]. Being highly autogamous species, finger millet may harbor

relatively larger haplotype blocks, thereby permitting to extend a specific marker association to

a larger region of the genome (haplotype) for the candidate gene proximity [113]. Adhering to

this principle, in the absence of whole genome information in finger millet and with few avail-

able genome wide markers, we proceeded with the only available microsatellite markers in

this study. Since there are no reported marker-trait associations or candidate genes for low P

response in finger millet, this study forms a maiden attempt to identify associations between

random microsatellite markers and a set of candidate traits that are recognized as key players

for low P responses [114] as exhibited by other crop species. The markers revealed the subtle

population structure of the germplasm assembly by stratifying it into three subpopulations,

making it an ideal panel for LD mapping. The decisive population structure provides a strong

control in suppressing false associations [115]. However, due to the absence of information on

genome location of the markers, exact LD pattern of the markers used could not be deciphered

in this study. This can be assessed as soon as the whole genome information of finger millet is

available, which can further boost the QTL discovery. In this direction, a very recent partial

genome information of finger millet is published [116] which can be used for extensive in-

vestigations of the leads obtained from this study. The discovery of four markers associated

with three traits linked to P responses, such as RDW under Pdef, and SDW and RL under Psuf,

showed stringency of declaring QTLs under MLM based AM. None of these markers have

been assigned to finger millet linkage group so far [29, 117]. Moreover, in the absence of link-

age map information, we are unable to conclude the proximity of the identified markers with

previously reported markers in finger millet for blast resistance, agronomic traits and trypto-

phan content [31–33]. The QTLs are named as qLRDW.1, qLRDW.2, qHSDW.1 and qHRL.1
sans chromosome number following the international conventions as followed in O. sativa
[118]. The present attempt also revealed that microsatellite markers are suitable for QTL

mapping using AM approach in finger millet. Earlier, microsatellite markers were used for

mapping QTLs for Pi efficiency related traits in G.max [51] and O. sativa [48] using linkage

mapping approach. This study accounts for the first time report of the QTLs for P response

traits in finger millet. This information can be an addition to the minimal number of QTLs for

P-related traits so far reported in cereal crops [6].

Identification of putative candidate genes for P response

Exploitation of cross-genome synteny between related genera is a powerful tool in comparative

genomics for analyzing conserved regions across genomes and for identifying genes that share

common functions [119, 120]. After the release of foxtail millet genome [121, 122], decoding fin-

ger millet genome is underway with the initiative from BioInnovate Africa (Bio-resources Innova-

tion Network for Eastern Africa Development) with the partnership from African Orphan Crop

Consortium and coordinated by ICRISAT regional team in Kenya (www.bioinnovate-africa.org)

and is expected to be announced soon. In this context, we have used candidate gene tracking

for the QTLs identified. In this study the length of the query sequences varied from 1164 bp

(UGEP19) to 1544 bp (UGEP90), and the contig size was sufficient enough to make significant

hits on reference genomes. The hits were explored for annotated gene sequences that have
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known functions related to the P responses identified in the study. The candidate genes

reported here remain putative, pending validation. The present study was different from candi-

date gene based AM reported earlier in finger millet [32, 33, 123], as it could identify non-target

candidate genes that have not been included in the candidate gene approach. Similar technique

of cross-genome synteny was reported in finger millet for blast tolerance [34].

A total of 484 hits for the query sequences on ten reference grass genomes indicated high

level of cross genome synteny with finger millet genome sequences. It has been reported that

grass genomes are highly syntenous [124] and the major differences can be attributed to repeti-

tive DNA sequences [125]. In O. sativa, OsPSTOL1, the major gene responsible for P starvation

tolerance, is identified as a Ser/Thr protein kinase, the key gene for the O. sativa QTL Pup1
[38]. OsPSTOL1 is known to enhance crown root growth in the early root growth and develop-

ment stages in O. sativa under P deficiency, enabling greater nutrient uptake by increasing

root surface area [12]. Therefore, seedling stage expression of Ser-Thr Kinase under low P may

be considered as a conducive strategy for P starvation tolerance in finger millet. In O. sativa,
Pup1QTL has been successfully employed in marker assisted improvement of P starvation tol-

erance [126]. A biochemical pathway search (Table 9) of Ser-Thr protein kinase revealed that

this enzyme forms a part of a signaling cascade of mitogen activated protein kinases (MAPK)

that are involved in root growth and development [127].

Other genes identified for low P response in the present study were shared between two

families of TF, bHLH andWRKY and associated with P starvation tolerance. They act as suit-

able regulators for low P related gene cascade when challenged with low P conditions and play

a fundamental role in P starvation tolerance [5]. Reports indicate that during P starvation,

bHLH is downregulated andWRKY is upregulated and they have been identified to be linked

with the alterations of root architecture [130, 134]. Both these group of genes were identified

in B. distachyon, O. sativa and S. italica in our study. In O. sativa, 167 bHLH TF involved in a

variety of functions has been identified genome wide [135]. OsPTF1 responsible for imparting

low P tolerance identified on chromosome 6 is a bHLH TF [136]. The bHLH TF is also known

to play a role in root hair development as a response to low P stress [85]. Similar to bHLH fam-

ily of TF,WRKY genes are also implicated in P acquisition in several studies.WRKY75was

reported as one of the key regulator of P starvation response in Arabidopsis [134]. Recently,

OsWRKY74, a member of group IIIWRKY TF family was demonstrated to be involved in P

Table 9. The details of biochemical pathways of putative candidate genes linked to the P starvation

response in finger millet, based on the KEGG pathway database search.

Candidate gene KEGG pathway Pathway

ID

Function/

Description

Gene ID References

Cytochrome

P450

Brassinosteroid

biosynthesis

Osa00905 Growth and

development

4332134 [128]

OsPHT1;8 NA NA Phosphate; H+

symporter

4331542 [129]

bHLH (TF) NA NA P starvation

tolerance

* [130]

WRKY (TF) MAPK signaling pathway Osa04016 P starvation

tolerance

* [131]

Ser/Thr kinase

protein

MAPK signaling pathway Osa04016 Root growth and

development

* [127]

PMEI Pentose and glucoronate

interconversion

Osa00040 Carbohydrate

metabolism

4345722 [132, 133]

NA, not available

*, several members available

https://doi.org/10.1371/journal.pone.0183261.t009
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starvation tolerance in O. sativa [137]. Pathway analysis for these TFs using KEGG database,

indicated several complex roles, such asWRKY involved predominantly acting in signaling

pathways such as MAPK, leading to P starvation tolerance [131].

Additionally, we have identified three genes involved in phenotype response under Psuf

such as the Cytochrome P450,OsPHT1;8 and PMEI gene. Cytochrome P450 is recognized as a

gene involved in plant growth in O. sativa [138]. OsPHT1;8 is an important phosphate trans-

porter in O. sativa. Expression of GUS and GFP reporter genes driven by OsPHT1;8 promoter

showed that OsPHT1;8 is expressed in various tissue organs from roots to seeds independent

of Pi supply [129]. When expressed in Xenopus oocytes, it exhibited a Km of 23 μM confirming

high affinity nature of this transporter. Knockdown of OsPHT1;8 by RNA interference de-

creased Pi uptake and plant growth under both high and low Pi conditions [129]. Recent study

has also confirmed its role in Pi homeostasis especially in the movement of Pi from source to

sink organs and allocation between embryo and endosperm of seeds [139]. Furthermore,

PMEI genes are pivotal for cell wall formation in plants [133] and are reported to be essential

for primary growth in T. aestivum [140]; these three genes were associated with high phosphate

traits. Pathway search for these genes indicated that cytochrome P450 is involved in brassinos-

teroid biosynthesis which plays a crucial role in plant growth and development [128]. Simi-

larly, PMEI plays an active role in pentose and glucuronate interconversions which is involved

in carbohydrate metabolism [132, 133]. Although all genes reported in this study need in-

dividual validation for their mechanism and function in finger millet, plethora of supporting

evidences from other crops and related species indicate their possible role in imparting P

response, importantly P starvation tolerance. Once having validated, the QTLs can be directly

used in MAS for breeding; however, information on the underlying genes can increase selec-

tion accuracy by developing a gene-based MAS system [141].

Conclusion

This paper reports for the first time, mapping of QTLs for seedling stage low P stress response

in finger millet, using germplasms of diverse geographical origin distributed worldwide. We

have shortlisted ten low P tolerant genotypes that showed overall better performance for all the

traits under investigation. Four QTLs were identified, of which two were linked to low P

response, and putatively associated to eight candidate genes. One of the key leads towards the

potential low P response gene was observed with the perceptible role of a Ser/Thr protein kinase
gene in controlling root architecture. Since P deficiency at earlier stage in crop phenology may

be detrimental to crop growth and establishment, seedling stage P deficiency tolerance is an

essential trait that needs to be present in future climate resilient finger millet cultivars. Our

results provide opportunity to breed low P tolerant finger millet genotypes in future using

MAS. Further, our data throw light on several future leads on complex response of low P toler-

ance that needs detailed investigations such as the mechanisms in different finger millet geno-

types. The selected germplasm lines can be used either as cultivars for marginal lands where P

deficiency is prominent as well as donors for P starvation tolerance QTLs in future breeding.
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