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Global temperatures are expected to increase from 1 to 6 °C by 2100, 
with serious consequences for agriculture1. This means that climate-
appropriate measures to ensure food security are a priority, especially 
as the human population is projected to reach 9.1 billion by 20502. 
Crops that are adapted to the predicted environmental changes have 
been proposed as one solution3. Even now, availability and further 
improvement of crops that can withstand climate change could reduce 
the hunger of the 805 million undernourished people living mainly 
in developing countries4.

Pearl millet (Pennisetum glaucum (L.) R. Br., syn. Cenchrus america-
nus (L.) Morrone), a C4 grass, is a highly cross-pollinated diploid (2n 
= 2x = 14) with excellent photosynthetic efficiency and biomass pro-
duction potential. It is cultivated as a staple food grain and source of 
straw for fodder and fuel in arid and semi-arid regions of sub-Saharan 
Africa, India and South Asia. Climate-smart vegetative, reproductive, 
and physiological features of pearl millet make this crop well-suited to 
growth in harsh conditions including low soil fertility, high soil pH, 
high soil Al3+ saturation, low soil moisture, high temperature, high 
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salinity and limited rainfall. Pearl millet reliably produces grain in 
regions that have a mean annual precipitation as low as 250 mm. In 
the same drought conditions maize (Zea mays), rice (Oryza sativa), 
sorghum (Sorghum bicolor), bread wheat (Triticum aestivum) and 
durum wheat (Triticum durum) are likely to fail5.

Pearl millet is cultivated on ~27 million hectares worldwide and 
is the staple food for more than 90 million farmers living in poverty. 
Millet grain is highly nutritious, with 8–19% protein, low starch, high 
fiber (1.2 g/100 g)6, and higher micronutrient concentrations (iron 
and zinc) than rice, wheat, maize and sorghum7. Importantly, the 
potential of this crop to tolerate air temperatures >42 °C during the 
reproductive phase means that it can be cultivated using irrigation in 
the very hot summers of northwestern India8.

Despite the clear importance of pearl millet in agriculture, the 
production and productivity of this staple crop are very low, with an 
average grain yield of just 900 kg/ha. This is because pearl millet is 
mainly grown in dryland conditions, which are marginal production 
environments, and with minimal use of commercial inputs, such as, 
adequate irrigation, fertilizers and pesticides. Genetic gains, the rate of 
increase in yield over a given time period, during 1996–2013 in pearl 
millet have averaged around 24 kg of grain/ha/year in India, which 
has the highest millet productivity and production of the main pearl 
millet growing countries9. Pearl millet is vulnerable to several foliar 
diseases including downy mildew (caused by Sclerospora graminicola), 
Pyricularia leaf spot or blast (Pyricularia grisea), and rust (Puccinia 
substriata var. indica). Indeed, these pathogen infections can result 
in massive yield losses and reduced fodder quality. A limited range of 
genomics tools for pearl millet have impeded the ability of researchers 
and breeders to exploit methods for improvement, until now.

To accelerate pearl millet crop improvement, we sequenced the 
whole genome of reference genotype Tift 23D2B1-P1-P5. We also rese-
quenced 994 pearl millet genotypes, including 963 inbred lines and 
single plants from each of 31 wild accessions, in order to understand 
the population structure, genetic diversity and domestication of this 
staple crop. We carried out a genome-wide association study (GWAS) 
to predict yield-associated traits in both irrigated and drought condi-
tions. We also used genomic prediction to predict hybrid perform-
ance. These applications highlight the utility of our resequencing data 
set for accelerating breeding and enhancement of genetic gains in 
pearl millet.

RESULTS
Genome assembly
To assemble the pearl millet genome, we used whole genome shotgun 
(WGS) and bacterial artificial chromosome (BAC) sequencing. Ten 
small inserts (of ~170, 250, 500 and 800 bp), and 13 large inserts 
(of ~2, 5, 10, 20 and 40 kb) WGS libraries were constructed using 
Tift 23D2B1-P1-P510 genotype. These libraries were sequenced on 
the Illumina HiSeq 2000 and 520 Gb of sequence data, representing 
296× genome coverage, were produced (Supplementary Table 1). 
Two BAC libraries, with an average insert size of ~120 kb, were con-
structed from Tift 23D2B1-P1-P5 using EcoRI and HindIII. 972 Gb 
of sequence data were generated from 100,608 BAC clones at ~80× 
genome coverage (Supplementary Table 2 and Supplementary  
Fig. 1). In brief, 1.49 Tb of sequence data, after stringent filtering and 
correction steps, were assembled into 1.58 Gb of contigs (sequences 
without gaps or Ns) and 1.82 Gb of scaffolds (contigs joined with 
estimated gaps filled in).

Based on k-mer statistics, the pearl millet genome size was esti-
mated to be 1.76 Gb (Supplementary Fig. 2), indicating that ~90% 
of the genome was assembled. Scaffolds longer than 1 kb totaled 

1.79 Gb, with 50% of scaffolds (N50) being longer than 884.95 kb 
(N50 contig = 18,180 bp) and the largest scaffold spanning 4.82 Mb 
(Supplementary Table 3). To evaluate the assembly, we generated 
additional whole genome sequence data with 1× coverage on the 
PacBio platform. More than 90% of these long reads were mapped 
back to a scaffold with more than 90% similarity and 90% ratio of 
aligned length (Supplementary Fig. 3).

Linkage information from three biparental mapping populations, 
and collinearity with the genome of foxtail millet (Setaria italica)11 
were used to assemble genomic scaffolds into pseudomolecules. 
We assembled 1.56 Gb into seven pseudomolecules (Pg1 to Pg7,  
Fig. 1 and Supplementary Table 4). The average GC content of 
pearl millet (47.9%) is higher than that of foxtail millet (46.1%), sor-
ghum (44.5%), barley (Hordeum vulgare, 44.4%), and rice (43.5%) 
(Supplementary Fig. 4). We assessed the variability in GC content 
in 10-kb non-overlapping sliding windows (Supplementary Fig. 5) 
to show that the observed GC content did not arise from sequencing-
based GC bias. The GC content in whole genome coding sequence  
(CDS; 54.76%) and in 384 expanded gene families (53.14%) was 
examined as well; it was at a similar proportion to the total genome, 
providing confidence in this result (Supplementary Table 5 and 
Supplementary Fig. 6). Analysis of completeness was carried out 
using the core eukaryotic gene mapping approach (CEGMA), 
which revealed that >97% of genes were present in the assembly 
(Supplementary Table 6).

Repetitive sequences
In total, 1.22 Gb of repeat elements were identified in a 1.58-Gb 
genome assembly, indicating that 77.2% of the assembled genome is 
repetitive. In addition, because the repetitive parts of the genome are 
always the parts that are under-represented in the genome assembly, 
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Figure 1  Pearl millet genome. Genome features in 1-Mb intervals across 
the seven pseudomolecules. Units on the circumference are megabase 
values of pseudomolecules. (1) Repeat density, (2) tandem repeat density, 
(3) gene density, (4) GC content and (5) SNPs identified by resequencing 
PMiGAP lines in 1-Mb bins. The genome assembly furnished an average 
GC content of 47.9% and contained 38,579 gene models with mean 
coding sequence length of 1,014.71 bp.
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most of the unassembled DNA (0.18 Gb) is most likely repetitive, too.  
This is not surprising, because multiple repeats will often collapse 
into a single repeat in an assembly and also because “repeat masking” 
is often performed before some assembly steps11–13. We expect the 
true percentage of repetitive DNA to be a minimum of 80%. This is 
similar to the proportion of repetitive DNA found in the 2.3-Gb maize 
genome (>85%), and considerably more than in 730-Mb sorghum14 
(~61%), ~400-Mb foxtail millet11 (~46%) or 466-Mb rice15 (~42%) 
genomes. In common with the pattern in many other plant genomes, 
long-terminal repeat (LTR) retrotransposons were the most abundant 
class of repetitive DNA, and comprise >50% of the nuclear genome of 
pearl millet (Supplementary Table 7). Using RepeatMasker, we found 
that sequence divergence rates were high (peak at 28%) among long 
interspersed nuclear elements (Supplementary Fig. 7).

Genes and annotation
A total of 69,398 transcriptome assembled contigs (TACs), amount-
ing to 43 Mb in total, were identified using pearl millet transcrip-
tome sequences from two different studies16,17 and a new pearl millet 
transcriptome assembly generated for this study (Supplementary 
Table 8). Ab initio homology-based gene prediction were com-
bined with transcript assembly to infer a non-redundant set of 
38,579 gene models with an average transcript size of 2,420 bp and 
an average coding sequence of 1,014 bp (Table 1; Supplementary 
Table 9). The average lengths of mRNA, CDS, introns and exons in 
pearl millet were similar to those reported for other cereal genomes 
(Supplementary Fig. 8). Among 458 of the most conserved genes in 
CEGMA, 437 (95.4%) genes were complete but 8 (1.7%) genes were 
not found in the genome sequence, 8 (1.7%) genes were not included 
in the gene set, and 5 (1.1%) genes had more than one copy (pos-
sibly fragmented genes). In addition, for 956 genes in benchmark-
ing universal single-copy orthologs (BUSCO) analysis, we annotated  
96.7% genes, and 95.4% of these are complete. Gene models of rice 
and Arabidopsis thaliana have been annotated and carefully vali-
dated. We chose to use the gene models of rice, which is more closely 
related to pearl millet than A. thaliana, to investigate the complete-
ness of pearl millet genes. Of the 4,202 single-copy genes in rice, 
90.86% have homologs in pearl millet, and 86% of these pearl mil-
let genes were complete when compared with rice gene models 
(ratio of pearl millet length/rice length 0.8), reflecting the com-
pleteness of single-copy genes. Gene density increased toward the  
ends of pseudomolecules (Fig. 1), consistent with findings in all 
other cereal genomes published to date11,14,15. Most of the annotated 
genes coded for proteins with homology to proteins in SwissProt18 
(55.61%) and InterPro (ref. 19) (65.53%). Functions were assigned to 
27,893 (72.30%) genes, leaving 10,686 (27.70%) genes unannotated 
(Supplementary Table 10).

Predicted pearl millet proteins were compared to those already 
annotated in ten plant species (Arabidopsis20, Brachypodium 
(Brachypodium distachyon)21, banana (Musa acuminata)22, barley23, 
foxtail millet11, maize24, rice15, sorghum14, soybean (Glycine max)25 
and bread wheat)26 and, as expected according to evolutionary relat-
edness, the highest number of orthologs were identified in foxtail 
millet (74.16%) and the lowest number in Arabidopsis (61.88%; 
Supplementary Table 11). Reciprocal pairwise comparisons of pre-
dicted proteins for 38,579 pearl millet gene models with 385,891 gene 
models from the same ten plant species (as above) identified 17,949 
orthologous groups (Supplementary Table 12), of which 5,232 con-
tained only a single pearl millet gene, which is suggestive of simple 
orthology (Supplementary Table 13; Supplementary Fig. 9). In addi-
tion to protein-coding genes, we predicted 909 tRNA, 235 rRNA, 183 

microRNA (miRNA) and 752 small nuclear RNA (snRNA) genes in 
our assembly (Supplementary Table 14).

Gene families
We identified unique and shared gene families among different spe-
cies in the grass subfamilies Panicoideae, Pooideae and Ehrhartoideae 
using OrthoMCL (Ortho Markov Cluster Algorithm http://orthomcl.
org/orthomcl/)27. Pearl millet and foxtail millet share 15,887 gene 
families (of those, 14,398 are also found in sorghum) while pearl 
millet and barley share 13,607 gene families (Fig. 2a). A total of 
15,869 gene families are present in at least one species in each of 
the three subfamilies (i.e., Panicoideae, Ehrhartoideae and Pooideae) 
analyzed (Fig. 2a). 354 gene families were substantially expanded 
in pearl millet and 1,692 gene families were contracted (Fig. 2b). 
We compared the average length of the genes for the 384 expanded 
gene families among all the ten species and used “Quantile” statistics  
concept to estimate the short CDS. In this concept, Q1 is “25th percen-
tile”, Q3 is “75th percentile” and interquartile range (IQR) is estimated 
as Q3–Q1. We consider a length shorter than Q1-3(IQR) to be an 
extreme outlier. By using this method, we found that only 24 (6.25%) 
genes had substantially shorter CDS in pearl millet genes compared 
to other species. Thus, only a small proportion of the expanded gene 
families might be misidentified because of possible partial genes 
(Supplementary Fig. 10).

Expansion and contraction of gene families between species might 
also highlight differences in bioinformatics analysis carried out for 
different genomes. Bias in gene model identification among differ-
ent studies might render a comparison of expansion or contraction 
challenging. One potential source of bias is if a gene is split, that is, a 

Table 1  Statistics of genome assembly
All scaffolds (≥1K) Scaffold ≥ 2K

Assembly features
Number of scaffolds 25,241 10,605
Total span 1,793,241,529 bp 1,773,407,327 bp
N50 (scaffolds) 884,945 bp 893,809 bp
Longest scaffold 4,816,714 bp 4,816,714 bp
Number of contigs 175,708 160,430
Total length of contigs 1,556,180,121 bp 1,536,443,592 bp
Longest contig 282,901 bp 282,901 bp
N50 (contigs) 18,180 bp 18,442 bp
GC content 47.90% 47.88%
Gene models
Number of gene models 38,579
Number of gene models (without 
transposable elements)

38,542

Mean transcript length 2,420.19 bp
Mean coding sequence length 1,014.71 bp
Mean number of exons per gene 4.09
Mean exon length 248.06 bp
Mean intron length 454.77 bp
Number of genes annotated 29,344 (76.06%)
Number of genes unannotated 9,235 (23.94%)
Non-protein coding genes
Number of miRNA genes 183
Mean length of miRNA genes 125.51 bp
miRNA genes share in genome 0.001%
Number of rRNA fragments 235
Mean length of rRNA fragments 265.70 bp
rRNA fragments share in genome 0.003%
Number of tRNA genes 909
Mean length of tRNA genes 75.86 bp
tRNA genes share in genome 0.004%
Number of snRNA genes 752
Mean length of snRNA genes 119.04 bp
snRNA genes share in genome 0.005%

http://orthomcl.org/orthomcl/
http://orthomcl.org/orthomcl/
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complete gene is instead annotated as two separate genes. Based on 
eukaryotic orthologous gene sequences, we estimate that 2.3% of our 
genes might have been misannotated in this way (Supplementary 
Table 6). Although we found that 1,692 families were contracted in 
pearl millet, contraction is 5.4 times more likely than expansion. One 
explanation may be that there was a far higher proportion of split 
genes in the reference genomes of the other species that we use for 
comparison than in our pearl millet assembly. This would make our 
number of gene family contractions an overestimate.

Gene families that seem to be the most greatly expanded are those 
encoding cutin, suberin, wax biosynthetic genes (P < 10−6) and trans-
membrane transporters of secondary metabolites (ABC transporters, 
P < 10−24) (Supplementary Table 15). Triterpenoids are a compo-
nent of wax, and we also observed a substantial expansion of the 
gene families associated with terpenoid backbone biosynthesis, and 
monoterpenoid (P < 0.05) and di-terpenoid biosynthesis (P < 0.005). 
Notably, increased cuticular wax synthesis improves drought toler-
ance in Arabidopsis species28, while reduced wax production has been 
associated with drought sensitivity in rice29. An enriched repertoire of 
genes for lipid synthesis and export of macromolecules in pearl millet 
might contribute to its heat and drought tolerance.

Resistance to pathogens is a crucial contributor to crop yield. The 
majority of resistance genes in plants contain a nucleotide binding 
site (NBS). Identification of NBS-containing genes in pearl millet 
will help to identify putative resistance genes. 378 NBS-encoding 
genes were manually verified after initial searching, comprising 
~1% of the total gene set, similar to the proportion found in other 
cereal genomes (Supplementary Table 16). NBS-leucine rich repeats 
(NBS-LRR) genes made up ~43% of the NBS-genes, with NBS-only 
genes comprising ~41%. Of the 378 NBS-encoding genes, 360 were 
mapped to one of the seven pseudomolecules, with significantly 
(Chi-squared test P-value < 10−10) biased distribution among the 
pseudomolecules; ~26.2% and ~25.7% were located on Pg4 and Pg1, 
respectively (Supplementary Table 17). These are also the same two 
pseudomolecules to which a downy mildew resistance quantitative 

trait locus (QTL) was mapped30. We observed large tandem arrays 
of NBS genes near the telomere region of Pg1 (two 4-gene groups, 
four 5-gene groups and one 6-gene groups) followed by Pg4 (three 
2-gene groups and two 4-gene groups) (Supplementary Fig. 11 and 
Supplementary Table 18), consistent with a biased distribution of 
these loci and suggesting that tandem duplication may be an impor-
tant source of local gene amplification.

Population structure, diversity and domestication
To better elucidate population structure, assess genetic diversity and 
understand pearl millet domestication, we resequenced 994 lines. The 
lines resequenced comprised 260 inbred male sterility maintainer (B-)  
and 320 male fertility restorer (R-) lines, 345 Pearl Millet Inbred 
Germplasm Association Panel (PMiGAP) lines (including cultivated 
germplasm from Africa and Asia, elite improved open-pollinated 
cultivars, hybrid parental inbreds and inbred mapping population 
parents)31, 38 inbred parents of mapping populations and 31 wild 
accessions. We generated a total of 1.16 Tb whole-genome resequencing  
(WGRS) data with 1.68× coverage (~3.05 Gb per line) on PMiGAP 
lines and a total of 116 Gb WGRS data with 1.86× coverage (~3.38 Gb 
per line) on parental lines of mapping populations (Supplementary 
Tables 19 and 20). In addition, for PMiGAP lines, 78.9 Gb of data 
at an average coverage of 0.12× was generated using genotyping by 
sequencing32, while for B- and R-lines, 614.45 Gb of data at 0.59× 
coverage with an average of 1.06 Gb per sample was generated using 
RAD sequencing33 (Supplementary Table 21). Single plants from 
each of 31 wild accessions sampling the Sahel from Senegal to Sudan 
were resequenced at an average 2× coverage using WGRS approach 
(Supplementary Table 22).

We identified 88,256 simple sequence repeat (SSR) motifs using 
the MIcroSAtellite program34 in the pearl millet genome sequence 
and designed primers for 74,891 SSR-containing sequences 
(Supplementary Tables 23 and 24), which can be used by the pearl 
millet community for genetics and breeding applications. Based 
on resequencing data, we identified 29,542,173 single-nucleotide  
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Figure 2  Gene conservation and gene family expansion and contraction in pearl millet. (a) Venn diagrams show the number of genes shared between 
different grass species and among grass families; pearl millet shares 14,398 genes with sorghum and foxtail millet; 13,027 genes with maize and rice; 
11,369 genes with barley and wheat. (b) 384 gene families are substantially expanded and 1,692 gene families are contracted in pearl millet compared 
with other plant genomes.
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polymorphisms (SNPs) in PMiGAP lines (Supplementary Table 25 
and details for parents of mapping populations and hybrid paren-
tal lines Supplementary Tables 26–28), 3,844,446 insertions and 
deletions shorter than 50 bp (Supplementary Tables 29–31), and 
423,118 genome-wide structural variations larger than 50 bp such as 
deletions, duplications and insertions (Supplementary Table 32 and 
Supplementary Figs. 12–15). We conducted a principal component 
analysis (PCA) and constructed a neighbor-joining tree based on 
450,000 high-quality SNPs. The PCA analysis and phylogenetic tree 
showed four main clusters, three that contained wild accessions and 
one that grouped together the cultivated germplasm (Fig. 3a,b). The 
three wild accession clusters were separated by geographical origin 
into East, Central and West African clusters (Fig. 3a,b).

The closest of the wild groups to the cultivated samples is from 
the central part of West Africa (Fig. 3b), indicating that pearl millet 
originated in this region, consistent with prior research35. The oldest 
archaeological remains, which date to 4,500 years ago, were found in 
the north-central Sahel, in accordance with our genetic analyses36. 
Studies of archaeological remains found that by 3,500 years ago 
cultivation of pearl millet was widespread in Sahelian Africa37–39. 
Spread of pearl millet agriculture to Asia, and in particular to India 
also dates to 3,500 years ago40. Average pairwise nucleotide diver-
sity within populations (θπ) and Watterson’s estimator of segregat-
ing sites (θω) both indicated high diversity among wild accessions 
(average θπ = 0.00366 and θω = 0.00342) compared with PMiGAP 
(average θπ = 0.00238 and θω = 0.00289) on all seven pseudomolecules 
(Supplementary Table 33). In agreement with the PCA analysis and 
neighbor-joining tree, we observed strong population structure in 
the wild accessions and weak population structure in PMiGAP lines 
(Supplementary Figs. 16 and 17). The weak cultivated pearl mil-
let structure suggests a homogenous genetic diversity across large 
geographical scale. This pattern is certainly associated with a rapid 
spread of pearl millet agriculture in Africa and India without major 
bottlenecks during diffusion. This pattern is expected for inbreds 
derived from a highly allogamous species. The strong structuration 
of wild diversity and the central geographical origin of the cultivated 
sample suggest strong untapped and unique diversity for breeding 
from wild populations found in East Africa (Sudan, Chad) and the 
West (Senegal, Mauritania).

Domestication in pearl millet, like that observed in maize24, was 
associated with profound modifications of spike morphology and plant 
architecture (Fig. 3c). We found several genomic regions that showed 
reduced diversity in the cultivated (but not wild) species that may harbor  
genes selected for during domestication. Using a negative log ratio 
of diversity between cultivated (red) and wild (blue) samples, values 
close to 1 indicate a tenfold decrease in diversity whereas values close 
to 0 indicate that diversity is maintained in the cultivated samples.  
We also identified regions with an excess of differentiation based on a 
fixation index (FST) measure (Supplementary Fig. 18). These analyses 
provided orthogonal and consistent results and identified 140 genomic 
regions with values above the 95% threshold for both loss of diversity 
and differentiation. Using a stringent threshold of 99.5%, and consid-
ering only values identified by both statistics, 24 genomic regions had 
reduced diversity in the cultivated germplasm, of which eight were 
located on Pg7, six on Pg6 and five on Pg1 (Supplementary Tables 
34 and 35). Linkage groups 6 and 7 have previously been identified 
as carrying QTL that explain most phenotypic differences between 
wild and cultivated pearl millet germplasm41,42. Most of the identified 
regions have negative Tajima’s D values (<−2.0), suggesting a signature 
of positive selection (Supplementary Table 34). One striking case of 
diversity loss of more than tenfold was associated with the regulation  

of an auxin-induced gene PINOID on Pg6. This gene is known as 
barren inflorescence2 (ref. 43) in maize, and variation in this gene has 
been associated with phenotypic variation of the inflorescence44. Our 
analyses also pinpointed genes encoding protiens that might be associ-
ated with morphogenesis (LIM2 and PINOID on Pg6, Myosin 11 on 
Pg7) or gene regulation (Basic helix–loop–helix, bHLH110 on Pg3, 
Zinc Finger on Pg6). Validation of the role(s) of each of these genes in 
domestication will require functional analyses and further phenotype– 
genotype association analyses using fine-scale QTL approaches.

GWAS
Genome-wide SNP data were used to compute linkage disequilibrium 
decay (LDD) in all three germplasm sets. We set the r2 threshold as 0.2 
and observed rapid LDD of less than 0.5 kb in B- and R- lines (48 bp)  
as well as in PMiGAP lines (84–444 bp) (Supplementary Fig. 19).  
LDD in pearl millet is on par with that in maize, and we note that 
both these plants are allogamous45. Relatively rapid LDD is expected 
in sets of lines that represent the variation present in a highly alloga-
mous panmictic population. Grain and stover yield, and its compo-
nent traits, is of crucial importance in pearl millet and has undergone 
selection during domestication. We carried out GWAS across 288 test-
cross progenies of PMiGAP lines for 20 traits, and identified 1,054 
strongly significant marker trait associations (MTAs) for 15 traits 
(Supplementary Table 36): grain number per panicle (91 MTAs), 
grains per square meter (75 MTAs), stover dry matter yield (kg ha–1;  
5 MTAs), fresh stover yield (t ha–1; 38 MTAs), tillers per plants  
(147 MTAs), panicle diameter (cm; 1 MTAs), panicle harvest index 
(%; 1 MTAs), panicle length (cm, EL; 3 MTAs), panicle yield (kg/ha; 
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Figure 3  Domestication and genetic diversity in elite and wild accessions 
of pearl millet. (a) Principal component analysis of 376 pearl millet lines 
(345 PMiGAP lines and 31 wild accessions) using 450,000 high-quality 
SNPs. Four different groups were identified: cultivated lines (red) and 
wild lines from east (blue), west (orange) and central Africa (pink).  
(b) Neighbor joining (NJ) tree based on 450,000 high-quality SNPs. 
This analysis also identified separate groups of cultivated and wild lines 
from east, west and central parts of Africa. (c) Morphological differences 
between wild (i, ii) and cultivated accessions (iii, iv) of pearl millet. Wild 
accessions have numerous bristled spikes in the inflorescence and low 
seed density (i), and a plant architecture characterized by numerous basal 
and aerial branches (ii), with a plant height of around 1 m. Cultivated 
accessions have exposed seeds and a high seed density per spike (iii), 
with a few basal branches and no aerial branches (iv).
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9 MTAs), panicle number (ha–1; 246 MTAs), plant population (ha–1;  
68 MTAs), grain yield (kg/ha; 11 MTAs), grain harvest index (%; 5 
MTAs), plant height (cm; 344) and 1000 grain mass (g; 10 MTAs). 
The MTAs explained 9–27% of phenotypic variation (Supplementary 
Table 36). Selected markers were found common across stress and 
year for important traits such as grain number per panicle on Pg1 
and Pg5 (Supplementary Fig. 20). These markers might be relevant 
for pearl millet breeding.

Genomic prediction of hybrid performance
We applied our resequencing data to carry out genomic selection to 
predict grain yield for test crosses. Four scenarios of prediction were 
investigated, namely the performance of grain yield in each of the 
three environments (control, early stress and late stress) and across 
environments. We observe high prediction accuracy, measured as the 
Pearson correlation coefficient between the predicted and observed 
values, standardized with the square root of the heritability (h = 0.78), 
amounting to 0.6 for the performance across environments. Analyses 
of this kind have been undertaken for grain yield in other crops using 
genomic selection46. A modelling study recently found that with this 
level of prediction accuracy, genomic selection could substantially 
improve selection gain per year47.

We also predicted hybrid performance, by using genomic selec-
tion strategy that considers additive and dominance effects. The ridge 
regression best linear unbiased prediction method46 was trained using 
phenotypic grain yield data from 64 pearl millet hybrids grown in 
five environments in India in replicated trials during the time period 
2004–2013. The grain yield data were analyzed with 302,110 SNPs 
with missing values below 5% and minor allele frequency above 5% 
for 580 B- and R- lines (Fig. 4a). We found 170 promising hybrid com-
binations (Supplementary Table 37 and Fig. 4a). Of these, 11 combi-
nations were already used for producing hybrids that showed better 
performance (Supplementary Table 38). However, 159 combinations 
have never been used in hybrid breeding (Fig. 4b), and therefore they 
are good candidates for developing high-yielding hybrids.

We inspected the predicted hybrid performance of all possible 
167,910 single-cross combinations by applying hierarchical clus-
tering combined with a heat plot, and examined the potential of 
this approach to identify promising heterotic groups. The analyses 
revealed two sets of lines that are predicted to have an average 8% 
higher hybrid performance when crossed to each other than the total 
set of 167,910 single-cross combinations (Fig. 4c and Supplementary 
Fig. 21). These predicted high-yield hybrids could be used as a 
nucleus to establish high-yielding heterotic groups for hybrid pearl 
millet breeding48 (Supplementary Tables 37 and 38).

DISCUSSION
Pearl millet is a staple food for more than 90 million people in Africa 
and Asia. People living in arid and semi-arid regions, in particular,  
rely on pearl millet, which can crop in the harsh conditions. We 
sequenced the genome of pearl millet reference genotype Tift 
23D2B1-P1-P5 (available at https://www.ncbi.nlm.nih.gov/assembly/ 
GCA_002174835.1/). The draft genome assembly presents 90% of 
the pearl millet genome with N50 of scaffolds as 884.95 kb and 
87.2% assembled genome into seven pseudomolecules. The genome 
assembly of cereal species like pearl millet with high levels of 
repetitive DNA is always challenging. Therefore, in addition to a 
WGS approach, BAC-sequence data were used to develop the draft 
genome assembly and PacBio data were generated to validate the 
assembly. To achieve chromosome level assembly, one can use new 
approaches of sequencing such as Bionano Genomics optical map-
ping and Dovetail Genomics chromosome confirmation capture 
data in different combinations49.

Our analysis identified 38,579 protein-coding genes, of which 
27,893 (72.30%) were annotated. CEGMA and BUSCO analyses 
together with comparison with gene models of rice have indicated 
completeness of predicted genes in pearl millet. Expansion of gene 
families associated with terpenoid backbone biosynthesis and monot-
erpenoid and diterpenoid biosynthesis in the genome might explain 
the high level of heat and drought tolerance in pearl millet as com-
pared to other cereals.

Genome sequence can provide information either about specific 
genomic regions or specific genes that are associated with agronomi-
cally important traits including grain and fodder yield. Pearl millet 
fodder is the main feedstock for ruminant (and other) livestock, and 
breeding to improve fodder quality and yield is of crucial importance 
to both the meat and the dairy industries. In order to identify loci or 
variants associated with agronomic features, we undertook a large-
scale resequencing effort. Resequencing of the PMiGAP set revealed 
that small structural rearrangements, such as insertions and deletions 
in the genome have occurred throughout the evolution of pearl millet. 
This is similar to observations made in maize: a third or more of maize 
genes seem to be optional. Frequent insertions and deletions pose 
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Figure 4  Prediction of hybrid performance. Grain yield of 64 different 
pearl millet hybrids, produced by crossing 20 male and 23 female lines, 
was evaluated at five locations (Jamnagar, Anand, SK Nagar, Mahuva, 
Kothara in India) during 2004–2013. Phenotyping data (Supplementary 
Data set 1), together with 302,110 high-quality SNP marker data 
obtained from 580 B and R- lines (Supplementary Table 27), were used 
to predict hybrid performance. Ridge regression-BLUP, which takes 
additive and dominance effects into account, was used to predict hybrid 
performance. (a) Prediction accuracy was studied using 500 cross-
validation tests. In each cross-validation, 48 hybrids were randomly 
selected as a training set and the remaining 16 hybrids were used as a 
test set. (b) Promising hybrid combinations that include parental lines 
that have not been used in breeding efforts previously were identified 
for testing and release as better hybrids. (c) Heat map showing putative 
heterotic groups.
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substantial challenges to resequencing efforts because self-pollinated 
and small-genome species such as rice are easier to sequence and 
analyze as compared to cross-pollinated and large-genome species 
like maize owing to their increased genomic structural variability50. 
With an objective to save the cost, but without losing information, 
1.68× coverage WGRS data and 0.12× GBS data were generated on 
PMiGAP lines and 0.59× coverage RAD-sequencing data were gener-
ated on B- and R- lines.

The sequence information from the more genetically diverse 
PMiGAP inbred panel will be of broader use for genome-wide 
association mapping and allele mining. All of these sequences 
are available at https://www.ncbi.nlm.nih.gov//sra/?term= 
SRP063925. Resequencing data of almost 1,000 pearl millet  
lines (963 inbreds of cultivated pearl millet and 31 heterozygous 
wild individuals, available at https://www.ncbi.nlm.nih.gov//
sra/?term=SRP063925) provides researchers and breeders with 
an enormous resource of genome-wide variations including  
SNPs, indels, SSRs and structural variations (Supplementary 
Tables 23–32) for mining alleles of genes with significant MTAs 
and for developing pearl millet hybrids with increased heterosis. 
Our analysis on resequencing data on PMiGAP lines together with 
phenotyping data for 20 traits for GWAS and genomic selection  
suggests that simultaneous improvement of grain and stover yield 
might be feasible in pearl millet. Indeed, improved grain and stover 
yield performance of hybrids in India has been noted over the past 
50 years, which underlines the potential for further improvements 
that could be informed by our analyses.

We also show the use of the genome sequence and resequencing 
information to make predictions of test-cross hybrid performance. 
After inspecting predicted hybrid performance of 167,910 single-cross 
combinations, we identified 159 pair of lines that have not been used 
so far for hybrid breeding but can exhibit high hybrid performance. 
This type of analysis has considerable potential for accelerating future 
rates of selection gain. Our prediction models were also applied to 
define heterotic pools for pearl millet for South Asia, which could be 
crucial for increasing the efficiency of hybrid breeding programs in 
the same region.

Together the draft genome and resequencing data provide a 
resource for the research community that should enable a better 
understanding of trait variation and accelerate the genetic improve-
ment of pearl millet. For instance, we identified 1,054 MTAs for 15 
agronomic traits that will be useful for pearl millet breeding. Our 
findings will also contribute to a better understanding of the genetic 
basis of the exceptional drought and heat tolerance of pearl millet as 
we have identified expansion of gene families associated with drought 
and heat tolerance. A detailed understanding of how well pearl millet 
crops do in hot, arid and semi-arid regions might enable engineering 
of not only pearl millet but also other cereal crops like rice, maize 
and wheat, which are currently able to provide only limited produce 
in arid or semi-arid regions. This is especially important owing to 
the pressing need for heat- and drought-tolerant cereal crops in the 
coming years.

Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Plant material. The pearl millet genotype Tift23D2B1-P1-P5 was bred at the 
Coastal Plain Experiment Station (Tifton, Georgia, USA) by introducing the 
d2 dwarfing gene into the genetic background of elite seed parent maintainer 
line Tift 23B1, and was chosen to generate a draft genome sequence.

Three bi-parental mapping populations were used to develop the genetic 
map for organizing scaffolds into pseudomolecules. These populations were: 
(i) a small recombinant inbred line (RIL) population developed at ICRISAT, 
Patancheru, based on the cross ICMB 841-P3 × ICMB 863B-P2 (MAPPOP1); 
(ii) a RIL population developed at the Coastal Plain Experiment Station, Tifton, 
Gerogia (USA) based on Tift 99B × Tift 454 (MAPPOP2); and (iii) an F2 popu-
lation derived from a wild × domestic cross (MAPPOP3) from Institut de 
Recherche pour le Developpement (IRD) France. 580 B- and R- lines included 
200 B- and 200 R- lines from ICRISAT plus 60 B- and 120 R- lines from 5 
organizations from India namely Haryana Agricultural University, Hisar, 
Haryana; Junagadh Agricultural University, Jamnagar, Gujarat; Mahatma 
Phule Krishi Vidyapeeth, Dhule, Maharashtra; Sri Karan Narendra Agriculture 
University, Durgapura, Rajasthan; and JK Agri Genetics Ltd., Hyderabad, 
Telangana, were resequenced using restriction-site-associated DNA (RAD) 
sequencing (Supplementary Table 39). The PMiGAP lines contains 345 lines: 
263 landraces/traditional cultivars, 46 breeding lines, 25 advanced/improved 
cultivars and 11 accessions with unknown biological status and represents 
germplasm from 27 countries in two continents (Supplementary Table 40). 
These 345 accessions were subjected to WGRS. In addition, 38 inbred par-
ents of mapping populations segregating for drought, downy mildew and 
rust (Supplementary Table 41) and 31 wild accessions representing seven 
countries (Mali, Mauritania, Senegal, Sudan, Chad, Mali and Niger) were also 
resequenced using the WGRS approach (Supplementary Table 42).

Whole genome shotgun sequencing and assembly. We constructed 10 small 
insert libraries including 4 with 170 bp insert, 2 with 250 bp insert, 2 with 
500 bp inserts and 2 with 800 bp insert, and 13 mate-pair libraries including 
4 with 2 kb insert, 4 with 5 kb insert, 2 with 10 kb insert, and 2 with 20 kb 
insert and 1 with 40 kb insert from pearl millet genotype Tift 23D2B1-P1-P5. 
To make libraries with ~170 to ~800 bp inserts, high quality DNA samples 
were sheared, end-repaired, and ‘A’ bases were added to the 3′ end of the DNA 
fragments to facilitate ligation to adapters. Fragments in the appropriate size 
range were selected after separation on an agarose gel and amplified using 
PCR. For mate-pair libraries, a biotinylation reaction was performed after 
fragmentation and end-repair. Then DNA fragments of the required size were 
selected and circularized. Circular DNAs were sheared into approximately 
400-600 bp fragments, and biotinylated fragments were captured for terminal 
modification and adaptor ligation to construct libraries. Paired end reads were 
generated for each library on an Illumina HiSeq 2000 platform.

For BAC library construction, DNA from pearl millet genotype Tift 23D2B1-
P1-P5 was fragmented using HindIII and EcoRI, and then ligated into vector 
pCC1BAC. The ligations were transformed into E. coli DH10b host cells. After 
DNA isolation from BAC clones, Covaris LE220 system was used to shear 
DNA into ~500 bp. Agilent Bravo Automated Liquid Handling Platform and 
an Agilent BenchCel Microplate Handler were used to construct BACs for 
sequencing. Then 96-microTUBE plates (Covaris) were used as sample ves-
sels for automated batch processing followed by index adaptor ligation and 
size selection51. Generally, the sizes of the BAC ranged from 80 -180 kb and 
fragments for sequencing were about 500 bp. In total 100,608 BAC clones 
were constructed and HiSeq 2000 was used for sequencing paired end reads 
of each BAC clone.

For each library, we filtered the reads that comprised more than 5 percent 
of “Ns” or polyA structure, and also removed reads that possessed 20 or more 
bases with quality score less than or equal to 7. Reads with >10 bp aligned to 
the adaptor sequence (allowing ≤3 bp mismatch) were considered as adap-
tor contaminants and removed. Additionally, paired-end reads with a total 
length smaller than the library insert size allowing a window of 30 bp were 
removed. We also trimmed the reads if the quality of bases at the head or tail 
of the reads was low.

k-mer analysis. We performed k-mer analysis52 for the estimation of the 
genome size of pearl millet genotype Tift 23D2B1-P1-P5. Genome size was 

estimated by the formula: Genome size = k-mer_num/Peak_depth where k-
mer_num was the total number of k-mers and Peak_depth was the expected 
value of k-mer depth obtained from the distribution curve. The number of 
k-mers (generally K = 17) was calculated from short fragment size reads with a 
one bp slide, and then the frequency of each k-mer was determined. A distribu-
tion curve of depth versus frequency was plotted, where the x-axis represents 
the depth and the y-axis represents the proportional frequency at that depth 
divided by the total frequency of all the depths.

Development and improvement of genome assembly. For WGS assembly, 
clean reads were assembled by SOAPde novo53 (Version 2.04) (parameters: 
pregraph -s assembly.lib -K 63 -R -d 1 -o pm; contig -g pm –R; map -s assembly.
lib -g pm -k 45; scaff -g pm). The k-mer frequency follows a Poisson distribu-
tion when read length << genome size54. Short insert libraries were assembled 
into contigs. The reads were mapped back onto the contigs to estimate overlap 
between contigs. Gapcloser53 (Version1.10, parameter: -a pm.scafSeq.fill -b 
reads.lib -o pm.scafSeq.fillGap -t 24) within the SOAPde novo package was 
used to fill gaps in the scaffold with paired end reads. BAC-by-BAC sequencing 
of 100,608 BAC clones was conducted to improve the quality of the genome 
assembly. Each sequenced BAC was assembled separately by SOAPde novo. 
First, sequences shorter than 2,000 bp or having more than 30% unknown bases 
in BAC clones were discarded. The remaining sequences were then pooled with 
WGS scaffolds together to extend and collapse redundant sequences.

For improving WGS-based assembly, BAC- sequence data were included 
in analysis using Rabbit package55. This package consists of three modules: 
Relation Finder, Overlapper and Redundancy Remover. In the first step, 40 bp 
at the end of each sequence was trimmed as they turn to be of lower quality. 
Then overlapping between sequences were detected by BLAT56 with minimum 
overlap length set to be 3,000 bp. In second module for extension, overlapping 
with identity greater than 90% were merged and sequences were extended. To 
avoid the duplicates in the final assembly, segmental duplications and diver-
gent haplotypes were identified and filtered based on the Poisson-based k-mer 
model following methods described in Liu et al.52. To evaluate the assembly of 
the pearl millet genome, we first calculated the length and N50 distribution 
for the BAC sequences. The BAC lengths ranged from 80-140k, and their N50s 
were from 10-40k (Supplementary Fig. 22). Gaps can occur in the fragmented 
BAC assemblies since the insert size of the pair end reads is 500 bp. PacBio 
reads were processed using Blasr (processed with PBJelly pipeline) to evaluate 
the assembled sequence.

GBS and SNP calling on mapping populations. GBS libraries were prepared 
using restriction enzyme ApeKI as described by Elshire et al.32. The MAPPOP1 
and MAPPOP2 populations were sequenced at 384-plex (that is, 384 samples 
per flowcell lane) on an Illumina HiSeq 2000, while the MAPPOP3 popula-
tion was sequenced at 96-plex (96 samples per flowcell lane). SNPs were called 
using the TASSEL-GBS pipeline in TASSEL v4.1.3257. The TASSEL-GBS pipe-
line incurs an overhead for each separate pseudomolecule processed, hence we 
concatenated the thousands of individual scaffolds into ~20 megascaffolds to 
ease computation. Reads were processed into clean 64 bp “tags” and mapped 
against the reference scaffolds with Bowtie 2 (ref. 58). SNPs were called with 
the DiscoverySNPCallerPlugin in TASSEL, with minimal filters to reduce the 
number of false positives due to sequencing errors (minor allele frequency 
≥ 0.01, minor allele count ≥ 10, genotype calls in at least 10% of samples) 
(Supplementary Code 1).

RAD sequencing. Genomic DNA of each B- and R- individual was digested 
with EcoRI. After electrophoresis, DNA fragments of the desired lengths were 
gel purified. Adaptor ligation and DNA cluster preparation were performed 
and fragments were sequenced on an Illumina HiSeq 2000 platform. Similarly, 
29 DNA libraries were constructed for B- and R- lines (580 samples) and 
sequenced using the RAD-Seq approach33.

Genetic map construction. SNPs called from the GBS data on three pop-
ulations (MAPPOP1, MAPPOP2 and MAPPOP3) were first filtered for 
quality based on minor allele frequency, missingness and heterozygosity 
(Supplementary Code 2). Linkage groups were defined based on hierarchical 
clustering of SNPs and ordered with MSTMap. For each population, we created 
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three maps: one from stringently filtered SNPs, one from moderately fileted 
SNPs, and one mapping GBS sequencing tags back to the stringently filtered 
map (Supplementary Code 2). The framework map generated in the largest 
RIL population (Tift 99B × Tift 454) formed the basis of an initial colinearity 
study between pearl millet and foxtail millet, and the resulting comparative 
knowledge was used to incorporate additional scaffolds for which orthology to 
the foxtail millet genome had been established using BLASTP (to identify puta-
tive orthologous pearl millet and foxtail millet genes at an E-value threshold 
of 1e-5) and MCScanX59 (to identify colinear segments of at least five syntenic 
genes between pearl millet and foxtail millet) analyses into the framework 
map. The genetic maps generated for each of the crosses, and the map that we 
built based on collinearity information between pearl millet and foxtail millet, 
were merged using ALLMAPS60 with the most weight assigned to the synteny 
map followed by the stringent SNP maps, the moderately filtered SNP maps, 
and finally the GBS sequencing tags (Supplementary Code 3). Linkage group 
numbering was adopted as per an existing consensus map17 based on mapping 
SSR sequences to the assembled genome (Supplementary Code 3).

Repeat annotation, gene prediction and genome annotation. We searched 
the genome for tandem repeats with Tandem Repeats Finder61 (Version 
4.04) (parameters: 2 7 7 80 10 50 2000 -d -h). Transposable elements (TEs) 
were identified in the genome by a combination of homology-based and de 
novo approaches62. For homology-based predictions, we used the repeat 
database Repbase16.1063 to identify known repeats in the genome assem-
bly with the program RepeatMasker64 (Version 3.3.0) (parameter: -nolow -
no_is -norna -parallel 1 -lib RepeatMaskerLib.embl.lib). At the protein level, 
RepeatProteinMask, a software in the RepeatMasker package, was used to 
perform RMBlast against the TE protein database (parameter: -noLowSim-
ple -pvalue 0.0001). For de novo prediction, the programs RepeatModeler65 
(Version 1.0.5) and LTR_FINDER66 (Version 1.0.5) were used on the entire 
genome to generate a pearl millet repeat database, which was subsequently 
used as input library with RepeatMasker (Version 3.3.0) to identify TEs.

For predicting genes, we applied several approaches: (i) Homology-based 
prediction: Proteins previously annotated in other species (Supplementary 
Table 9) were mapped to the genome using BLAT56 (Version 34) with default 
parameters. Alignments in which the coverage of the query protein was less 
than 0.3 were removed. In addition, if there were multiple BLAT hits (BLAT 
output was set to the five best hits), secondary hits were removed if their 
aligned length was less than 0.3 of the aligned length of the top BLAT hit 
to filter paralogs with lower sequence identity. GeneWise67 (with parameter 
-trev -sum -genesf) was used to predict spliced alignments. (ii) De novo gene 
prediction: AUGUSTUS68 (Version 2.5.5,–species = maize–uniqueGeneId =  
true–noInFrameStop = true–gff3 = on–strand = both) and Fgenesh69 
(Version 1.3) were used to detect gene models in the repeat masked genome. 
(iii) Prediction based on transcript sequences: The assembled transcriptome 
sequences were aligned to the genome assembly using BLAT (Version 34) 
using the parameters identity ≥ 0.98 and coverage ≥ 0.98 to generate spliced 
alignments. (iv) Integration evidence: Source evidence generated from the 
three approaches mentioned above were integrated using GLEAN70 to produce 
a consensus gene set.

To annotate the function of the final gene models, protein sequences 
were aligned against KEGG71 (release 58) and SwissProt18 (release 20156) 
with BLASTP (E-value ≤ 1.0e-05) to find the best matches. InterProScan19 
(Version4.8, performed with profilescan, blastprodom, hmmsmart, hmmpan-
ther, hmmpfam, fprintscan and patternScan analysis) was used to identify 
motifs and domains in the proteins encoded by the gene models along with 
gene ontology annotations72. For ncRNA annotation, tRNA genes in the 
assembly were identified by tRNAscan-SE73 (Version 1.23). rRNA genes were 
aligned with plant query sequences (rRNA from Arabidopsis and rice species) 
using BLASTN with an E-value threshold of 1.0e-05. Other non-coding RNAs, 
such as miRNAs and snRNAs were predicted by homology searches against the 
Rfam database74 using the INFERNAL75 (Version 0.81) software.

RNA seq data generation and development of transcriptome assembly. The 
transcriptome sequence data were generated from individuals “9-8” and “3-
9” accessions at IRD. Library preparation and sequencing (PE 100 bp) on an 
Illumina Hi-Seq 2000 platform was performed by Fasteris (Plan-les-Ouates, 

Switzerland). A total of 81,207,232 and 74,187,066 sequence reads were 
obtained for “3-9” and “9-8”, respectively. Adaptor sequences were trimmed 
and reads were processed for de novo assembly using Velvet 1.0.1876 and then 
Oases 0.1.1877. Several values of hash length were tested to optimize the assem-
bly: 39, 51, 63, 65, 69 and 73. The obtained assemblies were compared for 
their ability to map raw reads using BWA78. We consequently decided for a 
hash length of 73. The transcript assembly was then searched for redundancy. 
Contigs sharing identity over ≥95% of the length of the shortest sequence in 
a set of putative homologous sequences were clustered. The final transcript 
assembly contained 50,313 contigs, with a total of 36,479,993 nucleotides. 
Three transcriptomes (Zeng et al.16, Rajaram et al.17, and the transcriptome 
data generated at IRD, France, available under BioProject ID PRJNA391885) 
were combined and clustered using CDHIT-EST79 with default parameters to 
eliminate redundancy at the sequence level. Then, CAP380 was used to assem-
ble the contigs. Ns on either end of the resultant contigs were trimmed. Finally, 
contigs of at least 200 bp in length were used in gene annotation.

Gene family and phylogenetic analysis. For gene family analysis, BLASTP 
with an E-value cutoff of ≤ 1.0e-05 was used to compare all annotated pearl 
millet protein sequences against a protein data set of 10 sequenced plant 
species (Arabidopsis20, Brachypodium21, banana22, barley23, foxtail millet11, 
maize24, rice15, sorghum14, soybean25 and T. urartu26). The proteins were clus-
tered using OrthoMCL27 (–mode 3) to define gene families which included 
both paralogs and orthologs. The number of gene families in each species and 
genus was calculated based on the composition of the OrthoMCL clusters. 
Genes that were single copy in an OrthoMCL cluster for all species analyzed 
were selected to construct a phylogenetic tree using the PhyML (parameters:  
-d nt -b -4 -m HKY85 -a e -c 4 -t e) program81 (Version 3.0). Divergence times 
between pearl millet and other species were estimated using MCMCTREE82 
with default parameter. First, the gene family size for each species was calculated 
based on the output of OrthoMCL, and rooted tree in newick format. CAFE83  
(-p 0.05 -t 4 -r 10000 -filter) was used to predict the expansion and contraction of 
gene family numbers based on the phylogenetic tree and gene family statistics.

Population analysis. Population genetic analyses of the PMiGAP lines, includ-
ing PCA and diversity detection were conducted essentially as described for 
rice by Xu and colleagues84. We used a subset of 450,000 SNPs, with a missing 
rate <10% across PMiGAP lines and wild accessions. Briefly, for PCA, eigen-
vector decomposition of the SNP genotype data was calculated using the R 
function eigen85. A Tracey-Wisdom test with default parameter settings was 
performed to determine the significance of axes using the twstats program. 
To build a phylogenetic tree, the percentage of pairwise nucleotide differences 
between individuals (p-distance) was calculated85. The program fneighbor 
(PHYLIPNEW v3.69.650 within the package EMBOSS v6.6.0.0; parameter: 
-matrixtype s -treetype n) was used to construct a neighbor joining tree. The 
resulting tree was edited and visualized using MEGA586 by choosing Radiation 
style. Population structure was assessed using the program Snmf (–k K –c)87. 
Five runs were performed and the values with the smallest Cross-Entropy for K 
from 2 to 7 were selected to generate the structure graphs. To better assess the 
structure, we performed the analysis in a geographical context, using TESS388 
that takes geographical coordinates of the sample into account. Furthermore, 
parameters of population genetic diversity π, θω and differentiation (FST) were 
calculated based on the SNP data as described earlier85. To analyze diversity 
across the genome, we used a window of 100 kb and calculated the diversity 
π, θω and differentiation FST for each window for PMiGAP lines and wild 
accessions using BioPerl modules (Bio::PopGen::Statistics and Bio::PopGen::
PopStats) on a sliding window of 100 kb using genotype data. The effective 
sequence length (without Ns) in each window was used as the denominator 
to calculate per-bp values. We then calculated a minus log of the ratio of 
diversity between cultivated and wild samples: –log (π cultivated/ π wild). For 
this log ratio of diversity and differentiation, we retained the most extreme 
values using a classical threshold of 95% for a unilateral test and a more strin-
gent threshold of 99.5%. This later stronger stringent threshold was used to 
identify the most likely gene candidates selected during domestication. Loci 
with higher levels of differentiation (most extreme FST) and stronger loss of 
diversity in the cultivated compared to the wild accessions were considered 
to be provisionally involved in the domestication process.
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Identification of NBS domain, TIR domain, LRR motif and CC motif. All 
pearl millet proteins were assessed for the presence of NBS domains (PF00931, 
NB-ARC) using the Hidden Markov Model based method implemented in 
hmmsearch (version 3.0)89 with an e-value cutoff = 1. To filter false positive 
hits, all identified NBS containing proteins were screened against the Pfam-
A database. NBS domains that overlapped with other domains identified at 
lower e-values were filtered out. Likewise, the TIR domain (PF01582) was 
used as query against all pearl millet proteins with hmmsearch and further 
checked by looking at the overlapping domains. To detect LRR motifs, pre-
dicted NBS encoding proteins were searched against 10 LRR families in LRR 
clan (CL0022) with an e-value cutoff = 1. All regions predicted as LRR motifs 
and not overlapping with other domains identified with lower e-values were 
considered real LRR motifs.

SNP calling, structural variation and linkage disequilibrium (LD) decay. 
Sequence reads generated for the B- and R- lines, PMiGAP lines, and parental 
lines and wild lines were mapped separately to the pearl millet genome assem-
bly using BWA (v0.6) (parameter: aln -n 0.04 -o 1 -e 30 -i 15 -d 10 -l 35 -k 2 
-m 2000000 -t 4 -M 3 -O 11 -E 4 -R 30 -q 0 -I; sampe -a 500 -o 100000 -n 3 -N 
10 -c 1.0e-05). The BAM files generated by BWA were sorted and provided as 
input to the GATK software package90 (Version 3.1-1). The UnifiedGenotyper 
module within GATK was used to detect SNP variants. The variants were 
filtered using VariantFiltration, a module from GATK (parameters: QD < 2.0 
|| FS > 60.0 || MQ < 40.0 || HaplotypeScore > 13.0; parameters for indel: QD < 
2.0 || FS > 200.0), and the number of variants distribution in intergenic/coding 
regions were calculated. The data used in the downstream analysis were con-
trolled with MAF 0.05 and missing rate 0.5. SNPs with a mean depth > 100 
and missing rate > 0.5 were removed. The remaining SNPs were used in fur-
ther analyses. Variants for wild lines that used in population structure and 
domestication analysis were detected together with PMiGAP accessions and 
processed with the same strategy (BAM and VCF files available at http://ceg.
icrisat.org/ipmgsc/).

The BAM files from each resequenced accession was analyzed by 
Breakdancer (version 1.1.2)91 with default parameters to detect structural 
variation namely, deletions, insertions, inversions, and intra-chromosomal 
translocations. Breakdancer results of accessions that come from a same line 
(see Supplementary Table 32) were combined to remove redundancy and to 
calculate the number and length of the rearrangements.

Using SNP data sets from PMiGAP lines, Haploview software92 (-maxdis-
tance 250 –minMAF 0.05 -dprime -memory 5096) was used to calculate cor-
relation coefficient (r2) values for LD. The average (r2) values between pairwise 
distances (bp) were calculated and figures were plotted using R.

Statistical analysis. Phenotyping data and GWAS analysis. For establishing 
marker trait associations, 288 test cross hybrids were generated by crossing of 
PMiGAP lines as pollen parents with a common seed parent ICMA 843-22. 
These hybrids were grouped by maturity (early, medium early, medium and 
late) and phenotyped for 20 morphological traits under two drought stress 
conditions (early and late stress) along with controls (or no stress) for two years 
(2011, 2012). Experiments were conducted in an alpha-lattice designs with 
two replications in three test environments during Summer 2011 and 2012 
(January to May) in the red precision (RP) experimental fields at the ICRISAT, 
Patancheru, Telengana, India (545 m above mean sea level, 17.53° N latitude 
and 78.27° E longitude). The early maturity group consisted of lines which 
had days to 50% flowering (DFF) from 42-52 days; the medium-early matu-
rity group consisted of lines with DFF from 53-57 days; the medium maturity 
group consisted of entries with DFF from 58-62 days; the late maturity group 
consisted of lines which recorded more than 62 days for DFF. Early drought 
stress is a more severe stress imposed by withholding irrigation from about 
one week before flowering until maturity. Late stress is a less severe drought 
stress initiated during early grain-filling by withholding irrigation from 50% 
flowering time till maturity.

The three test environments consisted of early-onset of stress, late-onset 
stress, and a common, fully-irrigated non-stress treatment. Drought stress 
was imposed by withholding irrigation from about one week before flowering 
in early-onset treatment, while drought stress in the late-onset treatment was 
imposed by withholding irrigation from 50% flowering. Data were recorded for 

a total of 20 traits namely, grain yield (GYHA), panicle yield (HYHA), panicle 
harvest index (PHI), time to 75% flowering (TB), plant height (PH), panicle 
length (EL), panicle diameter (ED), panicle number (HCHA), number of till-
ers per plant (Till), biomass yield (BM), grain harvest index (HI), thousand 
grain weight (TGW), grain number per panicle (GNP), grain number per m2 
(GNM2), agronomic score (AgS), stover dry matter fraction (DMF) and veg-
etative growth index (GI). PH, EL, and ED were measured on the main stems 
of five representative plants of each entry in a plot at maturity. At harvest, 
data were recorded from the harvested area on plant population (PCHA), 
panicle numbers (HCHA) and fresh stover yield (FSWTHA). Effective tiller 
number (Till) was calculated as the ratio HCHA/PCHA. HYHA, GYHA and 
TGW were recorded after oven drying for about 24 h. Stover dry matter yield 
(DMY) was estimated from plot FSWTHA using the fresh and dry weights of a  
chopped subsample of stover from each plot. BM was calculated as HYHA 
+ DMY on a plot basis. Grain number per panicle (GNP) was derived from 
primary data as [(GYHA/HCHA)/ (TGW/1000)]. Grain harvest index was 
calculated as the ratio between grain yield and biomass yield at harvest, and 
panicle harvest index as the ratio between grain weight and panicle weight. 
Flowering time was recorded as days from seedling emergence to stigma emer-
gence for 75% of the main shoots in a plot. The traits measured include grain 
yield (kg/ha), panicle yield (kg/ha), panicle harvest index (%), time to 50% 
flowering (number of days), plant height (cm), panicle length (cm), panicle  
diameter (cm), panicle number, tillers per plant, biomass yield (kg/ha), 
vegetative growth index (kg/ha/day), grain harvest index (%), fresh stover 
yield (t/ha), stover dry matter yield (kg/ha), stover dry matter fraction,  
1000-grain mass (g), grain number per panicle, and grain number per m2 
(Supplementary Data set 2). Analysis of variance for all traits was performed 
using the PROC MIXED procedure in SAS 9.3 (SAS Institute Inc 2013) with 
Kenward-Roger degree of freedom approximation method considering rep-
licates and accessions as fixed effects, whereas incomplete blocks within  
each replication were considered as random effects for combined intra and 
inter block analysis. Best linear unbiased estimates (BLUEs) were calculated 
for all accessions.

For GWAS analysis, a total of 3,117,056 SNPs retained after filtering the 
minor alleles (MAF<0.05) and 20% missing data were used. Marker-trait asso-
ciations were established using AOV model with a bloc effect for maturity 
group in R (Phenotype~Bloc+SNP). We tested the suitability of the model by 
plotting the observed P-values from the association test against an expected 
(cumulative) probability distribution. These quantile-quantile (q-q) plots 
clearly indicated that we corrected properly for population stratification 
(Supplementary Fig. 23). Significance of associations between loci and traits 
were determined adjusting for multiple testing by using FDR at a 0.001 thresh-
old level and considering p value lower than 10−10.

Genomic prediction analysis for testcross performance. Grain yield performance 
of 259 PMiGAP lines was used for hybrid prediction analysis. In our analysis, 
flowering time was considered as a cofactor. For genomic prediction analysis, 
we performed a one-stage phenotypic data analysis on 259 PMiGAP lines as 
test cross hybrid trials using a linear mixed model that included genotype, 
flowering time, year, stress, interaction among genotype, stress and year, rep-
lication, incomplete block and residual effects. The effect of flowering time 
was always assumed to be fixed. When estimating variance components, all 
other effects were assumed to be random. To get the BLUE of each line, we set 
the genotype effect as fixed.

The heritability on the line mean basis was estimated as 

h

y s ys ysr

G

G
G Y G S G Y S E

2
2

2
2 2 2 2

=

+ + + +× × × ×

s

s
s s s s

where sG
2 , sG Y×

2 , sG S×
2 , sG Y S× ×

2  and sE
2  are variance components arising 

from genotype, genotype × year interaction, genotype × stress interaction, the 
three-way interaction and the residual, respectively. y, s and r are the number 
of different years, stresses, and replications. In addition, we calculated the 
BLUE for each genotype in each environment (stress versus control) across 
years. That is, for each environment we fitted a linear mixed model includ-
ing genotype, flowering time, year, genotype × year interaction, replication, 
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incomplete block and residual effects. The assumptions of the parameters were 
similar to above. The heritability in this case was estimated as 

h

y yr

G

G
G Y E

2
2

2
2 2

=

+ +×

s

s
s s

All phenotypic data analyses were done using the ASreml- R 3 software93.
A total of 2,235,060 SNPs with <20% missing rates were used with above 

mentioned phenotyping data for genomic prediction analysis. We used the 
genomic best linear unbiased prediction (G-BLUP) model for genomic selec-
tion: y Zg en= + +1 m , where y refers to n-dimensional vector of phenotypic 
records, 1n is an n-dimensional vector of ones, m  is the mean, g is an n-dimen-
sional vector of additive genotypic values and e is an n-dimensional vector of 
residual terms.

In the model y Zg en= + +1 m  we assume that m  is a fixed parameter, and 
g, e are random parameters with e N I e∼ ( , )0 2s  and g N G g∼ ( , )0 2s , where G 
denotes the n × n genomic relationship matrix. G was calculated as follows: Let 
X = (xij) be the n × p matrix of SNP markers, where xij equals the number of a 
chosen allele at the jth locus for the ith genotype. Let pj be the allele frequency 
of the jth marker. W = (wij) is an n × p matrix with wij = xij − 2pj.

Then we have 
= ′

−=∑
WW

p pk kk
p2 11 ( )

.

Note that when calculating the kinship coefficient for two genotypes, only 
those markers without missing values in both genotypes were considered.

The accuracy of genomic prediction was evaluated by fivefold cross-valida-
tion with a total of 100 cross-validation runs. The cross-validated prediction 
accuracy was calculated as the Pearson product-moment correlation between 
predicted and observed genotypic values of the lines in the test set. The GBLUP 
model was implemented using the R software94.

Hybrid prediction analysis. Grain yield of 64 pearl millet hybrids grown at 
five locations in India (Jamnagar, Anand, SK Nagar, Mahuva, Kothara) dur-
ing the time period 2004-2013 was measured. Trials were conducted during 
2004, 2005, 2006, 2008, 2011 and 2012 in Kharif, Summer and pre rabi season. 
However, during 2007, 2009, 2010 and 2013 trials were conducted in only 
Kharif and Summer. We adopted randomized block design with a spacing 
of 60 cm between the rows and 10-15 cm between the plants and adopted 
standard agronomic practices. The 64 hybrids were generated by crossing 20 
male and 23 female lines.
By using the grain yield phenotyping data for 64 hybrids as mentioned above, 
we used the following linear mixed model to estimate the variance components 
as well as BLUEs:

Yield ~Genotype + Replication.
To estimate variance components, all effects were treated as random. 

The BLUEs for each environment were calculated by the same mixed 
model but modelling genotype as fixed effect. Repeatability was estimated 
as R NG G E R= +s s s2 2 2/( / ) , where NR refers number of replications, sG

2  
refers to genetic variance, and sE

2  refers to residual variance. Four environ-
ments with repeatability lower than 0.5 were removed from further analysis. 
The BLUEs of the 64 hybrids of each environment were used for an analysis 
across environments by fitting following model:

Yield~Genotype + Environment.
The genotype effects were treated as fixed and the environment effects as 

random. The distribution of the BLUEs across environments approximated a 
normal distribution. The variance components of genotypes sG

2  , genotype 
x environment interactions sG E×

2  and of the residuals sE
2  were estimated 

using a one-step model. Broad-sense heritability was then calculated as the 
ratio of genotypic to phenotypic variance: 

h2
2

2
2 2

=
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×

s

s
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G

G
G E E

rl l *

.
 

where l refers to the number of environments and r is the average number 
of replications per environment. The hybrid prediction was based on 302,110 

high-quality SNP markers obtained from 580 B- and R- lines. We used ridge 
regression-BLUP considering additive and dominance effects to predict the 
hybrid performance. Details of the implementation of the models have been 
described earlier95. Briefly, the general form of the model is defined as the 
following:

y Z a Z d en A D= + + +1 m ,

where 1n is a vector of ones and n is the number of hybrids, µ refers to the 
overall mean across all four locations. ZA and ZD are n × m design matrices 
for the additive and dominance effects of the markers, where m refers to the 
number of markers. The elements of ZA are -1, 0, 1, and elements of ZD is 0, 
1. While a = (a1, a2, …, am)T and d = (d1, d2, …, dm)T are the vectors of length 
m, and ai di denote the additive and dominance effects for the ith marker, 
respectively. e = (e1, e2, …, en)T is a vector of length n and ej is the residual 
for the jth hybrid.

Prediction accuracy was studied using cross validations. In each cross vali-
dation, 48 hybrids were randomly selected as training set and the remaining 
16 hybrids were used as test set. The cross validation was run 500 times and 
accuracy was estimated as the Pearson correlation coefficient between pre-
dicted and observed values standardized with the square root of the heritability 
(h = 0.76). Next, we used all 64 hybrids as a training set and predicted the 
hybrid performance of 167,910 possible single-cross combinations among the 
580 inbred lines (260 B-lines and 320 R-lines). Based on the predicted values, 
we selected 0.1% hybrids that had the highest predicted yields (170/167,910 
hybrids). Of those 170 hybrids, 11 have been bred so far and are thus a subset of 
the 64 phenotyped hybrids. The remaining 159 hybrids are based on parental 
inbred lines that have never been used for hybrid breeding and could be tested 
in the field. All analyses were done using the ASreml-R 3 software93.

Data availability. Genome sequence assembly and annotation data: BioProject 
ID PRJNA294988; BioSample ID SAMN04124419. Resequencing data: SRA 
SRP063925. Transcriptome data: BioProject ID PRJNA391885. BAM and 
SNP files are available at http://ceg.icrisat.org/ipmgsc. GigaScience Database 
record: http://dx.doi.org/10.5524/100192 Scripts used in the MS are available 
at https://github.com/ICRISAT-CEG/PM-Scripts.git

A Life Sciences Reporting Summary is available.
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