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Abstract Digital soil mapping (DSM) is gaining mo-
mentum as a technique to help smallholder farmers
secure soil security and food security in developing
regions. However, communications of the digital soil
mapping information between diverse audiences be-
come problematic due to the inconsistent scale of
DSM information. Spatial downscaling can make use
of accessible soil information at relatively coarse spatial
resolution to provide valuable soil information at

relatively fine spatial resolution. The objective of this
research was to disaggregate the coarse spatial resolu-
tion soil exchangeable potassium (Kex) and soil total
nitrogen (TN) base map into fine spatial resolution soil
downscaled map using weighted generalized additive
models (GAMs) in two smallholder villages in South
India. By incorporating fine spatial resolution spectral
indices in the downscaling process, the soil downscaled
maps not only conserve the spatial information of coarse
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spatial resolution soil maps but also depict the spatial
details of soil properties at fine spatial resolution. The
results of this study demonstrated difference between
the fine spatial resolution downscaled maps and fine
spatial resolution base maps is smaller than the differ-
ence between coarse spatial resolution base maps and
fine spatial resolution base maps. The appropriate and
economical strategy to promote the DSM technique in
smallholder farms is to develop the relatively coarse
spatial resolution soil prediction maps or utilize avail-
able coarse spatial resolution soil maps at the regional
scale and to disaggregate these maps to the fine spatial
resolution downscaled soil maps at farm scale.

Keywords Spatial downscaling . Soil nutrients . Digital
soil mapping . Generalized additivemodels . Remote
sensing . Geographic information system . Smallholder
farms

Introduction

Providing smallholder farmers with services, inputs, and
marketing arrangements can help reduce poverty and
allow them to compete with larger farmers in increas-
ingly demanding markets (Wiggins et al. 2010). As a
cutting-edge discipline applied widely around the world,
digital soil mapping (DSM) helps a large population of
farmers secure soil and food security in smallholder
farms in developing regions such as India and Africa.
However, communications of the digital soil mapping
information between diverse audiences become prob-
lematic due to the inconsistent scale of DSM informa-
tion (Chakrabarti et al. 2015; Malone et al. 2013).

Several large-scale soil data sets, such as Harmonized
World Soil Database (HWSD) (Nachtergaele et al.
2008) (spatial resolution: 1 km), soil organic carbon
map of the USA (Odgers et al. 2012) (spatial resolution:
100 m), and Australian Soil and Landscape Grid
(http://www.clw.csiro.au/aclep/soilandlandscapegrid/),
were available around the world. However, those coarse
spatial resolution soil maps have limited ability to guide
the soil nutrient management in smallholder farms in
developing countries such as India. The smallholder
farmers in food-insecure regions are more vulnerable
to climate change, water shortages, and market volatil-
ity, as they lack enough technical and financial support
to increase their grain products and alleviate their vul-
nerability (Lobell et al. 2008). Those fine spatial

resolution maps are more appropriate for the soil man-
agement in small farmland compared with coarse spatial
resolution maps. As spatial downscaling techniques can
utilize available soil maps and disaggregate them to fine
spatial resolutionmaps, downscalingmethods have high
potential to help farmers especially smallholder farmers
manage their soil nutrients. For example, some free and
available soil maps with 100 m spatial resolution have
little significance to help manage soil nutrients in small
farmland. In this case, agricultural scientists or exten-
sion workers can utilize those coarse spatial resolution
maps as the base maps and apply the downscaling
method to disaggregate those base maps to fine spatial
resolution downscaled maps.

Area to point kriging (Kyriakidis 2004), area and
point regression kriging (Goovaerts 2010), and down-
scaling cokriging (Pardo-Igúzquiza et al. 2006) have
been popular downscaling geostatistical methods in soil
science. Besides those geostatistical methods, various
data mining-based downscaling methods have also been
applied in DSM and remote sensing domains. Liu and
Pu (2008) set up a linear downscaling method to disag-
gregate the simulated 990-m thermal infrared radiance
data to a 90-m resolution. Taylor et al. (2013) utilized
this method to derive evapotranspiration data required
for digital soil mapping from 90 to 15 m pixel. Malone
et al. (2012) presented a new downscaling algorithm
using weighted generalized additive models (GAMs)
based on Liu and Pu (2008). It combines nonparametric
smoothing or fitting functions to model nonlinear rela-
tionships between soil organic carbon (SOC) and the
available covariates. This method used the gridded co-
variates data at finer scale (90 m) to drive the downscal-
ing process. The resampled classification trees method
developed by Odgers et al. (2014) can disaggregate the
soil class map into a number of realizations of the
potential soil class distribution and quantify their
respective degrees of confusion. Subburayalu et al.
(2014) used the possibilistic decision trees method to
disaggregate the Soil Survey Geographic Database
(SSURGO) soil series data.

For the extension of digital soil mapping techniques
in fine scale areas such as smallholder farm settings, it is
important to test the feasibility of transferring the soil
information at coarse spatial resolution to fine spatial
resolution. Most research have already performed the
disaggregation of soil organic carbon maps before (Brus
et al. 2014; Kerry et al. 2012; Lobell et al. 2008; Malone
et al. 2012, 2017). On contrast, soil nutrients such as soil
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total nitrogen (TN) and soil exchangeable potassium
(Kex) are also important indicators of soil fertility
(Castrignanò et al. 2012; Kerry et al. 2012; Ouyang
et al. 2013), and few research have analyzed the down-
scaling behavior of those soil nutrients before. This
research disaggregated base soil TN and Kex maps of
two smallholder farms, namely Kothapally and Masuti
in South India, and evaluated the concordance between
the coarse and fine spatial resolution base soil maps and
the fine spatial resolution downscaled soil maps.

Materials and methods

Description of the study areas

Kothapally (latitude 17° 20′ to 17° 24′ N and longitude
78° 5′ to 78° 8′ E) is a smallholder village located in
Ranga Reddy District, Telangana, India. It is character-
ized by an undulating topography with an average slope
of 2.5%. The Vertisols and associated soils make up
90% of the area. According to Sreedevi et al. (2004),
the soil depth ranges from 30 to 120 cm, the annual
rainfall is 802 mm, and the annual mean temperature is
26.6 °C. The main plantation system during the rainy
season are cotton (Gossypium hirsutum) and rice (Oryza
sativa). Sorghum (Sorghum bicolar) is the predominant
crop type during the dry season. There are approximate-
ly 1500 people in the village, and the average landhold-
ing per household is 1.4 ha (Sreedevi et al. 2004).

Masuti (latitude 16° 28′ to 16° 33′ N and longitude
75° 45′ to 75° 50′ E) is a smallholder village located in
Bijapur District, Karnataka, India. Themajor soil type in
the northern part of the village is Entisols, and the major
soil type in the southern part of the village is Vertisols.
Two dams were located in the north central of the
village. An irrigation canal was built in the southwestern
area of the village. In Masuti, 80% of the farmlands
were irrigated using wells. Sorghum (S. bicolar), tomato
(Lycopersicon esculentum var. esculentum), and onion
(Allium cepa) are three major crops in the dry season.
Cotton (G. hirsutum), rice (O. sativa), and maize (Zea
mays) are major crops in the rainy season.

Soil sampling

A total of 255 soil samples at 0–15 cm were collected in
Kothapally in May 2012 (Xu et al. 2017a), and a total of
259 soil samples at 0–15 cm were collected in Masuti in

February to March 2013 by International Crops
Research Institute for the Semi-Arid Tropics
(ICRISAT) and University of Florida (Fig. 1). All the
soil samples were measured by Trimble GEOXT2005
(Trimble Navigation Ltd., Sunnyvale, California, USA).
Global Positioning System (GPS) post-correction was
performed by Aimil Ltd. (www.aimil.com) in
Hyderabad, India. Each soil sample in two study areas
was analyzed for Kex (Thomas 1982) and TN (Krom
1980) in the soil laboratory at ICRISAT. Those soil
samples were utilized to build soil base maps in
Kothapally and Masuti.

Soil base maps

Three soil Kex base maps based on three soil
prediction models in Kothapally, namely model
KLT (spatial resolution: 30 m) built by Landsat 8
spectral indices (Xu et al. 2017a), model KRE
(5 m) built by RapidEye spectral indices, and
model KWG (2 m) built by WorldView-2 and
GeoEye-1 spectral indices (Xu et al. 2017a), were
utilized as the base maps in this research. Three
soil TN base maps based on three soil prediction
models in Masuti, namely model NLT (spatial
resolution: 30 m) built by Landsat 8 spectral indi-
ces, model NRE (5 m) built by RapidEye spectral
indices, and model NWG (2 m) buil t by
WorldView-2 and Pleiades-1A spectral indices,
were also utilized as the base maps in this re-
search. Random Forest was utilized to develop soil
TN and soil Kex prediction models by incorporat-
ing multiple spectral indices from the remote sens-
ing images (Xu et al. 2017a).

Weighted generalized additive models

The target soil property value (e.g., total nitrogen) at
each coarse resolution pixel (e.g., Landsat 8 pixel) is
defined as T̂ k ; k ¼ 1;…;B; B is the total number of
coarse pixels across the extent of a study area, and
t̂ m;m ¼ 1;…;D;denotes the estimate of the target soil
property value (e.g., total nitrogen) at each fine resolu-
tion pixel (e.g., WorldView-2 pixel). This algorithm is a
two-stage algorithm including initialization and iteration
(Malone et al. 2012).

Initialization: a weighted generalized additive model
(Hastie and Tibshirani 1990) was used:
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t̂̂m ¼ αþ f 1 x1ð Þ þ f 2 x2ð Þ þ…þ f p xp
� � ð1Þ

where α is a constant, x1 , x2 ,… , xp are each of the
covariate data sources, and fj are nonparametric

smoothing splines that relate t̂ m to the covariates. All
fj are computed through an iterative backfitting algo-
rithm, which are obtained by means of a smoothing of
the dependent variable t̂ m against the covariates xj.

Fig. 1 The soil sampling sites in Kothapally and Masuti Village, India
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Iteration: at the l-th iteration, t̂ l−1m are updated to t̂ lm
using Eq. (2) in order to make the average of t̂ lm esti-
mates of finer resolution grid cells equal to the value of
their encapsulating coarse resolution grid cell (i.e., to
equal T̂ k):

t̂ lm ¼ t̂ l−1m � T̂k
1

m

� �
∑t̂ l−1m

ð2Þ

The average of t̂ lm estimates 1
m

� �
∑t̂ lm

� �
is denoted as

t̂ lk . With the newly adjusted value, a new weighted

nonlinear regression model (GAM) between the t̂lm and
the suite of available covariates is fitted to all the grid

cells. When 1
D∑ t̂ lm−t̂

l−1
m

�� �� becomes equal to or less than

a given stopping criterion value called SCV (the weights
remain constant), the iterations stop.

The Bdissever^ algorithm was scripted in the R pro-
gramming environment and included in a package
called Bithir .̂

Description of downscaling process

Table 1 described the environmental variables from differ-
ent remote sensing images utilized in the downscaling
processes. The environmental variables used in the down-
scaling process are fine spatial resolution remote sensing
spectral indices that had strong relevance with the target
soil property identified by the Boruta algorithm (Kursa and
Rudnicki 2010). In Kothapally, the BDissever^ algorithm
utilizing the weighted GAMs (Malone et al. 2012) was
utilized to disaggregate the model KLT (30 m) to down-
scaled model KLTRE (5 m) by incorporating spectral
indices from RapidEye images, the model KLT (30 m) to
downscaled model KLTWG (2 m) by incorporating spec-
tral indices from the WorldView-2/GeoEye-1 images, and
the model KRE (5 m) to downscaled model KREWG
(2 m) by incorporating spectral indices from WorldView-
2/GeoEye-1 images.

In Masuti, the BDissever^ algorithm was also utilized
to disaggregate the model NLT (30 m) to downscaled
model NLTRE (5 m) by incorporating spectral indices
from RapidEye images, the model NLT (30 m) to down-
scaled model NLTWP (2 m) by incorporating spectral
indices fromWorldView-2/Pleiades-1A images, and the
model NRE (5 m) to downscaled model NREWP (2 m)
by incorporating spectral indices from WorldView-2/
Pleiades-1A images.

Table 1 Environmental variables in the downscaling process

Downscaling
model

Environmental variables Spatial resolution
transformation
(m)

Kex

Model
KLTRE

REbGreen, REbPCA1,
REaRededge, REbARVI,
REbRededge, REaREB,
REbPCA5, REaNIR

30 to 5

Model
KLTWG

GEARVI, GEGreen,
WVaARVI, WVaN2RE,
WVaRed, WVaN2R

30 to 2

Model
KREWG

GEARVI, GEGreen,
WVaARVI, WVaN2RE,
WVaRed, WVaN2R

5 to 2

TN

Model
NLTRE

REdREB, REcPCA3, REdRB,
REcRB, REdCI,
REcRededge, REdPCA1

30 to 5

Model
NLTWP

PLPCA3, WVbRB, WVbCI,
PLRB, PLCI, PLRG,
WVbPCA3

30 to 2

Model
NREWP

PLPCA3, WVbRB, WVbCI,
PLRB, PLCI, PLRG,
WVbPCA3

5 to 2

Kex model in Kothapally: REbGreen the green reflectance from
RapidEye (2013-2-24), REbPCA1 principal component 1 of bands
in RapidEye (2013-2-24), REaRededge red edge reflectance from
RapidEye (2010-4-19), REbARVI atmospherically resistant vege-
tation index (Kaufman and Tanré 1996) from RapidEye (2013-2-
24), REbRededge red edge reflectance from RapidEye (2013-2-
24), REaREB band ratio of red edge to blue from RapidEye (2010-
4-19), REbPCA5 principal component 5 of bands in RapidEye
(2013-2-24), REaNIR near-infrared reflectance from RapidEye
(2010-4-19), GEARVI atmospherically resistant vegetation index
from GeoEye-1 (2012-1-21), GEGreen green reflectances from
GeoEye-1, WVaARVI atmospherically resistant vegetation index
from WorldView-2 (2011-12-14), WVaN2RE the band ratio of
near-infrared band 2 to red edge from WorldView-2, WVaRed red
reflectances from WorldView-2, WVaN2R the band ratio of near
infrared band 2 to red band from WorldView-2

TN model in Masuti: REdREB the band ratio of red edge to blue
from RapidEye (2013-1-5), REcPCA3 principal component 3 of
bands in RapidEye image (2012-12-11), REdRB the band ratio of
red to blue fromRapidEye (2013-1-5), REcRB the band ratio of red
to blue from RapidEye (2012-12-11), REdCI crust index (Karnieli
1997) from RapidEye (2013-1-5), REcRededge red edge reflec-
tance from RapidEye (2012-12-11), REdPCA1 principal compo-
nent 1 of bands in RapidEye image (2013-1-5), PLPCA3principal
component of Pleiades-1A (2013-3-3), WVbRB the band ratio of
red to blue from WorldView-2 image (2011-2-28), WVbCI crust
index fromWorldView-2 image (2011-2-28), PLRB the band ratio
of red to blue from Plieades-1A, PLCI crust index from Pleiades-
1A, PLRG the band ratio of red to green from Pleiades-1A,
WVbPCA3 principal component 3 of bands in WorldView-2
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Validation metrics

The coefficient of determination (R2) and mean absolute
errors (MAEs) were evaluated between the base maps
and downscaled maps produced by the GAM method:

MAEs ¼ 1

n
∑ ŷî−yij j ð3Þ

where yî is the prediction value of downscaled maps,
and yi is the value of base maps.

Results

Downscaling of soil Kex model by GAMs in Kothapally

Figure 2 shows the three Kex base maps and downscaled
maps in Kothapally. Overall, the six maps in Fig. 2 did
not demonstrate significantly different spatial patterns of
soil Kex. After incorporating the remote sensing spectral
indices with fine spatial resolution in the downscaling
process, the soil Kex downscaled maps generally en-
hanced their capabilities to characterize soil Kex distri-
bution in the fine scale farmland compared with the
coarse spatial resolution soil Kex base maps. For exam-
ple, the 30-m Kex base map by model KLT (Fig. 2a)
showed a more homogenous spatial pattern of Kex. In
contrast, the 2-m Kex downscaled map from 30 m by
model KLTWV (Fig. 2f) showed a relatively low linear
Kex pattern in the road and a more fragmented Kex

spatial pattern in the farmland.
Comparing Fig. 3a, b, Fig. 3c, d, and Fig. 3e, f, the

differences between the fine spatial resolution Kex

downscaled maps and the fine spatial resolution Kex

base maps are smaller than those between the coarse
spatial resolution soil Kex base maps and fine spatial
resolution soil Kex base maps. In general, 67.72% of the
differences between the 5-m Kex base map and 30-m
Kex base map (Fig. 3a), 59.53% of the differences be-
tween the 2-mKex basemap and 5-mKex basemap (Fig.
3c), and 46.77% of the differences between the 2-m Kex

base map and 30-m Kex base map (Fig. 3e) have an
absolute difference value smaller than 50 mg kg−1 (ap-
proximately 10% of maximum Kex concentration). In
contrast, 79.94% of the differences between the 5-m Kex

base map and 5-m Kex downscaled map from 30 m (Fig.
3b), 79.62% of the differences between the 2-m Kex

base map and 2-m Kex downscaled map from 5 m
(Fig. 3d), and 79.05% of the differences between the

2-m Kex base map and 2-m Kex downscaled map from
30 m have an absolute value smaller than 50 mg kg−1

(Fig. 3f).
Figure 4 demonstrated the soil Kex maps in a smaller

site in the Kothapally village (Farmland A). First, fine
spatial resolution soil Kex base maps showed more
heterogeneous spatial patterns of Kex compared with
soil Kex downscaled maps. For example, the 5-m Kex

basemap (Fig. 4b) showed amore heterogeneous spatial
pattern of Kex compared with the 5-m Kex downscaled
map from 30m (Fig. 4d). Second, Kex downscaledmaps
showed more heterogeneous spatial patterns of Kex

compared with coarse spatial resolution Kex base maps.
For example, the 2-m Kex downscaled map from 30 m
(Fig. 4f) displayed more subtle and detailed soil Kex

characterizations compared with the 30-m Kex base
map (Fig. 4a). The 2-m downscaled Kex map from
30 m (Fig. 4f) showed evident linear and point
Kex patterns in the southwestern area of Farmland
A, while the 30-m Kex base map (Fig. 4a) gener-
alized the soil Kex distribution. Third, soil Kex

downscaled maps had similar spatial patterns of
Kex with coarse spatial resolution Kex base maps.
For example, both the 2-m Kex downscaled map
from 5 m (Fig. 4e) and 5-m Kex base maps (Fig.
4b) showed comparably high Kex in the northern
areas of Farmland A. Fourth, soil Kex downscaled
maps had similar spatial patterns of Kex with fine
spatial resolution Kex base maps. For example, the
2-m Kex downscaled map from 5 m (Fig. 4e)
shared a similar Kex pattern with 2-m Kex base
maps (Fig. 4c) in terms of fragmented and hetero-
geneous spatial distribution of Kex.

From Fig. 5, the pixel values of the Kex downscaled
maps and the fine spatial resolution Kex base maps
showed relatively high coefficients of determination
(R2 > 0.7) and MAE smaller than 35 mg kg−1 in
Kothapally. The 2-m Kex base map (Fig. 2e) and 2-m
Kex downscaled map from 30 m (Fig. 2f) showed the
highest coefficient of determination (R2 = 0.78). The
results suggested that Kex downscaled maps disaggre-
gated by the GAMs method have relatively high con-
cordance with fine spatial resolution Kex base maps in
Kothapally.

Downscaling of soil TN model by GAMs in Masuti

Figure 6 showed three soil TN base maps and three soil
TN downscaled maps in Masuti. Fine spatial resolution
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soil TN downscaled maps showed stronger capabilities
to distinguish the subtle variations of TN. For example,
the 2-m TN downscaled map by model NLTWP (Fig.
6f) can demonstrate more heterogeneous, patchy, and

fragmented TN spatial patterns compared with the 30-m
TN base map by model NLT (Fig. 6a). In addition, the
prediction ranges of TN base maps were also generally
larger than those of TN downscaled maps.

Fig. 2 a 30-mKex base map (Model KLT). b 5-mKex downscaled
map from 30 m (Model KLTRE). c 5-m Kex base map (Model
KRE). d 2-m Kex downscaled map from 5 m (Model KREWG). e

2-m Kex base map (Model KWG). f 2-m Kex downscaled map
from 30 m (Model KLTWG) in Kothapally
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Fig. 3 aMap of differences between the 30-m Kex base map and
5-mKex base map. bMap of differences between the 5-mKex base
map and 5-m Kex downscaled map from 30 m. c Map of differ-
ences between the 2-m Kex base map and 5-m Kex base map. d
Map of differences between the 2-m Kex base map and 2-m Kex

downscaled map from 5 m. eMap of differences between the 2-m
Kex base map and 30-m Kex base map. f Map of differences
between the 2-m Kex base map and 2-m Kex downscaled map
from 30 m in Kothapally
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In Fig. 7, the differences between the fine spatial
resolution TN downscaled maps and the fine spatial
resolution TN base maps are smaller than those between
the coarse spatial resolution TN base maps and fine
spatial resolution TN base maps. In general, 65.24% of
the differences between the 30-m TN base map and 5-m

TN base map (Fig. 7a), 68.73% of the differences be-
tween the 5-m TN base map and 2-m TN base map (Fig.
7c), and 66.07% of the differences between the 30-m
TN base map and 2-m TN base map (Fig. 7e) have an
absolute difference value smaller than 80 mg kg−1 (ap-
proximately 10% of maximum TN concentration). In

Fig. 4 a 30-m Kex base map
(Model KLT). b 5-m Kex base
map (Model KRE). c 2-m Kex

base map (Model KWG). d 5-m
Kex downscaled map from 30 m
(Model KLTRE). e 2-m Kex

downscaled map from 5 m
(Model KREWG). f 2-m Kex

downscaled map from 30 m
(Model KLTWG) in Farmland A
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contrast, 94.69% of the differences between the 5-m TN
base map and 5-m TN downscaled map from 30 m (Fig.
7b), 86.72% of the differences between the 2-m TN base
map and 2-m TN downscaled map from 5 m (Fig. 7d),
and 90.80% of the differences between the 2-m TN base
map and 2-m TN downscaled map from 30 m have an
absolute value smaller than 80 mg kg−1 (Fig. 7f).

Total nitrogen maps of Farmland B, a small farm site
in Masuti (Fig. 8), can demonstrate the subtle differ-
ences of the base TN maps and downscaled TN maps.
The downscaling behavior of the soil TN model in
Masuti is similar to that of the soil Kex model in

Kothapally. First, fine spatial resolution TN base maps
showed more fragmented spatial patterns of TN com-
pared with TN downscaled maps. For example, the 5-m
TN base map (Fig. 8b) showed a more heterogeneous
spatial pattern of TN compared with the 5-m TN down-
scaled map from 30 m (Fig. 8d). Second, TN down-
scaledmaps showedmore fragmented spatial patterns of
TN compared with coarse spatial resolution TN base
maps. In addition, TN downscaled maps had similar
spatial patterns of TNwith both coarse spatial resolution
TN base maps and fine spatial resolution TN base maps.
Interestingly, the 2-m TN downscaled map from 5 m

Fig. 5 a Concordance plot between the 5-m Kex base map and 5-
m Kex downscaled map from 30 m. b Concordance plot between
the 2-m Kex base map and 2-m Kex downscaled map from 5 m. c

Concordance plot between the 2-m Kex base map and 2-m Kex

downscaled map from 30 m in Kothapally
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based on model NREWP (Fig. 8e) has higher variations
and more heterogeneous TN distributions than the 2-m
TN downscaled map from 30 m based on the model
NLTWP (Fig. 8f). The downscaling process frommodel
NLT to model NLTWP and from model NRE to model
NREWP utilized the same fine spatial resolution spec-
tral indices (Table 1). However, there are more hetero-
geneous spatial patterns of TN in Fig. 8e by model
NREWP compared with that in Fig. 8f by model
NLTWP. This may be explained by the fact that the

spatial resolution of 5-m base map by model NRE is
finer than 30-m base map by model NLT.

From Fig. 9, the pixel values of the downscaled TN
maps and the fine spatial resolution TN base maps
showed very high correlations (R2 > 0.85) and MAE
smaller than 42mg kg−1 inMasuti. The 5-m downscaled
TNmap from 30m (Fig. 6b) and 5-m base TNmap (Fig.
6c) showed the highest correlation (R2 = 0.90) andMAE
(33.08 mg kg−1). Similar to the results from soil Kex

downscaling model in Kothapally, the results suggested

Fig. 6 a 30-m TN base map
(Model NLT). b 5-m downscaled
TN map from 30 m (Model
NLTRE). c 5-m TN base map
(Model NRE). d 2-m downscaled
TN map from 5 m (Model
NREWP). e 2-m TN base map
(Model NWP). f 2-m downscaled
TN map from 30 m (Model
NLTWP) in Masuti
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that TN downscaled maps using the GAMs method
have relatively high concordance with fine spatial reso-
lution TN base maps in Masuti.

Discussion

By comparing different soil maps in both Kothapally
andMasuti, the similarity between the downscaledmaps
and fine spatial resolution base maps is higher than the
similarity between coarse spatial resolution base maps
and fine spatial resolution base maps. Generally, the

priori information of the downscaling method is extract-
ed from expert knowledge and data mining analysis. In
this research, random forest-based algorithm BBoruta^
(Kursa and Rudnicki 2010) helps identify the most
relevant fine resolution spectral indices with the target
soil properties. The BDissever^ algorithm predicts the
target variable (soil property) based on an additive com-
bination of nonlinear functions of the environmental
variables (Malone et al. 2012). The results from Xu
et al. (2017b) showed that coarse spatial resolution soil
prediction models based on Landsat 8 images (Model
KLT) can attain comparable model performance as fine

Fig. 7 a Map of differences
between the 5-m TN base map
and 30-m TN base map. bMap of
differences between the 5-m TN
base map and 5-m TN
downscaled map from 30 m. c
Map of differences between the 2-
m TN base map and 5-m TN base
map. d Map of differences
between the 2-m TN base map
and 2-m TN downscaled map
from 5 m. e Map of differences
between the 2-m TN base map
and 30-m TN base map. fMap of
differences between the 2-m TN
base map and 2-m TN
downscaled map from 30 m in
Masuti
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spatial resolution soil prediction models based on
WorldView-2 and GeoEye-1 images (Model KWG).
On the one hand, Landsat 8-based coarse spatial
resolution maps such as Figs. 2a and 6a have limited
capability to identify the spatial variation of soil
properties in fine scale farmland. On the other hand,
RapidEye-based or WorldView-2-based fine spatial
resolution soil prediction maps such as Figs. 2c
and 6e require the purchase of remote sensing im-
ages and more processing time, although those
models can provide more site-specific soil manage-
ment recommendations to smallholder farmers.

The downscaling methods build a bridge between
soil prediction models with different spatial resolutions.
According to Xu et al. (2017a), the incorporation of the
image pansharpened spectral indices not only increased
the spatial resolution of the soil prediction maps but also
enhanced the prediction accuracy of soil prediction
models. To some extent, the downscaling application
in this research is a form of spectral fusion or image
fusion between the coarse spatial resolution soil predic-
tion model and fine spatial resolution spectral indices.

The appropriate and economical strategy to extend
the Digital Soil Mapping in the smallholder farms in

Fig. 8 a 30-m TN base map
(Model NLT). b 5-m TN base
map (Model NRE). c 2-m TN
base map (Model NWP). d 5-m
TN downscaled map from 30 m
(Model NLTRE). e 2-m TN
downscaled map from 5 m
(Model NREWP). f 2-m TN
downscaled map from 30 m
(Model NLTWP) in Farmland B
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developing countries is to develop the relatively
coarse spatial resolution (e.g., 30 m) soil prediction
maps or utilize available coarse spatial resolution soil
maps at the regional scale, and to downscale the
relatively coarse spatial resolution soil prediction
maps to the fine spatial resolution soil prediction
maps (e.g., 5 and 2 m) at a specific smallholder
farm scale. Another strategy to downscale the soil
model is to disaggregate the inputs of soil models
such as coarse spatial resolution spectral indices to
the fine spatial resolution spectral indices before the

model establishment (McBratney 1998; Taylor et al.
2013). Most research utilizes different algorithms to
downscale the remote sensing products to the target
support (Kim and Barros 2002; Liu and Journel
2009). However, the problem of this strategy lies
in the following: (1) it does not take advantage of
the available soil prediction models at coarse spatial
resolution and (2) the downscaling of multiple model
inputs such as spectral indices is relatively time-
consuming in that it is not efficient and economical
for large-scale implementation promotion.

Fig. 9 a Concordance plot between the 5-m TN base map and 5-
m TN downscaled map from 30 m. b Concordance plot between
the 2-m TN base map and 2-m TN downscaled map from 5 m. c

Concordance plot between the 2-m TN base map and 2-m TN
downscaled map from 30 m in Masuti
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Some research have already downscaled the soil
maps from 1000 to 90 m (Malone et al. 2012), 100 to
10m (Malone et al. 2017), and 90 to 15m pixels (Taylor
et al. 2013). However, few researchers have disaggre-
gated the soil map from medium spatial resolution
(30 m) to very fine spatial resolution (e.g., 5 or 2 m)
before. This research incorporated the up-to-date very
fine resolution (VFR) image spectral indices in the
downscaling process, and those downscaled soil maps
(5 and 2 m) can provide more field-specific nutrient
information in the small farmland compared with other
research. Comparing with the geostatistical-based
downscaling methods such as area-to-point kriging
(Brus et al. 2014) and Bayesian area-to-point kriging
(Truong et al. 2014), the weighted generalized additive
method in this research can utilize the fine spatial reso-
lution spectral indices and have advantages in down-
scaling grid soil maps.

The significance of this research is that it analyzed
the characteristics of downscaled soil models from me-
dium spatial resolution (30 m) to fine spatial resolution
(5 m) and super fine spatial resolution (2 m), and from
fine spatial resolution (5 m) to super fine spatial resolu-
tion (2 m). This research also makes the batch produc-
tion of fine spatial resolution soil maps at smallholder
farm settings possible. The soil downscaled maps not
only depict the spatial details of soil properties in fine
spatial resolution but also conserve spatial information
from the coarse spatial resolution soil base map.
Endmember users such as smallholder farmers or agri-
cultural experts can download the free soil maps from
the internet such as FAO–UNESCO soil maps
(Hartemink et al. 2013) and the GlobalSoilMap project
(Arrouays et al. 2014), and utilize updated downscaling
techniques such as GAMs to disaggregate these avail-
able free soil maps into fine spatial resolution soil maps.
This can help smallholder farmers formulate site-
specific and sustainable soil management scheme in
smallholder farm settings.

Conclusions

The results suggested that the differences between the
downscaled soil maps byGAMsmethod and fine spatial
resolution base soil mapswere lower than those between
the coarse spatial resolution base soil maps and fine
spatial resolution base soil maps. To a certain extent,
the downscaling process can be considered a data fusion

method between the coarse spatial resolution soil map
and fine spatial resolution spectral indices. The down-
scaled soil map not only captures the soil property
variation in fine spatial resolution but also preserves
the information of soil property distribution in the coarse
resolution map.
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