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Major end users of Digital Soil Mapping (DSM) such as policy makers and agricultural extension workers
are faced with choosing the appropriate remote sensing data. The objective of this research is to analyze
the spatial resolution effects of different remote sensing images on soil prediction models in two
smallholder farms in Southern India called Kothapally (Telangana State), and Masuti (Karnataka State),
and provide empirical guidelines to choose the appropriate remote sensing images in DSM. Bayesian
kriging (BK) was utilized to characterize the spatial pattern of exchangeable potassium (Kex) in the
topsoil (0—15 cm) at different spatial resolutions by incorporating spectral indices from Landsat 8 (30 m),
RapidEye (5 m), and WorldView-2/GeoEye-1/Pleiades-1A images (2 m). Some spectral indices such as
band reflectances, band ratios, Crust Index and Atmospherically Resistant Vegetation Index from mul-
tiple images showed relatively strong correlations with soil Kex in two study areas. The research also
suggested that fine spatial resolution WorldView-2/GeoEye-1/Pleiades-1A-based and RapidEye-based
soil prediction models would not necessarily have higher prediction performance than coarse spatial
resolution Landsat 8-based soil prediction models. The end users of DSM in smallholder farm settings
need select the appropriate spectral indices and consider different factors such as the spatial resolution,
band width, spectral resolution, temporal frequency, cost, and processing time of different remote
sensing images. Overall, remote sensing-based Digital Soil Mapping has potential to be promoted to
smallholder farm settings all over the world and help smallholder farmers implement sustainable and
field-specific soil nutrient management scheme.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

heterogeneous landscape features such as vegetation cover, land
use, organisms, soil parent materials, and relief, which affect the

Soil fertility is an important limiting factor in arid and semi-arid
agricultural ecosystem environments (Chander et al., 2014). The
farmland ecosystems in smallholder farms display complex and
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distribution of the major soil properties. Remote sensing images
with different spatial resolutions can provide landscape informa-
tion at various scales in Digital Soil Mapping (DSM) research in
smallholder farm settings. However, there is an ongoing debate and
discussion about the appropriate remote sensing products to be
used in DSM (Cavazzi et al., 2013; Vasques et al., 2012). Major end
users of DSM such as policy makers and agricultural extension
workers usually face the problem of choosing the appropriate
remote sensing data (Pons-Fernandez et al., 2004). The soil maps
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with coarse spatial resolution were not appropriate for meaningful
soil and land management, especially in fine scale areas such as
smallholder farm settings. Coarser environmental variables may
generalize landscape attributes, thus losing their predictive capa-
bility (Cavazzi et al., 2013). Soil maps with fine spatial resolutions
may demand more processing time and higher costs of labor and
image purchasing (Blasch et al, 2015). Quantifying the scale
dependent relationships between soil properties and spectral
indices from different remote sensing images can help end users
choose the most appropriate remote sensing products in DSM, and
provide site-specific soil management suggestions in smallholder
farm settings.

Some research demonstrated that the incorporation of fine
spatial resolution spectral indices can enhance the prediction ac-
curacy of soil prediction models (Taylor et al, 2013). They
demonstrated that soil depth modelling can attain the highest ac-
curacy by utilizing terrain attributes with the finest spatial reso-
lution. However, more and more research have concluded that the
finer spatial resolution environmental variables may not always be
the best choice in DSM. Kim et al. (2014) concluded that there was
no significant distinction of model accuracy among soil TP and TN
prediction models based on remote sensing images with different
spatial resolutions in the Everglades in Florida. Maynard and
Johnson (2014) showed that using high spatial resolution LiDAR
data set with high cost and high computational requirements did
little to improve the soil prediction model accuracy compared with
the moderate resolution Digital Elevation Models (DEMs). With the
development of commercial remote sensing sensors, various
spectral indices with high spatial resolutions have been utilized in
DSM in recent years (De Benedetto et al., 2013; Kim et al., 2014).
Most of the previous research just compared the effects of remote
sensing images with coarse and medium spatial resolutions such as
MODIS and Landsat ETM+ on soil prediction models. Those
research did not compare the model performance of Very High
Resolution (<5 m) image-based soil prediction models and me-
dium spatial resolution (30 m) image-based soil prediction models.
The utilization of Very High Resolution (VHR) images such as
Pleiades-1A and RapidEye in DSM in smallholder farm is still in its
infancy.

This research 1) analyzed the relationships between soil
exchangeable potassium (Kex) and spectral indices extracted from
WorldView-2/GeoEye-1/Pleiades-1A (2 m), RapidEye (5 m), and
Landsat 8 imagery (30 m) in two smallholder farms called Kotha-
pally and Masuti; 2) characterized the spatial pattern of soil Kex in
the two study areas by soil prediction models based on those
remote sensing images; 3) assessed the effects of different remote
sensing images on soil prediction models; and 4) discussed the
empirical guidelines to select the appropriate spectral indices and
remote sensing images in DSM.

2. Materials and methods
2.1. Description of two study areas

Kothapally is a smallholder village located in Ranga Reddy
District, Telegana State, India. It is located between 17° 20’ to 17°
24N latitude and 78° 5’ to 78° 8’E longitude, with an area of about
10 km?, an elevation of 600—640 m, and an average slope of 2.5%. It
experiences a hot and dry semi-arid climate with the annual rain
fall of 802 mm (1999—2008). The monsoon season is from June to
September with the precipitation about 755 mm. In general, 90% of
the areas in Kothapally are Vertisols. More than 95 percent area of
the Kothapally was planted with cotton (Gossypium hirsutum)
during the rainy season. Sorghum (Sorghum bicolar), tomato
(Lycopersicon esculentum var. esculentum), onion (Allium cepa) and

maize (Zea mays) were major crops in dry season (Wani et al.,
2003).

Masuti (latitude 16° 28’ to 16° 33'N and longitude 75° 45’ to 75°
50'E, elevation 520—630 m) is one of 125 villages situated in
Basavana bagevadi tehsil, Bijapur district of Karnataka State, India.
The district experiences a semi-arid climate with temperature
variations between 20 °C and 42 °C. The rainfall varies from 569 to
595 mm. The soils in this area are dark greyish brown and dark
brown to dark reddish brown in color. Soil texture varies from loam
to clay. The infiltration characteristics of these soils are moderate to
good. Cotton (Gossypium hirsutum), rice (Oryza sativa), and maize
(Zea mays) are the three major crops in the rainy season. Sorghum
(Sorghum bicolar), tomato (Lycopersicon esculentum var. escu-
lentum), and onion (Allium cepa) are the three major crops in the
dry season. Irrigation facilities such as dams and canals are located
in the southwest section of the village, and about 80% of the village
is irrigated using wells (Sreedevi et al., 2004).

2.2. Soil sampling and laboratory analysis

A total of 255 soil samples at 0—15 cm were collected in
Kothapally in May 2012 (Xu et al., 2017), and a total of 259 soil
samples at 0—15 cm were collected in Masuti in February to March
2013 by International Crops Research Institute for the Semi-Arid
Tropics (ICRISAT) and University of Florida Team (Fig. 1). Site-
specific descriptions, including land use, crop, and topography, as
well as x and y coordinates, were recorded at each sampling point.
Each soil sampling location was measured by Trimble GEOXT2005
(Trimble Navigation Ltd., Sunnyvale, California, USA). Global Posi-
tioning System (GPS) post-correction was performed by Aimil Ltd.
(www.aimil.com) in Hyderabad, India. All the soil samples were air-
dried for one week, and they were then sieved using a 2-mm sieve
for laboratory analysis in the soil laboratory at ICRISAT. Each soil
sample in two study areas was analyzed for exchangeable potas-
sium (Kex) (Thomas, 1982).

2.3. Environmental variables

2.3.1. Remote sensing data collection

In Kothapally, two Landsat 8 images (30 m), two RapidEye im-
ages (5 m) and a single WorldView-2 and a single GeoEye-1 image
(2 m) were collected (Table S1). In Masuti, two Landsat 8 images,
two RapidEye images and a single WorldView-2 and a single
Pleiades-1A image (2 m) were also acquired (Table S1). All the
remote sensing images were obtained in dry season. Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
Global Digital Elevation Model (DEM) of the two study areas were
obtained from United States Geological Survey (USGS) website.

2.3.2. Remote sensing data processing

After applying radiometric calibration to all images, the digital
numbers of the remote sensing products were transformed to at-
sensor radiance. The radiance images were converted to surface
reflectance using the Fast Line-of-Site Atmospheric Analysis of
Spectral Hypercubes (FLAASH) atmospheric correction tool in the
ENVI 5.0 software. Geometric correction was applied to all the
images with 10 control points collected by a Global Navigation
Satellite System (GNSS) post-processed to sub-meter accuracy. The
“Georeferencing” toolbar in ArcGIS 10 was used to perform the
geometric correction with nearest neighborhood resampling. The
Root Mean Square Error (RMSE) was smaller than 0.5 pixel for each
control point.

2.3.3. Environmental variable extraction
The band reflectances, the band ratios, and multiple spectral
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Fig. 1. The soil sampling sites in Kothapally and Masuti Village, India.

indices were extracted from each remote sensing image. Topo- 2.4. Bayesian geostatistical model
graphic attributes such as elevation, aspect, flow accumulation
were extracted from DEM. In addition, geographic attributes such This research utilized a trans-normal spatial linear mixed model

as x and y coordinates of each soil sample point were also collected. (Eq. (1)) (Diggle et al., 1998; Xiong et al., 2015) to build soil Kex
The detailed description of the environmental variables acquired in prediction models:
this research were listed in Table S2.
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Y(u) =X(u)B + S(u) + e(u) (1)
where Y(u) is the target random variable (e.g., soil Kex) at location
u; X presents a design matrix of fixed effects including the intercept
at location u, and B is a vector of model parameter; S (u) represents
the spatial random effects with multivariate normal distribution,
S(u) ~ N(0,0%R(h; ¢)), where R(h; ¢) is a correlation matrix, h is the
distance of two locations, ¢ is the range parameter and o2 is partial
sill; and e(u) is a vector of the errors with & (u) ~ N(0, 72I) where [
is an n-dimensional identity matrix, and 72 is nugget variance. The
estimation of correlation parameters and fixed effects coefficients
in Eq. (1) were obtained by restricted maximum likelihood esti-
mation (REML) (Cressie, 1993; Finley et al., 2007).

In this study, the covariance (element of the covariance matrix
0%R(h; ¢)) was modelled by the exponential correlation function
(Eq. (2)) or spherical correlation function (Eq. (3)):

R(h: o) = exp(—g) )
3h 1/h\3
R(h; o) = C‘){ﬁ_i (5) } forh<eo (3)

Co forh>¢

Markov Chain Monte Carlo (MCMC) simulation proceeds via
Gibbs sampler in the R software “spBayes” package (Finley et al.,
2007) were applied for the Bayesian computation in this study.
Prior parameter distribution, starting and tuning parameters were
specified according to the previous variogram analysis. Three
MCMC chains were run for 15,000 iterations for each model. Out of
the 15,000 iterations, the 5000 iterations before the convergence
were discarded and the remaining 10,000 iterations were retained
to derive posterior distributions of the model parameters and
predictions. Several R packages such as “spBayes”, “geoR”, “lattice”,
“maptools”, and “rgdal” were utilized to build the soil prediction
models and map soil Key.

2.5. Model validation

For all the soil prediction models in Kothapally, soil sample
points were split 70/30 into a calibration set (179) for model cali-
bration, and a validation set (76) for independent model validation.
For all the soil prediction models in Masuti, soil sample points were
also split 70/30 into a calibration set (180) for model calibration,
and a validation set (79) for independent model validation. The
Kolmogorov-Smirnov test was applied for the soil Kex calibration
and validation datasets to ensure they have the same distribution.

Table 1
Description of raw and log-transformed soil Kex at 0—15 cm in two study areas.
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Log-transform was applied to the whole dataset, calibration data-
set, and validation dataset to approach the normal distribution of
soil Kex. The coefficient of determination (RZ), root mean squared
error (RMSE), residual prediction deviation (RPD) (Bellon-Maurel
et al., 2010), and ratio of performance to inter-quartile distance
(RPIQ) (Williams and Norris, 1987) were used to compare different
Bayesian kriging models.

3. Results

3.1. Characteristics of soil exchangeable potassium in two study
areas

Table 1 showed soil Kex distribution and log-transformed soil Kex
distribution at 0—15 cm in two study areas. Soil Kex had a mean of
241.64 mg kg~!, a median of 231.06 mg kg ', and a range of
55990 mg kg~ ! in Kothapally. Soil Kex had a mean of
129.71 mg kg~ ', a medium of 10711 mg kg !, and a range of
933.21 mg kg~ ! in Masuti. Soil Kex showed positive skewed distri-
bution in both study areas. After the log-transformation, soil Kex
approached Gaussian distribution in both study areas. The simi-
larity between the calibration, validation, and whole datasets
suggested that the calibration and validation datasets of soil Kex
were representative.

3.2. Linear relationship between soil Kex and spectral indices with
different spatial resolutions

3.2.1. Correlations between soil Kex and spectral indices in
Kothapally

Table 2 shows the Spearman's rank correlation coefficients be-
tween the soil K¢y and the spectral indices from different remote
sensing images in Kothapally. The band ratios between the visible
bands such as green to blue (GB) and red to blue (RB), and the band
reflectances from all the remote sensing images had relatively
strong negative correlations with Kex. For the spectral indices from
Landsat 8, only Crust Index (CI) from Landsat 8 showed positive
correlations with Kex. For the spectral indices from RapidEye, only
CI and Atmospherically Resistant Vegetation Index (ARVI) showed
positive correlations with Kex. The near infrared indices, such as
ARVI, Normalized Difference Vegetation Index (NDVI), and Trans-
formed Vegetation Index (TVI), and the red edge-related indices,
such as Normalized Difference Red-edge Index (NDVIr), the band
ratio of NIR band 1 to red edge band (N1RE) from WorldView-2, had
relatively strong positive correlations with Ke.

3.2.2. Correlations between soil Kex and spectral indices in Masuti
Table 3 shows the Spearman's rank correlation coefficients

Location Transform  Data Type N Mean (mg/kg) Median (mg/kg) SD Min (mg/kg) Max (mg/kg) Range (mg/kg) Skew  Kurtosis CV
Kothapally Total 255 242 231 110 55 615 560 0.65 0.13 0.46
Calibration 179 242 229 108 55 615 560 0.64 0.07 0.45
Validation 76 241 232 116 60 607 547 0.66 0.11 0.48
logo(x) Total 255 234 2.36 021 1.74 2.79 1.05 -043 -0.27 0.09
logyo(x) Calibration 179 234 2.36 021 1.74 2.79 1.05 -04 -0.3 0.09
logo(x) Validation 76 233 237 023 1.78 2.78 1.01 -046 038 0.10
Masuti Total 259 130 107 101 28 962 933 391 24.36 0.78
Calibration 180 129 108 94 28 741 713 3.06 15.18 0.73
Validation 79 132 99 116 39 962 923 4.73 30.51 0.88
logio(x) Total 259 2.03 2.03 026 145 2.98 1.53 0.32 0.13 0.13
logo(x) Calibration 180 2.03 2.03 026 145 2.87 1.42 0.22 -0.12 0.13
logio(x) Validation 79 2.03 2.00 026 1.59 2.98 1.40 0.55 0.62 0.13

Abbreviations: N, number of samples; SD, standard deviation; CV, coefficient of variation.
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Table 2
Linear correlations between soil Kex and spectral indices at 255 soil sampling sites
(0—15 cm) in Kothapally.

Landsat 8 RapidEye WVa and GE

Index R Index R Index R
LTbGB -0.537 REaRededge —0.468 WVaARVI 0.489
LTaGB -0.511 REbRededge —0.453 WVaYellow -0.477
LTbGreen -0.510 REbGreen —0.432 WVaRed -0471
LTbCI 0.493 REbREB —-0.425 WVadl 0.467
LTbRB —-0.493 REaNIR -0.384 WVaRB —0.467
LTbRed —0.487 REbGB -0.378 WVaGreen —0.464
LTbSWIR1 —0.469 REaGreen -0.375 WVaBlue —0.440
LTbBlue —-0.453 REbNIR -0.375 WVaN2R 0.429
LTaGreen —-0.450 REaRed -0.374 WVaRG -0.423
LTbS1B -0.441 REaREB —0.368 WVaNDVIr 0.421
LTaCl 0431 REbRed -0.355 WVaClr 0.421
LTaRB -0.431 REbBlue —0.352 WVaN1RE 0.421
LTbRG -0.429 REaBlue —0.345 WVaN2RE 0.421
LTaRed -0.418 REbCI 0318 GEGreen -0.420
LTbCoastal —0.402 REbRB -0.318 WVaNDVI 0.418
LTbSWIR2 —0.396 REbARVI 0.296 WVaSR 0.418
LTaSWIR1 -0.393 REaREG -0.294 WVaTVI 0.418

Nomenclature of the variable in Table 2: Remote sensing image (Abbreviation in
Table S1) + Spectral index (Abbreviation in Table S2).

Abbreviations: R, Spearman's rank correlation coefficient; WVa, WorldView-2 im-
age (2011-12-14); GE, GeoEye image (2011-1-21).

between soil Kex and spectral indices with different spatial reso-
lutions in Masuti. The correlation coefficients between Kgx and the
spectral indices in Masuti were generally higher than those in
Kothapally. For the spectral indices from the Landsat 8 images, bare
soil index (LTaBSI) incorporating Short Wavelength Infrared
(SWIR), Near Infrared (NIR), and visible bands had the strongest
correlation with Kex (R: —0.697). Other SWIR-related spectral
indices such as Moisture Stress Index (MSI), and Normalized Dif-
ference Soil Index (NDSI) all showed relatively strong negative
linear relationships with Key. Linear correlations between SWIR-
related spectral indices and Kex were generally stronger
compared with those between NIR-related vegetation indices and
Kex in Masuti.

The band reflectances and the band ratios between visible bands
from WorldView-2, Pleiades-1A, and RapidEye demonstrated

Table 3
Linear correlations between soil Kex and spectral indices at 259 soil sampling sites
(0—15 c¢m) in Masuti.

Landsat 8 RapidEye WVb and PL

Index R Index R Index R
LTcBSI -0.697 REdRededge —0.606 PLRG -0.604
LTdBSI -0.676 REdCI 0.588 PLARVI 0.604
LTcARVI 0.668 REdRB —0.588 PLCI 0.604
LTdCI 0.661 REdRed —0.588 PLRB -0.604
LTdRB —0.661 REcRededge -0.584 WVbARVI 0.58
LTcNDWI 0.645 Ycoor —0.578 Ycoor -0.578
LTcMSI —0.645 REcCI 0.572 PLRed -0.57
LTcNDSI —0.645 RECRB -0.572 WVbYellow -0.563
LTcSIN —0.645 REdGreen —0.566 WVbCI 0.56
LTdNDWI 0.633 REcRed -0.563 WVbRB -0.56
LTdMSI -0.633 REcGreen —0.542 WVbRed —0.546
LTdNDSI -0.633 RECARVI 0.531 PLGB 0.545
LTdS1IN -0.633 REdARVI 0.514 WVbGreen —0.526
LTdRG -0.631 Elevation -0.51 PLBlue -0.522
LTdRed -0.63 REdRG -0.504 WVbNDVI 0.516
LTdARVI 0.626 REdBlue -0.501 WVbSR 0.516
LTdSWIR1 -0.621 REcBlue -0.491 WVbTVI 0.516

Nomenclature of the variable in Table 3: Remote sensing image (Abbreviation in
Table S1) + Spectral index (Abbreviation in Table S2).

Abbreviations: R, Spearman's rank correlation coefficient; WVb, WorldView-2 im-
age (2011-2-28); PL, Pleiades-1A image (2013-3-3).

relatively strong negative correlations with Kex. Crust Index (CI) and
ARVI from WorldView-2, Pleiades-1A, and RapidEye, and NIR-
related indices such as NDVI, ARVI, and TVI, and red edge-related
indices such as NDVIr and CIr from WorldView-2 showed rela-
tively strong positive correlations with Kex.

3.3. Multi-linear trend models between soil K.x and the spectral
indices

Multi-linear regression models K1, K2 and K3 were built to
relate log-transformed soil Keyx and spectral indices from Landsat 8,
RapidEye, WorldView-2/GeoEye-1 respectively in Kothapally
(Table 4). Multi-linear regression models M1, M2 and M3 were also
built to relate log-transformed soil Kex and spectral indices from
Landsat 8, RapidEye, WorldView-2/Pleiades-1A respectively in
Masuti (Table 4). Those spectral indices in the models K1, K2, and
K3 were selected as covariates in Bayesian Kriging (BK) models KB1,
KB2, and KB3 in Table 5. Those spectral indices in the models M1,
M2, and M3 were also selected as covariates in BK models MB1,
MB2, and MB3 in Table 5.

3.4. Bayesian geostatistical models of soil Kex

3.4.1. Spatial pattern of soil Kex at different spatial resolutions in
Kothapally

Kex posterior mean prediction maps from models KB1 to KB3 are
shown in Fig. 2. In the southwestern, northwestern, and eastern
areas of the Kothapally village, Kex is relatively lower compared
with other areas. The southwestern area of the Kothapally village is
monoculture where only cotton is planted in rainy season. Kex was
relatively high in the central and southeastern areas of the village,
where crop rotation agricultural system is the major system. The
line pattern (lower Kex area) mosaicked in the patch pattern (higher
Kex area) demonstrated the low Kex of the road across the high Kex
of the farmland as shown by model KB3 (Fig. 2 (C)). On the contrary,
the relative homogeneous spatial pattern of Kex from model KB1
“simplified” the Kex distribution in small agricultural fields in
Kothapally.

The soil Kex patterns in Farmland A in Kothapally from the three
models generally resembled each other, and the three models all
show that the northern and southeastern areas of the Farmland A
had relatively low Kex (Fig. 3). The high Kex variations in field blocks,
and different linear and polygon patterns of Kex were clearly char-
acterized by soil Kex map based on WorldView-2 and GeoEye-1
(Fig. 3 (C)). On the contrary, there was no evident linear and
patch Kex pattern shown in soil Kex map based on Landsat 8 (Fig. 3
(A)). Bayesian kriging method provides a confident interval for soil
Kex prediction. Fig. S1 showed 2.5 and 97.5 percentile of Kex pre-
diction from Model KB1, KB2 and KB3. Generally, the 2.5 percentile
prediction maps from the three BK models showed a similar spatial
pattern. The 97.5 percentile prediction map from model KB3 (Fig. S1
(F)) displayed larger areas with Key larger than 600 mg kg~ There
is a 95% probability that the soil Kex concentration value at a pixel
was between the 2.5 and 97.5 percentile of Kex prediction maps.

Table 5 indicated that BK model based on Landsat 8 (KB1)
attained the highest prediction fit (R? = 0.57) and lowest prediction
error (RMSE = 77.35 mg kg~ 1) compared with the BK models based
on WorldView-2 and GeoEye-1 (R? = 0.52; RMSE = 80.55 mg kg™ !)
and RapidEye (R* = 0.47; RMSE = 83.91 mg kg~ !). Those results
suggested that the spectral indices with fine spatial resolution did
not bring in a higher model performance for the soil Kex prediction
model in Kothapally.

3.4.2. Spatial pattern of Key at different spatial resolutions in Masuti
The spatial pattern of soil Kex based on models MB1, MB2 and
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Table 4

Multi-linear trend models of soil Ky in two study areas.
Model Multi-linear trend model Spatial resolution (m) R? Location
K1 logKex = 1.83 + 0.11*LTaGB-0.11*LTbCI-5.53* LTbBSI-0.68“"LTbNB+1.29*LTbS2G 30 0.34 Kothapally
K2 logKex = 3.01—3.83*REbRededge-0.24*"REbARVI+0.08*"REbCI-0.025*Slope 5 0.27 Kothapally
K3 logKex = 2.37—0.13*WVaN2R+0.11*WVaN2G-0.1*WVaREB+0.91*WVaARVI 2 0.29 Kothapally
M1 logKex = 2.09—6.13*LTdBSI-4.12*LTdNDW!I+0.40*LTcARVI 30 0.33 Masuti
M2 logKex = 1.89—1.83* REcRededge +0.05* RECARVI+0.57* REcCI 5 0.28 Masuti
M3 logKex = 1.57—4.80*WVbBlue+1.28*"WVbN2RE-0.28*"WVbN1B+0.49*PLARVI 2 0.40 Masuti

Table 5

Validation results of Bayesian Kriging for Kex in two study areas.
Model Covariates Adj R? RMSE (mg kg~ ') RPD RPIQ Spatial resolution (m) Location
KB1 LTaGB, LTbCI, LTbBSI, LTbNB, LTbS2G 0.57 77.35 1.50 1.89 30 Kothapally
KB2 REaARVI, REbRed, REbCI 0.47 83.91 1.38 1.74 5 Kothapally
KB3 GECI, Slope, WVaBlue, WVaNDVIr 0.52 80.55 143 1.82 2 Kothapally
MB1 LTbBSI, LTbNDWI, LTaARVI 0.54 49.14 1.47 1.98 30 Masuti
MB2 REaRededge, REaARVI, REaCl 0.42 54.80 1.32 1.78 5 Masuti
MB3 WVbBIlue, WVbN2RE, WVbN1B, PLARVI 0.55 48.11 1.50 2.03 2 Masuti
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(A): The spectral indices were extracted from Landsat 8 images (Aquisition date: 2013-4-13; 2013-4-29).
(B): The spectral indices were extracted from RapidEye images (Aquisition date: 2010-4-19; 2013-2-24).
(C): The spectral indices were extracted from WorldView-2 (Aquisition date: 2011-12-14) and GeoEye-1 images (Aquisition date: 2012-1-21).

Fig. 2. Posterior soil exchangeable potassium (Kx) prediction at 0—15 cm depth in Kothapally from (A) Model KB1; (B) Model KB2; (C) Model KB3.

MB3 is shown in Fig. 4. Three maps in Fig. 4 showed a similar Kex
spatial pattern. Soil Key is relatively higher in the southwestern area
of the village compared with other areas (Fig. 4). In this area, a crop-
rotation system was used where sugarcane is the main crop type in

the dry season. The irrigation canal in the southwestern area of the
village also may bring more water and increase soil moisture in the
region. Kex is relatively lower in the northern area of the village
where most areas are permanent fallow land and the main soil type
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(A): The spectral indices were extracted from Landsat 8 images (Aquisition date: 2013-4-13; 2013-4-29).
(B): The spectral indices were extracted from RapidEye images (Aquisition date: 2010-4-19; 2013-2-24).
(C): The spectral indices were extracted from WorldView-2 (Aquisition date: 2011-12-14) and GeoEye-1 images (Aquisition date: 2012-1-21).

Fig. 3. Posterior soil Kex prediction at 0—15 cm depth in Farmland A in Kothapally from (A) Model KB1; (B) Model KB2; (C) Model KB3.

is Entisols. The farmland in the north central area of the village
close to a dam also had relatively high Key. Vertisols is the main soil
type in the southern area of village. This soil type is rich in mont-
morillonite clay and has a relatively high exchangeable buffering
capacity. Moisture-holding capacity of Vertisols is also relatively
higher than Entisols in the northern area of the village. As a result,
the Kex in the southern area of the village is relatively higher than
that in the northern area of the village. The heterogeneous spatial
pattern of Kex in Fig. 4 (C) demonstrated it can depict the
complexity and variability of Kex. Large areas in northern part of
Masuti has Kex smaller than 150 mg kg™, which is defined as low
level by Horneck et al. (2011). It is possible that soil Kex deficiency
occur in the northern area of Masuti village.

Three maps in Fig. 5 showed the relatively low Kex pattern in
western area of Farmland B in Masuti, and relatively high Kex
pattern in the southeastern area of Farmland B in Masuti. In Fig. 5
(C), the widespread fragmented pattern of Kex displayed the high-
ly spatial variation of Kex across the Farmland B, the point distri-
bution of Kex showed the subtle gradients of Kex in single field
block, and the evident line pattern of low Kex (road) embedded in
the patchy pattern of high Kex (field blocks). The distinct planar
distribution of Kex demonstrated the different Kex status in adjacent
field blocks. In contrast, no specific spatial patterns of Ke is evident
in Fig. 5 (A).

Fig. S2 showed the 2.5 and 97.5 percentile of K¢, prediction from
the three BK models. It suggests the specific pixel had a 95%
probability to contain soil Kex between the 2.5 and 97.5 percentile
of Kex prediction maps. Some areas had Key larger than 150 mg kg ™!
in the 2.5 and 97.5 percentile of the Kex prediction maps, suggesting

these areas had a 95% probability to contain K¢k larger than
150 mg kg~ .

Similar to soil Kex model in Kothapally, RapidEye-based soil Kex
model also attained the lowest prediction fit and highest prediction
error among all the models in Masuti (Table 5). The Landsat-based
(MB1) and WorldView-2/Pleiadies-1A-based (MB3) soil Kex pre-
diction models did not demonstrate significant difference in terms
of R?, RMSE, RPD and RPIQ in Masuti.

4. Discussion

4.1. Characteristics of spectral indices from different remote sensing
images

The Crust Index, ARVI, NDVI and SAVI; band ratios of NIR band
to visible bands; and band ratios of red edge band to visible bands
from all remote sensing images had relatively strong positive re-
lationships with soil Kex. The positive correlation between the
vegetation indices (e.g. ARVI and NDVI) and soil Kex indicates the
importance of vegetation in retaining soil nutrients such as soil
Kex in smallholder farm settings. As a large absorption of leaf
water occurs in the 0.4—2.5 um spectrum, the VIS-NIR and SWIR
reflectance are negatively correlated to leaf water content (Liu
et al., 2015). The relatively strong positive correlation between
Crust Index and soil Kex suggested that soil crusts can contribute
to the conservation of soil K¢y in two study areas. The research
from Rosentreter et al. (2014) and Belnap and Lange (2013) also
indicated that soil crust in the arid and semiarid areas can
improve water penetration, help soil microbial growth and soil
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(A): The spectral indices were extracted from Landsat 8 (2013-04-20; 2013-05-22).
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(C): The spectral indices were extracted from WorldView-2 (2011-2-28) and Pleiades-1A (2013-3-3).

Fig. 4. Posterior mean of soil Kex prediction at 0—15 cm depth in Masuti from (A) Model MB1; (B) Model MB2; (C) Model MB3.

formation, and retain soil moisture. The negative correlations
between band reflectance values and soil Kex may suggest the land
with more water contents (low band reflectance values) were
prone to have more soil Kex. As some SWIR band-related spectral
indices such as BSI and NDSI can indicate the bare soil, the rela-
tively strong negative linear correlations between them and soil
Kex suggested that bare soil were prone to contain less soil Kex
compared with vegetated areas in the two study areas. As a

traditional vegetation index, NDVI did not demonstrate strong
correlations with soil Kex in this research. In contrast, red edge-
based spectral indices such as NDVIr from different remote
sensing images demonstrated their high correlations with soil Ke.
It suggests that red edge-based spectral indices can help predict
soil Kex status. In areas where vegetation coverage is low and bare
soil coverage is high, the brightness of soil and bare land may also
influence the NDVI value (Qi et al., 1994). Another problem of
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Fig. 5. Posterior mean of soil Kex prediction at 0—15 cm depth in Farmland B in Masuti from (A) Model MB1; (B) Model MB2; (C) Model MB3.

using vegetation indices, particularly NDVI and Simple Ratio (SR)
based on the red and NIR bands, is that they asymptotically
approach a saturation level after a certain biomass density
(Santin-Janin et al., 2009; Thenkabail et al., 2000). As a result,
NDVI usually yields poor estimates of biomass in full canopy cover.
In general, spectral indices including vegetation indices that cor-
rect the soil brightness and atmospheric effects, narrow band
spectral indices such as red edge-related spectral indices that
estimate biomass at full canopy cover, SWIR and thermal infrared
(TIR)-related spectral indices that reflect soil moisture and tem-
perature, and some bare soil indices that can characterize the bare
soil and soil moisture would be preferable to be incorporated into
soil prediction models in semi-arid areas.

The results indicated the behaviors of the spectral indices from
different remote sensing images were similar in both study areas.
Those environmental variables which have strong correlations with
soil Kex suggested the main factors that affect the spatial distribu-
tion of soil Kex in two study areas. The relatively strong negative
correlations (—0.51) between elevation and Kex in Masuti suggested
relatively low elevation areas were prone to contain more Kex than
relatively high elevation areas. Due to the relatively small area of
the smallholder farm, climate is not a major factor that affect the
soil nutrient distribution within a smallholder farm. In general, the
major underlying drivers that affect the soil Kex distribution in

these two typical smallholder farms in South India are vegetation,
soil moisture, soil crust, and topographic attributes.

4.2. Comparison of soil prediction models with different spatial
resolutions

The Landsat 8-based soil models (Model KB1 and MB1) may
filter out short-range variation of soil properties in smallholder
farmland. Agriculture in Asia is characterized by smallholders
cultivating small plots of land. According to the report from NCEUS
(2008), about 81 percent of farms in India have land-holdings of
less than 2 ha. It is possible that the coarse soil prediction maps,
especially those based on Landsat 8 images, mixed the cultivated
land from different farmers, soil types, and crop types. In such a
case, Landsat 8-based soil prediction models probably have limited
capability for the “Knowledge Brokers” and “Agricultural Extension
Experts” to help smallholder farmers with soil nutrient manage-
ment. However, the Landsat 8-based soil Kex models such as KB1
and MB1 had relatively higher prediction accuracy compared with
the RapidEye-based soil Kex models in both study areas. The results
from this research accord with some studies showing the predic-
tion accuracy of relatively coarse spatial resolution soil prediction
models can provide comparable or even higher prediction accuracy
of soil properties compared with fine spatial resolution soil
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prediction models (Shi et al., 2012; Steinberg et al.,, 2016). The
disadvantages of coarse spatial resolution of Landsat 8 were
compensated by its advantage of fine spectral resolution. In addi-
tion, many researchers have also indicated that fine spatial reso-
lution datasets are required only in morphologically more complex
areas (Cavazzi et al., 2013; Thompson et al., 2001). On contrast,
Masuti and Kothapally village are both relatively flat homogenous
areas. The use of detailed spectral indices is indispensable if
edaphic conditions and landscape attributes were relatively ho-
mogeneous at coarse spatial resolutions. As a result, Landsat-based
soil Kex models still attained fair prediction accuracy in these two
smallholder farms.

Because Landsat 8 image has a larger spectral range and more
bands compared with the RapidEye image, and the WorldView-2
image has finer spatial resolution and more bands compared with
the RapidEye image, the RapidEye image does not have evident
strength in terms of its spatial and spectral resolutions compared
with other images. RapidEye-based soil Kex prediction models
attained the lowest prediction fit and higher prediction error in
both study areas. However, RapidEye-based soil prediction maps
still showed strong capability to discern the soil nutrient variation
in small farmland compared with Landsat 8-based soil prediction
maps.

Very High Resolution (VHR) images-based soil prediction
models have obvious advantages of characterizing soil spatial pat-
terns at small agricultural fields, as fine spatial resolution images
provides “detailed” and “unmixed” vegetation and ground surface
information. In addition, WorldView-2/GeoEye-1/Pleiades-1A-
based soil Kex prediction models attain fair prediction accuracy.
However, extensive use of VHR images-based soil prediction
models in regional scales is neither practical nor economical due to
the large data size, long image processing time, and high expense of
image purchasing. The lack of SWIR and TIR bands in commercial
VHR images and high spectral variation and shadows caused by
canopy and topography may also affect the estimation of soil
properties (Lu, 2006). The general short spectral range (visible and
NIR region) in VHR images gives them a limited ability to charac-
terize soil temperature, moisture, and biomass. In addition, the
spatial pattern of soil properties in smallholder farm settings may
also be affected by micro-scale topographic attributes and human
agricultural practices. Those factors also can not be characterized by
fine spatial resolution spectral indices. As a result, the VHR images-
based soil Kex models do not necessarily have higher prediction
accuracy than Landsat 8-based soil Kex models.

This research concluded that the utilization of remote sensing
images with fine spatial resolution would not necessarily increase
the prediction accuracy of soil Kex prediction models in both study
areas. The end users of DSM in smallholder farm settings need
consider the spatial resolution, band width, spectral resolution,
temporal frequency, cost, and processing time of different remote
sensing sensors. In addition, the choice of spectral indices and the
predicted soil property also need be considered. As a result, the
selection of the appropriate remote sensing images in DSM is
context-dependent because no “perfect” remote sensing product
exists.

4.3. Promotion of remote sensing-based DSM in soil nutrient
management

Soil nutrients such as Kegy, available phosphorus (P,y) and total
nitrogen (TN) deficiency occur in smallholder farms in South India
(Chander et al,, 2014; Sadanandan et al., 2002). As a result, it is
imperative to map the soil nutrient status and identify the farmland
with soil nutrient deficiency in smallholder villages. The soil maps
in this research can help smallholder farmers adopt appropriate soil

and water conservation practices. Different from some soil pre-
diction models which utilized environmental variables such as soil
depth, precipitation, temperature, geology, land use, soil historical
data, soil class (Lamsal and Mishra, 2010; Vacca et al., 2014), each
soil prediction model only utilized two remote sensing images. As a
result, this research suggested soil prediction models utilizing only
limited remote sensing images have potential to be promoted to the
smallholder farm settings.

The research suggests WorldView-2/Pleiades-1A/GeoEye-1-
based soil prediction models can provide more field-specific soil
management suggestions to smallholder famers. Those subtle
characterizations of soil properties are important to assess the soil
nutrient status for individual households. Landsat 8-based soil
prediction models have fair prediction accuracy and do not need
image purchase. They also have high potential to be widely applied
in large scale. The empirical guidelines of remote sensing image
selection and spectral indices selection have potential to be
extended to other DSM research in fine scale agro-ecosystems such
as smallholder farm settings all over the world.

5. Conclusions

Spectral indices including band reflectance values, band ratios
between visible bands, CI, ARVI and BSI had relatively strong cor-
relations with soil Kex in smallholder farm settings. The research
also suggested that WorldView-2/Pleiades-1A/GeoEye-1-based and
RapidEye-based soil prediction models would not necessarily have
higher prediction performance than coarse spatial resolution
Landsat 8-based soil prediction models. Although WorldView-2/
Pleiades-1A/GeoEye-1-based soil prediction model can provide
detailed and unmixed spatial pattern of soil Kex in fine scale
farmland, the widespread use of Very High Resolution image such
as WorldView-2 in regional scale is not practical and economical
due to the large data size, long image processing time, and high
expense of image purchasing. Although Landsat 8-based soil pre-
diction models required no image purchasing and are easy to
implement, those models may filter out short-range variation of
soil properties and mix the farmland from different farmers, thus
having limited capability to provide field-specific soil recommen-
dation to the farmers. As a result, the selection of appropriate
remote sensing images in DSM is context-dependent since a “per-
fect” remote sensing product does not yet exist. The empirical
guidelines of remote sensing image and spectral indices selection
can be extended to other DSM research in fine scale agro-
ecosystems. The research demonstrated that the remote sensing-
based soil prediction models have high potential to be promoted
to the smallholder farm settings, and help the smallholder farmers
develop sustainable and site-specific soil management scheme.
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