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ABSTRACT 

Groundnuts cultivated in the semi-arid tropics are often exposed to water stress 

(mid-season and end-season) and high temperature (>34"C) during the critical 

stages of flowering and pod development. Research reported in this thesis from 

controlled environment and field experiments show that both water stress and high 

temperature reduce pod yields. Water stress reduced pod yield by decreasing both 

source and sink size, while high temperature reduced pod yield by hampering 

fertilisation and partitioning. The effects of stress and high temperature were 

additive and temporary for both vegetative and pod yield, and disappeared as soon 

as high temperature stress was removed. Genotypic differences for tolerance to 

high temperature under both controlled environment and field experiments can be 

attributed to differences in flowering pattern, flower number, peg-set and harvest 

index. High temperature reduces peg set by reducing pollen germination and 

pollen tube growth. High temperature tolerance is partly due to the ability of pollen 

to germinate and grow at extreme temperatures >34"C and this was correlated 

with base heat tolerance as measured through membrane thermostability. A 

principle component analysis suggested that genotypes can be screened for 

tolerance to high temperature based on pollen characters (pollen germination and 

tube growth). There was no evidence for an improvement in tolerance with prior 

exposure to acclimation temperatures of 34°C during vegetative and floral bud 

development stages. The effects of high temperature on vegetative growth and 

pod yield of groundnut could not be simulated by the widely used simulation model 

PNUTGRO. The PNUTGRO can be made sensitive to high temperature by 

incorporating responses to high temperature identified in this thesis and other 

studies. The identified tolerance can thus be exploited for breeding genotypes to 

improve groundnut productivity in SAT regions with extreme climates. 



ACKNOWLEDGEMENTS 

I am greatly indebted to the benefactor of Felix Scholarship for providing me with 

the scholarship to pursue my PhD. 

My principal supervisor, Dr Tim Wheeler, provided constructive criticism throughout 

both the experimental work and writing, and I deem it a great pleasure to express 

my profound sense of gratitude. Ineffable is my gratitude to Dr Peter Craufurd for 

his sustained encouragement and thought provoking support during the course of 

research and preparation of thesis. I would also like to place on record my sincere 

appreciation to Professor Rod Summerfield for his help in preparing the thesis and 

for setting standards to be achieved. 

I thank Dr R C Nageswara Rao and Dr S N Nigam, and the staff at ICRISAT, 

Hyderabad, India, for facilitating my exper~mental studies at the institute. 

I am thankful to Dr Vara Prasad Pagadala and Dr Qi Aiming for their suggestions 

and discussions. I also thank Dr T D Hong and Dr Lynda Bonner, for their help in 

carrying out the pollen work. I am grateful to Mr Keith Chivers for his timely and 

untiring technical and engineering support and Mr Alan Pilgrim and Ms Caroline 

Hadley for their assistance during the experiments. 

I thank my friends Mayank, Abhijit, Lakshmi, Hari, Renuka, Chandrika, Siddique, 

and the Felix community for their support and help during my research. Thanks are 

especially to Mr Ramesh Babu and Mrs Udaya, Mrs Sue Redman, Mr Alistair 

Robinson and their families for their kind concern and encouragement. 

I also thank the people and government of United Kingdom for making me feel at 

home away from home. 

Finally, I bow to my parents, Smt Geetha and Sri Nagaraju for giving this wonderful 

life. Love and affection of my brother Ravi and sister Madhavi during the course of 

my study are invaluable. 



TABLE OF CONTENTS 

ABSTRACT ....................... ....... ............................................................................ I 

ACKNOWLEDGEMENTS ....................................................................................... II 

TABLE OF CONTENTS ......................................................................................... 111 

LIST OF ABBREVIATIONS ................................................................................. XI 

LIST OF TABLES ................................................................................................ XI1 

LIST OF FIGURES .............................................................................................. XV 

LIST OF PLATES ............................................................................................... XXll 

CHAPTER 1 GENERAL INTRODUCTION .......................................................... I 

CHAPTER 2 REVIEW OF LITERATURE .............................................................. 6 

2.1 INTRODUCTION ............................................................................................... 7 

................... 2.2 PHYSIOLOGY OF TEMPERATURE EFFECTS IN GROUNDNUT 9 

2.2.1 Temperature effects on development ....................................................... 9 

2.2.1.1 Germination ............................................................................................ 9 

2.2.1.2 Leaf and node appearance ................................................................... 9 

2.2.1.3 Leaf Area Index .................................................................................. I I 
2.2.1.4 Time to first flower .......................................................................... 1 1  

2.2.1.5 Time to peg and pod initiation ............................................................ 12 

2.2.2 Temperature effects on flower. peg and pod number. and dry matter 

accumulation ...................................................................................................... 15 

2.2.2.1 Flower number ................................................................................. 15 

2.2.2.2 Peg and pod number ........................................................................... 16 

2.2.2.3 Dry matter accumulation ..................................................................... 17 

2.2.2.4 Partitioning to pod and pod growth ................................................ 1 8  

2.2.2.5 Root growth .......................................................................................... 19 



2.2.3 Temperature effects on pollen. stigma and ovary .............................. ..22 

2.2.3. I Pollen Viability .................................................................................... 22 

2.2.3.2 Pollen germination .......................................................................... 26 

2.2.3.3 Pollen tube growth ............................................................................. 28 

2.2.3.4 Stigma. Style and ovule ...................................................................... 30 

2.3 SCREENING FOR HEAT TOLERANCE .............. ... ................................ 32 

2.3.1 Chlorophyll fluorescence ...................................................................... 32 

..................................... .......................... 2.3.2 Membrane thermostability ... 33 

............................................... 2.4 ACCLIMATION FOR HIGH TEMPERATURE 35 

2.5 PHYSIOLOGY OF WATER STRESS IN GROUNDNUT ............................ 38 

.................................................... 2.5.1 Water stress effects on development 38 

2.5.1.1 Leaf and branch appearance ........................................................... 38 

.................................................................................... 2.5.1.2 Leaf Area Index 39 

2.5.1.3 Time to first flower ............... ..... ........................................................ 40 

2.5.1.4 Time to peg and pod initiation ............................................................ 40 

.............................................................. 2.5.2 Water stress effects on growth 41 

2.5.2.1 Flower number ............. .... ......................................................... 41 

2.5.2.2 Peg number and growth ................................................................... 42 

..................................................................... 2.5.2.3 Pod number and growth 43 

2.5.2.4 Dry matter accumulation ................................................................. 44 

2.5.2.5 Pod yield and partitioning .................................................................. 45 

2.5.2.6 Root growth ....................................................................................... 46 

2.5.3 Water stress effects on pollen. ovule and embryo .................... .. ...... 48 

2.5.3.1 Pollen viability ...................................................................................... 48 

2.5.3.2 Ovule and Embryo ........................................................................... 50 

2.6 EFFECT OF TEMPERATURE AND WATER STRESS ON GROUNDNUT .. 51 

2.7 CROP SIMULATION MODELS .............. ... ............................................. 54 

2.8 CROP SIMULATION MODELS FOR GROUNDNUT ................................. 58 

2.8.2 PNUTGRO ............................................................................................ 58 



2.8.3 QNUT ..................................................................................................... 61 

2.9 PERFORMANCE OF GROUNDNUT CROP MODELS ................................. 64 

CHAPTER 3 EFFECTS OF TEMPERATURE AND WATER STRESS ON 

................................. GROUNDNUT IN CONTROLLED ENVIRONMENTS .......... 67 

3.1 INTRODUCTION ........................................................................................... 68 

3.2 MATERIALS AND METHODS ...................................................................... 69 

3.2.1 Growth conditions ...................... ... ...................................................... 69 

3.2.2 Treatments ............................................................................................... 70 

3.2.3 Observations and data analysis ............................................................. 73 

3.3 RESULTS ...................................................................................................... 76 

3.3.1 Environment ............ .. ............................................................................. 76 

3.3.2 Growth harvests ...................................................................................... 78 

3.3.3 Cultivar differences ................................................................................ 81 

.............................. 3.3.4 Water stress effects and interaction with cultivars 84 

................................................... 3.3.4.1 Water use and water use efficiency 84 

3.3.4.2 Leaf number and leaf area .................................................................. 86 

3.3.4.3 Specific leaf area ................................................................................ 88 

3.3.4.4 Reproductive development ........ .. .................................................... 89 

3.3.4.5 Biomass and partitioning .............. .... ............................................ 92 

3.3.4.6 Yield components ............................................................................ 93 

3.3.5 Temperature effects and interaction with water stress ........................ 95 

................................................... 3.3.5.1 Water use and water use efficiency 95 

............................................................................................... 3.3.5.2 Leafarea 96 

............................................................... 3.3.5.3 Reproductive development 97 

3.3.5.4 Biomass ................................................................................................ 99 

3.3.5.5 Yield components ................................................................................ 99 

3.4 DISCUSSION .............................................................................................. 101 

3.5 CONCLUSIONS ....................................................................................... 115 



CHAPTER 4 MEMBRANE THERMOSTABILITY AND THE RESPONSE TO 

TEMPERATURE OF POLLEN GERMINATION AND POLLEN TUBE GROWTH 

IN GROUNDNUT ............. ... ........................................................................... 116 

........................................................................................ 4.1 INTRODUCTION 117 

............................................................... 4.2 MATERIALS AND METHODS 119 

........................................................................... 4.2.1 Experimental material 119 

4.2.2 Membrane thermostability ................................................................ 120 

4.2.3 Pollen collection .................................................................................... 122 

4.2.4 Growth media ..................................................................................... 122 

4.2.5 Temperature treatments .................. ........... ........................................... 123 

4.2.6 In-vitro pollen germination ................................................................... 123 

4.2.7 In-vitro pollen tube growth ................................................................... 124 

4.2.8 Statistical analysis ................ .. ........................................................... 124 

4.3 RESULTS ....................... .. ....................................................................... 129 

4.3.1 Membrane thermostability .................................................................... 129 

4.3.2 Pollen germination ................................................................................ 130 

4.3.3 Pollen tube growth ................................................................................ 134 

4.3.4 Pollen germination and pollen tube growth ........................................ 138 

4.3.5 Rate of pollen tube growth ................................................................... 139 

4.3.6 Principal component analysis ............................................................. 141 

4.4 DISCUSSION .............................................................................................. 144 

4.5 CONCLUSIONS .......................................................................................... 149 

CHAPTER 5 ACCLIMATION TO HIGH TEMPERATURE IN GROUNDNUT .... I 5 0  

5.1 INTRODUCTION ..................................................................................... 151 

5.2 MATERIALS AND METHODS .................................................................... 153 

5.2.1 Cultivars ................................................................................................ 153 



5.2.2 Plant Culture ....................................................................................... 153 

........................................... .......................... 5.2.3 Temperature treatments ... 154 

.................................................................. 5.2.3.1 Vegetative acclimation 154 

5.2.3.2 Reproductive acclimation ..................................... .... ...................... 156 

5.2.4 Measurements ....................................................................................... 156 

................................................................... 5.2.4.1 Vegetative acclimation 157 

................................................................. 5.2.4.2 Reproductive acclimation 157 

............................. 5.2.5 Pollen viability -59 

................................................................................ 5.2.7 Statistical analysis 159 

5.3 RESULTS ................................................................................................. 160 

5.3.1 Response to vegetative acclimation ................... .. ............................ 160 

5.3.1.1 Shootdryweight ............................................................................... 160 

5.3.1.2 Root dry weight .................................................................................. 161 

5.3.1.3 Nower number .................. ... ......................................................... 162 

5.3.1.4 Fruit-set ......................................................................................... 1 6 2  

5.3.2 Response to reproductive acclimation ............................................. 164 

5.3.2.1 Shoot dry weight ........................................................................... 164 

5.3.2.2 Root dry weight ............................................................................. 164 

5.3.2.3 Flower number ............................................................................... 165 

5.3.2.4 Fruit-set .............................................................................................. 166 

5.3.3 Pollen viability ..................... ... ........................................................... 167 

5.4 DISCUSSION .............................................................................................. 173 

5.5 CONCLUSIONS .......................................................................................... 179 

CHAPTER 6 EFFECTS OF TEMPERATURE AND WATER STRESS ON 

GROUNDNUT IN A SEMI-ARID TROPIC FIELD .............................................. 180 

6.1 INTRODUCTION ........................................................................................ 181 

6.2 MATERIALS AND METHODS .................................................................... 183 



6.2.1 Location ................................................................................................. 183 

6.2.2 Weather ................................................................................................. 183 

6.2.3 Soil ........................................................................................................ 183 

6.2.4 Field preparation .................................................................................. 186 

6.2.5 Experimental layout details ........................ .. ...................................... 186 

6.2.6 Sowing .................................................................................................... 186 

6.2.7 Cultivar description .............................................................................. 188 

6.2.8 Irrigation treatments ............................................................................ 188 

6.2.9 Temperature treatments ..................................................................... 189 

6.3 OBSERVATIONS ...................................... -92 

6.3.1 Crop development ............................................................................... 192 

6.3.2 Growth analysis ..................................................................................... 192 

............................ 6.3.3 Crop protection A 9 4  

......................................................................... 6.4 STATISTICAL ANALYSIS 194 

6.5 RESULTS ...................................... -95 
........................... 6.5.1 Weather (Temperature and Relative humidity (RH)) 195 

6.5.2 ANOVA .................................................................................................. 198 

6.5.3 Water use and water use efficiency ............................................ 200 

6.5.4 Effects of temperature x water stress interaction ............... .. ......... 202 

6.5.5 Effects of water stress and its interaction with genotypes ............. 203 

6.5.5.1 Specific leaf area ............................................................................... 203 

...................................................................... 6.5.5.2 Biomass and pod  yield 204 

6.5.6 Effects of temperature and its interaction with genotypes ................ 207 

6.6 DISCUSSION ............................................................................................ 209 

.......................................................................................... 6.7 CONCLUSIONS 222 



CHAPTER 7 MODELLING THE EFFECTS OF WATER STRESS AND HIGH 

TEMPERATURE IN GROUNDNUT USING PNUTGRO .................................... 224 

7.1 INTRODUCTION ............................ ....... ............................................... 225 

7.2 MATERIALS AND METHODS ................... .. ........................................... 228 

7.2.1 PNUTGRO ............................................................................................ 228 

................................................. 7.2.2 Temperature responses in PNUTGRO 228 

7.2.3 Multilocation experiments .................................................................... 230 

7.2.4 Experimental site details .................................................................... 230 

7.2.4. I Weather data ...................................................................................... 230 

7.2.4.2 Soil data .............................................................................................. 232 

7.2.4.3 Rainfall and Irrigation ........................................................................ 232 

7.2.4.4 Genotypes .......................................................................................... 237 

7.2.5 Measurements ................ .... .............................................................. 237 

7.2.5. I Crop phenology ................................................................................. 237 

7.2.5.2 Growth analysis ................................................................................. 237 

7.2.6 Model data entry .................................................................................... 239 

7.2.7 Model calibration ................................................................................... 239 

7.2.8 Water stress x high temperature simulations ................... .. .... .... 241 

7.2.8.1 Experimental data ........................................................................... 241 

7.2.8.2 Model data entry ............................................................................ 241 

7.2.8.3 Model Calibration ............................................................................ 241 

7.2.9 Data comparison (Observed vs Predicted) ............................. .. .... 242 

7.3 RESULTS .................................................................................................... 244 

.......................................................................... 7.3.1 Multilocation weather 244 

7.3.2 Model calibration for five locations ...................................................... 244 

7.3.2.1 Time to flowering and physiological maturity ................................. 244 

7.3.2.2 Soil ferfility factor (SLPF) ......................................... A 7  

7.3.2.3 XFRT ............................ ..... ............................................................ 250 



X 

7.3.3 Simulation of biomass. pod yield and HI in IR and RF at five locations 

7.3.4 Water stress x high temperature .......................................................... 253 

7.4 DISCUSSION .............................................................................................. 256 

7.5 CONCLUSIONS .......................................................................................... 260 

CHAPTER 8 GENERAL DISCUSSION ............................................................ 262 

8.1 FUTURE RESEARCH ................................................................................. 281 

REFERENCES .................................................................................................... 283 



LIST OF ABBREVIATIONS 

% 
AM 
"C 
"Cd 
cvlcvs 
d 
df 
DAA 
DAS 
DBA 
e.g. 
edleds 

eq. 
FA0 
Fig. 

9 
h 
ha 
1.e. 
ICRISAT 

kg 
kPa 
L 
Ltd. 
m 
min 

P 
PAR 
PEL 
S 

SAT. 
SE 
SED 

t 
Tb 
T,," 
Tapt 
Tmax 
U K 
USA 

percent 
Ante Meridian (before noon) 
degree Celsius 
thermal time in Centigrade days 
cultivarlcultivars 

day 
degrees of freedom 
Days after anthesis 
Days after sowing 
Days before anthesis 
for example 
EditorlEditors 
Equation 
Food and Agricultural Organisation 
Figure 
gram 
hour 
hectare 
that is 
International Crops Research Institute for the Semi-Arid Tropics 
kilogram 
kilopascal 
Litre 
Limited 
meter 
minute 
probability 
Photosynthetically Active Radiation 
Plant Environment Laboratory 
second 
Semi-Arid Tropic 
Standard Error 
Standard Error of Difference 
species 
Temperature 
ton 
Base Temperature 
Minimum temperature 
Optimum temperature 
Maximum temperature 
United Kingdom 
United States of America 



LIST OF TABLES 

Table 2.1 Values of base temperature (Tb) and thermal time (OCd > Tb) of 
several developmental processes of groundnut cv Robut 33-1. 

................................................................................. (Source: Ong, 1986). 13 

Table 2.2 Pollen germination (%) at three cardinal temperatures in different 
crop species. ............................................................................................ 27 

Table 2.3 Final pollen tube lengths (pm) at three cardinal temperatures in 
different crop species ............................................................................... 29 

Table 3.1 Analyses of variance with mean squares and treatment significance 
for growth and development parameters recorded at 50 DAS .............. 79 

Table 3.2 Analyses of variance with mean squares and treatment significance 
for growth and development parameters recorded at 87 DAS .............. 80 

Table 3.3 Cultivar differences between ICG 796 and ICGV 86015 for dry 
weights of leaf, stem, vegetative, biomass and HI observed at 87 DAS. 
Values in parenthesis are original values and analysed based on log 
transformed values ................................................................................... 81 

Table 3.4 Cultivar differences in peg and pod number, and pod set of ICG 796 
and ICGV 86015 observed at 87 DAS. Values in parenthesis are original 
values and analysed based on log transformed values. ....................... 82 

Table 3.5 Cumulative ET (ml plant-') and WUE recorded at 87 DAS in fully 
irrigated (Dl), early (D2) and late (D3) water stress treatments ............ 85 

Table 3.6 Effect of water stress treatments on flower production (plant 
d-') in groundnut genotypes ICGV 86015 and ICG 796 during the early 
and late water stress periods in fully irrigated (Dl), early (D2) and late 
(D3) water stress treatments .................................................................... 92 

Table 3.7 Flower number, pod number, and pod set in irrigated (Dl), early 
water stress (D2) and late water stress (D3) treatments as observed at 
50 and 87 DAS. ........................................................................................ 94 

Table 3.8 Interaction between water stress treatments and genotypes for pod 
number recorded at 87 DAS ..................................................................... 95 

Table 3.9 Cumulative ET (ml plant"), WUE (g L"), VPD (kPa) and normalised 
WUE (WUE x VPD g kPa L") recorded at 50 and 87 DAS in two 
temperature treatments Tland T2. ....................................................... 96 

Table 3.10 Effect of high temperature (T2 - 37122°C) as compared to that at 
optimum temperature (TI - 28122°C) on reproductive components of 
groundnut observed at 50 and 87 DAS. Values for pod weight are log 

...... transformed for analysis and original values are in parenthesis. 100 

Table 3.11 Observed specific leaf area (SLA) and vapour pressure deficit 
(VPD) in water stress treatments, and estimated values of carbon 



Isotope discrimination (A), transpiration efficiency (TE), transpiration 
(T) from sowing to 50 DAS and sowing to 87 DAS, using the equations 

........................................................... described by Wright etal. (1996) 105 

Table 4.1 Pedigree, origin, ecotype, and known tolerance to water stress and 
high temperature, of the 21 groundnut genotypes used in the study. 
.................................................................................................................. 121 

........... Table 4.2 Percentage relative injury (RI) of 21 groundnut genotypes 129 

Table 4.3 Model parameters from Newton-Gauss Maximum Likelihood 
Program in GENSTAT 5 describing pollen germination response to 
temperatures between 10 OC and 47.5 "C ............................................ 132 

Table 4.4 Maximum germination, and three cardinal temperatures (from bi- 
linear fit) for in vitro pollen germination of groundnut. ....................... 133 

Table 4.5 Model parameters from Newton-Gauss Maximum Likelihood 
Program in GENSTAT 5, describing pollen tube growth response to 
temperature between 10 O and 47.5 "C. ............................................... 136 

Table 4.6 Maximum pollen tube length and the three cardinal temperatures 
("C) (from bi-linear fit) for in vitro pollen tube growth of groundnut. . I37 

Table 4.7 Rate of pollen tube growth at the optimum temperature from linear 
...................... fit for pollen tube growth for 21 groundnut genotypes. 140 

Table 4.8 Principal component analysis vectors of Axes 1, 2 and 3, and the 
variation accounted for by each axis. See text for description of 
parameters. ........................ .. ............................................................... 143 

Table 5.1 Percentage pollen germination in genotypes ICGV 92116 and 55- 
437 during the 6 d period during 0-6 DAA and 7-12 DAA exposed to 
different temperature treatments ........................................................... 172 

Table 6.1 Physico-chemical properties of the experimental soil (Lithic 
Rhodustalf) at ICRISAT, Hyderabad, India. (analysed by Rallis India 
Ltd. Hyderabad) ....................................................................................... 184 

Table 6.2 Details of layout and experimental treatments. .............................. 187 

Table 6.3 Average maximum (Max), minimum (Min) and mean air 
temperatures (OC), soil temperatures ( O C )  and relative humidity (Oh) 
recorded during different developmental stages of groundnut in the 
four temperature treatments to which the crop was exposed in the 
field. ......................................................................................................... 197 

Table 6.4 Analysis of variance with mean square and treatment significance 
for growth and development parameters recorded at final harvest. . . I99 

Table 6.5 Cumulative amounts of irrigation (mm) supplied to irrigated (IR- 
100% of ETc) and water stressed (WS - 40% of ETc) plots during 
different stages of development .......................................................... 200 



Table. 6.6 Effect of temperature treatments on WUE (g L') and VPD (kPa) and 
normalised WUE (WUE x VPD (g kPa L-'). ............................................ 201 

Table 6.7 Effects of temperature (mean of 20 d high temperature) and water 
stress treatments on peg and pod number (plant") recorded in the 
harvest made immediately after the withdrawal of high temperature 
treatments. .............................................................................................. 202 

Table 6.8 lnteraction between genotype and water stress treatments for 
flower number (plant") at 30 DAA, pod number (plant-'), pod yield (g 
m") and harvest index as observed at final harvest. ........................... 206 

Table 6.9 lnteraction between genotype and temperature treatments for 
flower number (plant") at 30 DAA, pod number (plant-'), pod yield (g 
mS2) and harvest index as observed at final harvest. ........................... 208 

Table 6.10 Observed specific leaf area (SLA) and vapour pressure deficit 
(VPD) in  water stress treatments, carbon isotope discrimination (A = 
0.03SLA + 14), normalised TE (k = - 0.53A + 14.4) transpiration 
efficiency (TE = kNPD), transpiration from sowing to harvest (T) 
derived from SLA values using the equations described by Wright et 
a/. (1996). ................................................................................................ 211 

Table 6.11 Simple water balance for sowing 1 during the water stress and 
high temperature treatment. .................................... .... .......................... 218 

Table 7.1 Details of latitude, longitude and seasonal weather for the five 
Indian locations used in the study. ..................................................... 233 

Table 7.2 Physical properties and moisture characteristics of the top 30 cm 
of soil for five Indian locations used in the study ............................... 234 

Table 7.3 Chemical properties of the top 30 cm of soil for five lndian 
locations used in the study .................................................................... 235 

Table 7.4 Amount of irrigation supplied (mm) and rainfall (mm) received in 
the five Indian locations used in the study ........................................... 236 

Table 7.5 Sowing date, time to flowering and harvest maturity during 1993- 
1995 at five Indian locations used in the study. ................................... 238 

Table. 7.6 Average temperature (daylnight) recorded during different stages 
of crop development and number of days with maximum temperatures 
exceeding > 34°C during the crop period at five multilocation 
experimental sites. (S = sowing; FF = first flower; FS = first seed; PM = 
physiological maturity) ........................................................................... 245 

Table 7.7 Yearly and location average SLPF values obtained by calibrating 
the model for five locations used in the study. .................................... 248 

Table 8.1 Summary of the genotype contribution to components of Duncan's 
equation in  inducing tolerance or susceptibility for high temperature 
and water stress ...................................................................................... 273 



LIST OF FIGURES 

Flg. 2.1 Effect of mean temperature on (a) rate of germination, flowering and 
photosynthesis; (b) main stem length and above ground dry weight. 

.............. (Source: Fortanier, 1957; Boote etal., 1978; Mohamed, 1984) 14 

Fig. 2.2 Classification of 625 groundnut genotypes based on pod yield (t 
ha") and partitioning (proportion of dry matter partitioned into 

.................... reproductive sinks) in 1991. (Source: Ntare et al., 2001) 20 

Fig. 2.3 Effect of day temperatures of 28" (*), 34" (o ) ,  42O ( A )  and 48°C (A) on 
pollen viability (angular transformed) over time during 6 d period of 
stress. Bars denote s.e. and are shown where they exceed the size of 
the symbol. (Source: Vara Prasad etal., 1999b). ................................... 25 

Fig. 2.4 The effects of drought intensity on pod yields in a long-duration 
drought. A : Y(0-70%) = 693 (f27.7) - 1.95 (f0.49) X; % var = 95; B: Y 
(80-100%) = 97 (k4.72) - 0.95 (f0.52) X; % var = 23. (Source: Williams et 
el., 1986). ................................................................................................... 47 

Fig. 2.5 Vegetative and reproductive development in  PNUTGRO, represented 
by successive development stages, as a function of photoperiod 
andlor temperature, represented by accumulator bars. (As shown here 
the stage from sowing to unifoliolate leaves is a function of 
temperature and time only, while most of other cases are a function of 
temperature, photoperiod, and time). (Source: Hoogenboom et al., 
1992) ........................................................................................................... 59 

Fig.2.6 Schematic representation of the framework and top-down logic used 
in the QNUT model. Boxes represent major modules. Solid arrows 
denote logical connections and broken arrows denote connections to 
climatic, soil, management, and crop specifications. (RUE is the 
efficiency with which the intercepted radiation was used to produce 
biomass; k is the extinction coefficient of the canopy; FTSW is the 
fraction of transpirable soil water; VPD is vapour pressure deficit; 
TTSW is total transpirable soil water). (Source: Hammer et al., 1995). 63 

Fig 3.1 Relation between moisture content (% wlw) and suction (cm H20) of 
the root growth medium (PEL mix) used in the study. .......................... 74 

Fig. 3.2. Daily record of maximum and minimum temperatures during the 
crop growth period. .................................................................................. 76 

Fig. 3.3 Moisture content curves in pots imposed with (a) early water stress 
(D2) from flowering to pod initiation and (b) late water stress (D3) from 
pod initiation to harvest. ......................................................................... 77 

Fig. 3.4 Daily flower production in groundnut genotypes, ICGV 86015 (a) and 
ICG 796 (b) ............................................................................................. 83 



Fig.3.5 Cumulative water use efficiency (WUE) in groundnut plants exposed 
to different irrigation treatments. D l  - fully irrigated; D2 - early water 

....... stress; and D3 1 late water stress. Vertical barsindicate SED. .... : 84 

Fig. 3.6 Water use efficiency (WUE) in groundnut plants exposed to different 
irrigation treatments (Dl  -fully irrigated; D2 - early water stress; and 
D3 - late water stress) during the early (D2 - 35-50 DAS) and late (D3 - 
50-87 DAS) water stress periods. Vertical bars indicate SED ............... 86 

Fig. 3.7 Effect of water stress on total leaf number over time in groundnut. 
(Dl - fully irrigated; D2-early water stress; and D3-late water stress). 
Vertical bars indicate SED. .................................................................. 87 

Fig. 3.8 Cultivar differences on leaf area (a) and leaf number (b) in groundnut 
due to water stress treatments at 87 DAS. Dl-fully irrigated D2sarly 
water stress and D3-late water stress. Vertical bar indicates SED ....... 88 

Fig. 3.9 Specific leaf area (SLA) values of groundnut plants exposed to 
different irrigation treatments (Dl  - fully irrigated; D2 - early water 
stress; and 03 - late water stress) at end of early (D2 - 50 DAS) and 
late (D3 - 87 DAS) water stress periods. Vertical bars indicate SED 
where significant ....................................................................................... 89 

Fig 3.10 Daily flower production in groundnut genotypes subjected to early 
(D2) and late (D3) water stress treatments. Blue lines indicate the 
period of stress. Green line indicates the daily values of flower 
production under control conditions. ..................................................... 90 

Fig. 3.11 Cumulative flower number at 87 DAS as influenced by water stress 
treatments (Dl-fully irrigated; D2-early water stress and D3-late water 
stress) in groundnut genotypes ICG 796 and ICGV 86015. Vertical bar 
indicates SED. .................................................................................... 91 

Fig. 3.12 Effect of water stress treatments on biomass (Dl-irrigated, D2-early 
water stress and D3-late water stress). Vertical bar indicates SED. .... 93 

Fig. 3.13 Response of total leaf area at 50 DAS of groundnut plants exposed 
to both temperature (Tl-28122 and T2-37122 "C) and water stress (Dl- 
fully irrigated and D2-early water stress) treatments. Vertical bar 
indicates SED ............................................................................................ 97 

Fig. 3.14 Effect of temperature treatments (11-28122" and T2-40122°C) on 
cumulative flower production (a) and daily flower production rate from 
anthesis to harvest (b) ........................................................................... 98 

Fig. 3.15 Effect of temperature and water stress on biomass as recorded at 
50 DAS. ................................................................................................ 99 

Fig. 3.16 Summary of the results of high temperature and water stress effects 
on growth and development of groundnut in controlled environment. 
(Thick black line - main route of assimilate flow; thin black line - 
minor route of assimilates; broken arrow = information flow; Red 



arrow - high temperature effects; Blue arrow - water stress effects; 
Red and blue arrow - interaction effect; Labile = current and stored 
assimilate pool; WT = weight; PDNO =pod number; PGNO = peg 
number; FLNO = flower number). Direction of redlblue arrows opposite 
to assimilate route indicates negative effects ............................... 1 0 2  

Fig. 3.17 Relationship between transpiration efficiency coefficient (k) and leaf 
carbon isotope discrimination (A) for data derived from groundnut 
transpiration efficiency studies in field based mini-lysimeters. (Source: 
Wright et al., 1996). ................................................................................. 105 

Fig. 4.1 Comparison of fitted equations for pollen tube length response to 
temperature between 10 "C and 47.5"C in groundnut genotype ICG 
1236 ...................................................................................................... 126 

Fig. 4.2 Effect of temperature on percentage pollen germination of 
susceptible (Topt < mean-LSD), moderately tolerant (Top, = meankLSD) 
and tolerant (Topt > mean+LSD) genotypes. Symbols are observed 
values and lines are fitted values. ............................ ............ ................. 131 

Fig. 4.3 Effect of temperature on pollen tube length of susceptible (Topt < 
mean-LSD), moderately tolerant (Top, = meankLSD) and tolerant (TOpt > 
mean+LSD) genotypes. Symbols are observed values and lines fitted 
values ....................................................................................................... 135 

Fig. 4.4 Correlation between (a) Tmin, (b) Topt and (c) T,,, temperatures for 
pollen germination and pollen tube growth for the 21 groundnut 
genotypes. ............................................................................................... 138 

Fig. 4.5 Reciprocal of time to reach 50% of final pollen tube length versus 
temperature for genotypes (a) TMV 2 (y = -0.033+0.0021~; R~ = 0.84) 

................................. and (b) Kadiri 3 (y = -0.0317+0.0019x; R'= 0.86). 139 

Fig. 4.6 First and second Principal Component Analysis (PCA) scores for the 
identification of genotype response to high temperature. The latent 
vectors are indicated by red lines showing the direction (angle) and 
magnitude (length). (RGER-reduction in pollen germination at 40 "C 
compared to values at optimum temperature; RPTL- reduction in 
pollen tube length at 40 OC compared to values at optimum 
temperature; T,in, To,, and T,., are cardinal temperatures for pollen 
germination (GER) and pollen tube length (PTL); 11tl,2PTL - reciprocal 
of time to establish 50% of pollen tube length) ............ ... .............. 142 

Fig. 4.7 Relation between percentage relative injury values for membrane 
thermostability and optimum temperature for pollen germination (y = 
1.9231Ln(x) + 25.215; ~ ~ = 0 . 3 2 )  ............................................................... 147 

Fig. 5.1 Temperature treatments imposed at different stages of groundnut 
development .......................................................................................... 155 

Fig. 5.2 Diurnal cycle of air (red line) and floral bud temperature of ICGV 
92116 (blue line) and of 55-437 (pink line) over a 6 d period in growth 



cabinets under (a) 28122 "C (optimum temperature); (b) 34122 OC 
(acclimation temperature) and (c) 40122 "C (high temperature). ......... 158 

Fig. 5.3 Effect of vegetative acclimation (VA-34/22 "C - 6 to 12 DBA), 
vegetative high temperature (VHT-40122 "C - 0 to 6 DBA) and VA+VHT 
compared to control (28122%) on shoot and root dry weight. Data are 
mean of two genotypes. ......................................................................... 160 

Fig. 5.4 Genotypic differences in  shoot dry weight, averaged over all the 
treatments, recorded at 10 d after end of tagging. Data are mean of 
temperature treatments. ......................................................................... 161 

Fig. 5.5 Genotypic differences for total flower number produced during the 
first 6 d after anthesis. Data are means of temperature treatments...l62 

Fig. 5.6 Effect of vegetative acclimation (VA: 34122°C; 6 to 12 DBA), high 
temperature (VHT: 40122°C; 0 to 6 DBA) and VA+VHT compared to 
control on fruit-set (Oh angular transformed). Data are mean of 
genotypes studied. ................................................................................. 163 

Fig. 5.7 Genotypic differences in shoot dry weight recorded at 10 d after end 
of tagging. Data are mean of temperature treatments ......................... 164 

Fig. 5.8 Root dry weight of groundnut genotypes, 55-437 and ICGV 92116, 
exposed to different temperature treatments during the post-anthesis 
period (0 to 12 DAA). ........................... .. .......................................... 165 

Fig. 5.9 Flower number produced in groundnut genotypes, 55437 and ICGV 
92116 during the 6 d period of tagging following exposure to different 
temperature treatments during the pre-anthesis period (0 to 12 DAA). 

Fig. 5.10 Effect of reproductive acclimation (RA: 34122°C; 0 to 6 DAA), high 
temperature (RHT: 40122°C; 6 to 12 DAA) and RA+RHT compared to 
control on fruit-set (% angular transformed). Data are mean of 
genotypes studied. ............................... .. .............................................. 167 

Fig. 5.11 Daily percentage pollen germination on in-vitro germinating 
medium of temperatures ranging from 10 to 45°C at 5°C interval in 
genotypes ICGV 92116 (a) and 55437 (b) for a period of 7 d starting 
from 7 DAA exposed to control temperature (28122°C). ..................... 168 

Fig. 5.12 Daily i n  vitro percentage pollen germination at 30°C in genotypes 
ICGV 92116 - heat susceptible ( A )  and 55-437 - heat tolerant (*) 
during the period 0 - 6 DAA (a, b, c and d) and in the period 7-12 DAA 
(e, f, g and h) exposed to different temperature treatments. (X-axis 
key: Black - number of days after anthesis; Blue - number of days of 
34122°C; Red - number of days of 40122°C) .......................................... 170 

Fig. 6.1 Diurnal temperature cycle under natural (-) hot environment (28- 
March-1999) at ICRISAT, India, and controlled (-) high temperature 
treatment (40122 OC - daylnight with 12 h photo-thermoperiod). ........ 182 



Fig. 6.2 Daily values of ETc in irrigated treatments between sowing and 
harvest of the two sowings (TIIT2 and T3/T4). The symbol (V)  
indicates the start of the drip irrigation treatment. .............................. 190 

Fig. 6.3 Daily maximum and minimum air temperatures recorded under 
ambient and high temperature conditions and relative humidity in (a) 
early and (b) late sown groundnut crop .............................................. 196 

Fig. 6.4 Specific leaf area (SLA) values recorded in  water stress treatments 
(IR - 100% ETc and WS - 40% ETc) in the two sowings. (SED: Sowing 1 
- 1.14*; Sowing 2 - 1.28*) .................................................................... 203 

Fig. 6.5 Seasonal timecourse of biomass (diamond) and pod weight (circle) 
recorded in  water stress treatments, lrri (100% ETc - closed) and WS 
(40% ETc - open) in T1 treatment; Vindicates start and end of high 
temperature treatment, while Vindicates start of water stress (WS - 
40% ETc) treatment. .......................... .. ................................................. 205 

Fig. 6.6 Effect of temperature treatments on final biomass averaged across 
different water stress treatments and genotypes. Vertical bar indicates 
SED. ........................................................................................................ 207 

Fig. 6.7 Simulated values (using PNUTGRO) of cumulative soil evaporation 
(Es) and transpiration (T) values in irrigated (IR, supplied with 100% 
ETc) and water stressed (WS, supplied with 40% of ETc from flowering) 
treatments in sowing 1 from sowing to harvest .................................. 212 

Fig.6.8 Amount of water supplied to the crop (ETc) and cumulative 
transpiration values derived from SLA (TSLA) and simulated by 
PNUTGRO (TSIM) in irrigated (IR - 100% ETc) and water stressed (WS - 
40% ETc) treatments, from sowing to harvest, in sowing 1 and sowing 

Fig. 6.9 Summary of the results of high temperature and water stress effects 
on growth and development of groundnut in SAT. (Thick arrows = 
main routes for assimilate translocation; Thin black arrows = routes 
for minor use of assimilates; broken arrow = information flow; red 
arrow = temperature effects; blue arrow = water stress effects; red and 
green arrow = interaction of temperature and genotype; blue and 
green arrow = interaction of water stress and genotype; Labile = 
current and stored assimilate pool; WT = weight; PDNO G o d  number; 
PGNO = peg number; FLNO = flower number). Direction of redlblue 
arrows opposite to assimilate route indicates negative effects. ........ 216 

Fig. 6.10 Simulated values (using PNUTGRO) of percentage soil moisture in 
irrigated ( 0  supplied with 100% ETc) and water stressed (0  supplied 
with 40% of ETc from flowering) treatments in sowing I from sowing to 
harvest. ..................... .. ....................................................................... 219 

Fig. 7.1 Temperature response functions for relative rate of vegetative and 
reproductive processes described in  PNUTGRO species file. (Source: 
Boote et el., 1999). .................................................................................. 229 



Fig. 7.2 Map of lndia showing the locations at which drought screening trials 
were conducted between 1993-1995 under ACIAR-ICAR-ICRISAT 
collaborative project. (Map not to scale). ............................................ 231 

Fig. 7.3 Deviations of observed values from predicted days from sowing to 
flowering grown under irrigated (IR - m) and rainfed (RF - o) conditions 

......... at five locations in India during 1993 to 1995 .......................... ., 246 

Fig. 7.4 Deviations of observed values from predicted days from sowing to 
physiological maturity under irrigated (IR - m) and rainfed (RF - 0) 
conditions grown at five locations in India during 1993 to 1995. ....... 247 

Fig. 7.5 Deviations of observed values from predicted biomass (a) and pod 
yield (b) using yearly SFPL ( 0 )  and location SLPF (a), irrespective of 
the irrigation treatment, at five locations in lndia during 1993 to 1995. 

Fig. 7.6 Deviation of total observed values from predicted biomass during 
1993-1995 in  irrigated (*) and rainfed (0) treatments from five locations 
in India. The envelope of acceptable precision is ?SD ........................ 251 

Fig. 7.7 Deviation of total observed values from predicted pod yield during 
1993-1995 in irrigated (+) and rainfed (0) treatments from five locations 
in India. The envelope of acceptable precision is +SD ........................ 251 

Fig. 7.8 Deviation of observed values from predicted harvest index during 
1993-1995 in irrigated (+) and rainfed (0) treatments from five locations 
in India. The envelope of acceptable precision is ?SD ....................... 252 

Fig. 7.9 Effect of number of days with high temperature on deviation of 
observed from predicted harvest index during 1993-1995 in irrigated 
(+) and rainfed (0) treatments from five locations in India. The envelope 
of acceptable precision is +SD. ............................................................. 252 

Fig. 7.10 Deviation of total observed from total predicted biomass (kg ha-') 
(a) and pod yield (kg ha-') (b) during summer of 1999 at ICRISAT, 
Hyderabad, lndia (Chapter 6). The envelope of acceptable precision is 
the standard deviation (S.D.). (Black - TMV 2, Red - ICGS 11, closed - 
100% ASM (Dl), open - 40% ASM (DZ), square - TI, circle - T2, triangle - 
T3, diamond - T4). .................... ... ...................................................... 254 

Fig. 7.11 Deviation of total observed from total predicted harvest index (HI) 
(a) and pod number (m'2) (b) during summer of 1999 at ICRISAT, 
Hyderabad, lndia (Chapter 6). The envelope of acceptable precision is 
the standard deviation (S.D.). (Black - TMV 2, Red - ICGS 11, closed - 
100% ASM (Dl), open - 40% ASM (DZ), square - T l ,  circle - T2, triangle - 
T3, diamond - T4). ...................... .. ...................................................... 255 

Fig. 8.1 Districts with groundnut cultivation in 1966 (A) and in 1990 (B). 
Arrows point spread of groundnut cultivation to areas with extreme 

.......... climates (Source: Agricultural Situation in India). Not to scale 264 



Fig. 8.2 Yearly area (- m ha), production (- m ton's), productivity (- kg ha") 
and percentage area under irrigation (-) of groundnut in India from 
1951 to 1998. (Source: http:l/www.nic.inlagricooplstatisticsl 
ground.htm) ......................... .... ................................................................ 265 

Fig. 8.3 Effect of temperature (V), water stress (V)  and genotype (V)  on the 
physiological processes identified in this study and their influence on 
the components of Duncan et al. (1978) pod yield model. .................. 267 

Fig. 8.4 First and second Principal Component Analysis (PCA) scores for the 
identification of genotype response to high temperature. Genotype 
with labels in  blue are water stress tolerant and those in red are 
susceptible, tolerance of others is yet to be established. The latent 
vectors are indicated by red lines showing the direction (angle) and 
magnitude (length). (RGER-reduction in pollen germination at 40 "C 
compared to values at optimum temperature; RPTL- reduction in 
pollen tube length at 40 OC compared to values at optimum 
temperature; T,,,, To,, and T,,, are cardinal temperatures for pollen 
germination (GER) and pollen tube length (PTL); Ilt,,2PTL - reciprocal 
of time to establish 50% of pollen tube length) ................................. 277 



LIST OF PLATES 

Plate 1.1 The semi-arid tropics of Asia and Africa (WC = western and central 
Africa; SEA = southern and eastern Africa (Source: http://www. 
cgiar.orglicrisaff) ......................................................................................... 2 

Plate 2.1 Stages in the 6 d life of a groundnut flower with special reference to 
pollen. Day 1: bud initiation occurs (a), sporogenous tissue in  anther 
(b); Day 2: tetrad stage of dividing pollen mother cell (c); Day 3: 
separated very early microspores in anther lobes (d); Day 4: Young 
pollen grain dividing into generative (gc) and vegetative (vc) cells (e); 
Day 5: Mature two celled pollen grain (f, g), hypanthium elongation (h); 
Day 6: Anthesis (i), pollination (j), pollen tube growth in style (k), 
fertilisation - pollen tube (pt) in ovule (I), withered flower (m). (Source: 
Xi, 1991; Pattee and Mohapatra, 1986). .......................................... 23 

Plate 3.1 Photographs showing (a) inside of poly-tunnel with special pots 
used in the study and (b) bubble inside poly-tunnel used to impose 
high temperature treatments. .................................................................. 71 

Plate 5.1 Pollen collected from flowers of groundnut genotypes (a) ICGV 
92116 and (b) 55-437, exposed to a temperature of 40122OC during the 
reproductive period. ............................................................................... 171 

Plate 6.1 Photographs showing (a) broad bed and furrow system with mini - 
weather station; (b) Line quantum sensor and thermocouples (TC) for 
measuring air (inside the cup) and soil temperature (10cm below soil 
surface). ................................................................................................... 185 

Plate 6.2 Photographs showing (a) components of water measuring devices; 
(b) drip pipes in the plot with emitters. ............................................ 191 

Plate 6.3 Photographs showing (a) layout of bubbles in the field (b) inside of 
the high temperature x irrigation treatment bubble ............................. 193 



Groundnut (Arachis hypogaea, L.) has spread from its centre of origin in the 

Matto Grosso State of Srazll to most tropical, sub-tropical, and \.$arm ternperate 

regions between 40' North and South lat~tudes This dissen~inat~on ~r'idicaies 

adaptability of groiindncit to a wide range of soil and climatic conditions, and to 

the value of the crop for food, oil, and feed (Cummirrs, 1985) Esttnlates of world 

qroiindnut production are 13 84 MI froin an aiea of 34 52 Mha IFACS 2000) i e 

an average y~eld of 1448 kg lia ' Cpproxiniately 70% of this production comes 

from tlie semi-arid regions arid "re developing countries contribute about 90% to 

:he totai (FAO, 20001 Tile semi-ar~d trop~cs (SAT) ii? India, Senegal, Nigeria. 

Sudan, Zaire. Brazii, Burma, Argentina, Thaiiancl and 7itnbabwe (Plate 7 . 2 )  are 

characteiised by extremes of rnoisture availability and temperature during tlie 

[peak period of ra~nfeci grourldnilt crop c~iltivation 

i N~geria 6 Ptsnbabwe 

tropic 

Plate 2.1 The semi-arid tropics of Asia and Africa (WC = western and 
central Africa; S E A  = southern and eastern Africa (Source: h t tp : l iww .  
cgiar.orgAcrisaV) 



General Introduction 

Evidence is accumulating for anthropogenic global warming (IPCC, 2000). 

Obse~at ions show that the world has warmed by 0.5 OC since the late 

nineteenth century (Kaiser and Drennen, 1993). General Circulation Models 

(GCMs) indicate a warming of 1.8 to 5.7 OC for a doubling of C02 (IPCC, 2000). 

Temperature and C concentration are likely to increase at a rate of 0.3 OC and 

2.3 GtC per decade, respectively. The real concern is what might happen if 

concentrations of key greenhouse gases go on increasing? Venus is the extreme 

example, with 90% C02 in the atmosphere and a surface temperature of 477 OC ! 

Global warming has not been uniform regionally nor equal throughout the 

seasons. Recent analyses of maximum and minimum temperature trends 

indicate that from 1950 to 1990 minimum temperature over some land areas has 

risen at three times the rate of change in maximum temperature (Rosenzweig 

and Parry, 1993). The consequent reduction in diurnal temperature range is 

approximately equal to the temperature increase. It has been recorded by many 

scientists that changes in temperature effect vegetative and reproductive growth 

(Ong, 1986; Ketring, 1984; Wheeler et a/., 1997); flowering pattern (Craufurd et 

a/., 2000); basic physiological processes like photosynthesis and respiration 

(Bhagsari. 1974; Bagnall et a/., 1988); and fruit-set (Vara Prasad et a/., 1998, 

1999a, 1999b, 2000a) in groundnut. 

Extensive research has been carried out in groundnuts concerning the effects of 

water stress (e.g. Williams et a/., 1986; Nageswara Rao et a/., 1988) but to a 

much lesser extent on the effects of extreme high temperatures. Various 

methods have been devised to screen groundnut genotype responses to water 
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stress, but not so for responses to temperature. Temperature variability can have 

severe consequences for both individual farmers and on whole regions of 

production. Temperature tolerance together with appropriate water stress 

tolerance can deliver better cultivars to a given production area. 

Current understanding of global climate change suggests that hot temperature 

episodes may become more frequent andlor extreme in the future. Given the 

cultivation of groundnut in the SAT and, as well, the likelihood of global warming, 

there is an urgent need to understand how to sustain the production of 

groundnuts because 70% of the world crop is produced in environments where 

hot temperature episodes may constrain yield (FAO, 2000). 

Crop models provide the means to predict biological and economic yield and 

production risks for a diverse range of environments. Models of crop growth can 

simulate the effect of different climates, soils and cultural practices more cheaply 

than by doing all of the work in the field. Models can be used to examine the 

potential of climates predicted by the GCMs for future years. They can also 

examine the effects of extreme temperature events, either by increasing the 

variability of current climates, or by running many hundreds of climate years and 

looking at the extremes. Models can draw attention to gaps in understanding and 

thereby stimulate new experimental work or theoretical scenarios. Crop models 

can be useful for analysing experimental results by virtue of their ability to 

substantiate possible causes of difference in the results of statistical analysis, 

and so provide a level of interpretation beyond the bounds of statistical 
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significance that currently guide the analysis of crop experiments (Sinclair and 

Seligman, 1996). 

Groundnut growth, development and yield have been simulated by simulation 

models such as: PEANUTGRO (Boote et a/., 1986); PEANUT (Young et a/., 

1979); PEANUTZ (Duncan et a/., 1978); QNUT (Hammer et a/.. 1995). The 

popular model PNUTGRO, had been evaluated and validated for responses to 

water availability (water stress), sowing dates and seasons, plant population and 

row spacing. PNUTGRO has not been evaluated or validated for response to 

high temperature stress or for the effects of interaction between water stress and 

high temperature on groundnut growth, development and yield. 

These gaps in understanding of response to water stress and high temperature 

were the subject of the research presented in this thesis. A brief review in 

Chapter 2 describes the current knowledge on water stress and high temperature 

effects along with the current state of crop modelling. The interaction between 

water stress and high temperature is presented in Chapter 3 (controlled 

environment) and Chapter 6 (field conditions). Genotypic differences for pollen 

and membrane thermostability to high temperature are presented in Chapter 4. 

Evidence for acclimation response in groundnut genotypes is presented in 

Chapter 5. In Chapter 7, the PNUTGRO model is validated with the results from 

Chapter 3 and 6. Finally, in Chapter 8 a general discussion of the observed 

results, with an insight into future research for high temperature tolerance in 

groundnuts is presented. 



CHAPTER 2 

REVIEW OF LITERATURE 
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2.1 INTRODUCTION 

Plants are able to control the temperature of tissue through transpiration, which 

can cool leaves by as much as 6-7°C relative to ambient air (Fisher, 1980). High 

temperatures may cause problems (e.g. necrotic lesions, chlorotic mottling, 

denaturation and aggregation of proteins) if water is not readily available, Thus, 

water stress results in an increase in plant temperature (Sanders et at., 1985a). 

In Rajasthan State of India, for example, air temperatures during the growing 

season often exceed 40°C, and soil temperatures of more than 60°C are 

frequent during the middle of the day. The occurrence of high temperature 

combined with water stress is common in the SAT (Nix, 1975) 

The groundnut growing regions within the SAT are typically subject to extremely 

high temperatures (35" to 45"C), which constrain growth and yield. An increase 

in the availability of irrigation facilities is also spreading the cultivation of 

groundnuts to areas with extreme climatic conditions (FAO, 2000). Temperature 

is the dominant factor controlling the rate at which groundnuts develop 

(Fortanier, 1957; De Beer, 1963; Cox, 1979). Studies have indicated that the 

flowering period is particularly sensitive to the effects of high temperature (De 

Beer, 1963). Increases in soil temperature (>28"C) along with high air 

temperature (>34OC) are also an important constraint to pod formation and 

development (Vara Prasad eta/. ,  2000b). 

In addition to extreme climatic conditions, farmers in the SAT also face 

economic constraints due to low income per unit of cultivated area and large 

family size. To avoid overburdening of already constrained systems with poverty 
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alleviation, low cost crop-testing systems are required. Crop models offer a 

suitable surrogate to simulate crop growth and development under these 

climatic and economic conditions, thus helping to target research in the SAT 

areas more effectively. 

The objective of this review is to explore how temperature affects the growth and 

development of groundnut. Temperature effects on flowering, including flower 

production and the formation of the ovary and pollen, are discussed in detail. 

The literature on acclimation to temperature in plants is also briefly reviewed. 

Temperature extremes and water stress often occur together and the effects of 

any interaction between these two stresses are complex and poorly understood. 

The impacts of these limitations are also reviewed here. Finally, crop simulation 

models that are purported to simulate responses to high temperature and water 

stress in groundnut are discussed. 
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2.2 PHYSIOLOGY OF TEMPERATURE EFFECTS IN GROUNDNUT 

2.2.1 Temperature effects on development 

Development in plants has been defined as a sequence of phenological events 

controlled by environment (Landsberg, 1977). In groundnut as in other annuals, 

temperature moderation of development can be expressed in terms of thermal 

time above an appropriate base value (Angus etal., 1981; Ketring and Wheless, 

1986; Nigam et a/., 1994) or days after sowing or absolute temperature 

(Fortanier, 1957; Leong and Ong, 1983; Talwar et a/., 1999). A detailed account 

of the temperature effects on groundnut growth and development has been 

provided by Ong (1986). The research reviewed here concentrates on absolute 

temperature effects on developmental events in groundnut. 

2.2.1. I Germination 

The time from sowing to seedling emergence (d) as well as the proportion (%) of 

seedlings that emerge are influenced by temperature (Mixon etal., 1969; Angus 

et a/., 1981; Garcia-Huidobro et a/., 1982; Leong and Ong. 1983; Ketring and 

Wheless, 1986; Mohamed et a/., 1988a, 198813; Nigam et a/. ,  1994). The 

optimum temperature for maximum (%) germination of 15 cultivars of groundnut 

was in the range of 28" to 36°C (Mohamed etal., 1988a). Temperatures warmer 

than 36°C were supra-optimal and the critical upper limit to germination is 

reported to be 54°C (Dickens and Khalsa, 1967). 

2.2.1.2 Leaf and  node appearance 

Leaf number, plant height and main stem node number in groundnut are all 

responsive to temperature. An increase in leaf number occurs with increase in 
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temperature (Fortanier, 1957; Garcia-Huidobro et a/., 1982; Talwar et a/., 1999) 

and this response varies with genotypes (Ketring, 1984), i.e. some genotypes 

are more sensitive than others. Leaf number of cv Schwarz 21 increased, from 

17 to 86 plant-', with an increase in day temperature from 15 to 35°C (Fortanier, 

1957). In contrast, Ono et a/. (1974) recorded a decrease in leaf emergence rate 

from 4 to 2 leaves d" with cvs Chiba-handachi, Java no. 13 and Chiba no. 43 as 

air temperature increased from 20" to 30°C. 

The rate of node number is accelerated as temperature increases (Fortanier, 

1957; Ono et a/., 1974; Leong and Ong, 1983; Ketring and Wheless, 1986; 

Talwar et a/. ,  1999). The optimum temperature for a node to appear in cv Robut 

33-1 was 27°C (Leong and Ong, 1983). lncrease in node number was recorded 

up to an optimum value of 35°C by Fortanier (1957). Similarly, increase in 

branch number due to increase in temperature was recorded by Ono et a/. 

(1 974) and Talwar et a/. (1999). 

lncrease in branch number as well as internode elongation gives rise to longer 

stems. Day temperature increases from 15" to 30°C increased stem length from 

0.2 to I .6 m, under a constant night temperature of 20°C (Fortanier, 1957). Any 

further increase in day temperature resulted in a smaller increase in stem length. 

lncrease in air temperature also increases soil temperature and Golembek and 

Johansen (1997) recorded more leaves and longer stem in cvs TMV 2, AH 

6197 and Comet, with an increase in soil temperature from 20°1140C to 

3E0/32"C (daylnight). 



Literature Review 

2.2.1.3 Leaf Area Index 

Temperature can influence carbon assimilation by the crop canopy by affecting 

the initiation, expansion, senescence, longevity and death of leaves and 

therefore canopy leaf area at any one time. An increase in leaf area with 

increasing temperature can result from an increase in the rate of leaf initiation 

(Fortanier, 1957) or an increase in individual leaf area or both (Wood, 1968). 

Several researchers have reported the maximum leaf area of groundnut at a 

temperature of close to 30°C (Williams et a/., 1975a, Cox, 1979, Talwar et a/., 

1999). Leaf area increases were closely paralleled to increases in dry weight 

over temperatures of 15"/1O0C to 33"/28"C. In Zimbabwe, Williams et a/. 

(1975b) recorded a maximum leaf area index (MI )  of 7.0 at 23°C mean 

temperature, whereas M I  declined to 3.0 at 18°C. 

Relatively very small values of leaf area can result from reduced individual leaf 

size or smaller leaf emergence rates. In contrast to the above observations, 

increase in day temperature from 30° to 35°C were supra-optimum and reduced 

average area per leaf cv Tamnut from 4000 to 2500 mm2 (Ketring, 1984), thus 

reducing total leaf area. 

2.2.1.4 Time to f irst flower 

Initiation of flowers and subsequent flower production (i.e. flower number per 

plant) play a vital role in the reproductive cycle as they determine the potential 

sink size and the duration of seed filling. However, actual sink size is often 

limited by environmental stresses. Variations in the duration from sowing to 

flower opening in groundnut are correlated to mean temperature (Fortanier, 
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1957) and thermal time (Wood, 1968; Leong and Ong, 1983; Ketring and 

Wheless, 1986; Flohr et a/., 1990). 

As for germination and leaf production, genotypes also differ in their time to 

flowering in response to temperature. At 24"119"C time to flowering took 19 d 

longer for Spanish types, 16 d longer for Virginias and 18 d longer for Valencia's 

than in similar plant types grown at 30°/25"C (Bagnall and King, 1991a). 

Warmer temperatures hasten flower initiation (Bell et a/., 1991b; Talwar et a / . ,  

1999; Ishag, 2000). In the experiments of Bagnall and King (1991b), the rate of 

progress from sowing to first flower (d") showed a positive linear relation with 

temperature over the range 21" to 30°C. Plants grown at 33"/23"C (daylnight) 

temperatures flowered 2-3 d earlier than those at 33"/17"C (Bell eta/., 1991 b). 

2.2.1.5 Time to peg and pod initiation 

Once fertilisation is complete, the fertilized ovary (gynophore) begins to elongate 

geotropically towards the soil within 5-7 d after flowers are fertilized (Smith, 

1950). An intercalary meristem, which is most active in the region 1.5 to 3.0 mm 

below the base of the ovarian cavity, is responsible for the rapid growth of the 

peg during the aerial and early subterranean phases of fruit development 

(Jacobs, 1947). 

Peg initiation rate increases as temperature increases from 19"-23°C (Williams 

et a/., 1975b). In terms of thermal time, Flohr et a/. (1990) calculated that peg 

initiation occurs when the plants have accumulated 660°Cd above a base 

temperature of 10°C. The optimum air temperature for pod development, is 
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about 25°C (Wood, 1968; Cox, 1979) that varies with the cultivar used. Bohlius 

and DeGroot, as early as 1959, identified that optimum temperature for pod 

development in the varieties they studied to be between 26" and 28°C. The 

response of these various developmental events to temperature are presented 

in Fig. 2.1 and summarised in Table 2.1. 

Table 2.1 Values of base temperature (TI,) and thermal time ("Cd > TD) of 
several developmental processes of  groundnut cv Robut 33-1. (Source: 
Ong, 1986). 

Development process Tb ('C) Thermal time ("Cd > Tb) 

Leaf production 10.0 56 leaf' 

Branching 9.5 103 branch-' 

Time from sowing to first 
flowering 

538 

Time from sowing to first 670 
pegging 
Time from sowing to first ,4 720 
podding 
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Fig. 2.1 Effect of mean temperature on (a) rate of germination, flowering 
and photosynthesis; (b) main stem length and above ground dry weight. 
(Source: Fortanier, 1957; Boote eta/., 1978; Mohamed, 1984). 
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2.2.2 Temperature effects on flower, peg and pod number, and dry matter 

accumulation 

Developmental modifications by temperature accompanied by direct 

temperature effects on growth processes combine to influence dry matter 

accumulation and its partitioning to economic yield. 

2.2.2.1 Flower number 

Flower production in groundnut is affected by temperature (Fortanier, 1957) and 

the effects have been quantified recently by Vara Prasad etal .  (1999a). Flower 

number was reduced at the rate of 1 .I plant -' "C" between a day temperature 

of 28°C and 48°C and the ceiling temperature at which no flowers were 

produced was 54.5"C (Vara Prasad et al.. 1999a). A decrease in flower number 

was also recorded at 80 DAS with increase in day (20" to 35°C) or night 

temperature (23" to 32°C) (Fortanier, 1957). 

Similar negative effects on flower number by high temperature have been 

recorded in different crops. For example, on exposure to high temperature 

(39"/28"C daylnight), a 17% reduction in flower number was recorded in tomato 

(Lycopersicon esculentum L.) cultivars (Peet etal., 1997). In contrast Kigel et a/. 

(1991) reported prolific flower production (135 plant-') in cowpea (Vigna 

unguiculata L.) when exposed to high temperatures of 32"127"C (daylnight), 

compared to 52 flowers per plant exposed to 27"117"C temperature. 
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Reduction in flower number can also occur if flowers drop due to abscission 

when plants are exposed to severe or stressful environments. Groundnut 

flowers wither by midday (Pattee and Mohapatra, 1986). Studies have not been 

conducted to see if withering is hastened by high temperatures. However, 

physical flower drop not reported in groundnut, is of general occurrence in many 

crop plants when exposed to supra-optimal temperatures. A flower bud drop of 

66% was recorded in the heat-sensitive tomato cv Hosen-Eilon, whereas only 

10% flower drop was recorded in the tolerant cv Hotset at the same 

temperatures (Levy et a/ . ,  1978). Similar differences for flower and bud drop 

were also observed in bean (Phaseolus vulgaris L.) genotypes when exposed to 

temperatures of 2 35°C (Monterrosso and Wein, 1990). 

2.2.2.2 Peg and pod number 

In controlled environment studies, peg number was affected by both high day 

and high night temperatures (Vara Prasad et a/ . ,  1999a, 2000a). Increase in day 

temperature from 28" to 48°C reduced peg number at the rate of 0.9 plant" "c-'. 

lncrease in night temperatures reduced peg number from 7.7 to 5.0 plant". In 

contrast, no such decrease in peg number was recorded by Dreyer eta / .  (1981) 

in their study with soil temperatures of 23", 27", 30°, 34" and 37°C. 

Decreases in flower and peg numbers reduce the number of pods formed. In a 

study by Vara Prasad et a/. (2000b), pod number was decreased by high air 

temperature (38"/22"C) and by high soil temperature (38"/3O0C). High air 

temperature at podding reduced pod number by 32% whilst high temperature at 

flowering reduced pod number by only 22%. However, high soil temperature had 
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the opposite effect. High soil temperature at flowering reduced pod number by 

52% while at podding the loss was only 33%. Thus a combination of these 

extreme air and soil temperatures, which are common in the SAT (Nix, 1975), 

will greatly reduce pod numbers and yields. 

2.2.2.3 Dry matter accumulation 

The amount of dry matter accumulated in groundnut per unit input (light, water 

and nutrients) determines the overall efficiency of the production system. Crop 

growth rate, which indicates the rate of conversion of inputs into dry matter, is 

influenced by temperature. 

Temperatures above or below an optimum value reduce dry weight or biomass 

accumulation. An optimum temperature of 30°/26"C has been identified for dry 

matter accumulation. Temperature 4°C above or below the optimum of 28"C, 

reduced dry weight (Cox, 1979). Temperatures > 38°C during the day reduced 

dry matter production (Wood, 1968; Wheeler et a/., 1997; Craufurd et a/.. 1999; 

Vara Prasad et a/ . ,  1999a) and decreases in biomass by 25% at 35°C (Wood, 

1968) to 50% at 45°C (Wheeler et a/., 1997) has been recorded compared to 

that at 25°C. 

Soil temperature is also important in determining groundnut yield as the pod 

growth occurs in the ground. Vara Prasad et a/. (2000a) reported a decrease in 

per plant dry weight with increase in air or soil temperature. High air (3O0/25"C) 

or high soil (25"/34"C) or high air combined with high soil (3O0134"C) 

temperatures reduced dry weight plant-' by 20, 50 and 55%, respectively. An 



Literature Review 

increase in soil temperature alone also affects dry matter accumulation: an 

increase from 2O0/14"C (daylnight) to 32'126'C, decreased the dry matter 

accumulation of stems, leaves and roots (Golembek and Johansen, 1997). 

2.2.2.4 Partitioning to pod and pod growth 

Pod yield is usually correlated positively with total dry matter accumulation 

(Uguru, 1998) and therefore any effect of temperature on total dry matter 

accumulation will effect pod yield (Ono et a/., 1974: Cox, 1979). 

Once the peg penetrates the soil, the growth of the peg and that of the pod is 

influenced more by soil temperature than by air temperature. Maximum yield 

and quality will be produced when the geocarposphere temperature is between 

21" and 29°C dur~ng pod addition and pod maturation periods (Davidson et a/., 

1991). 

A decrease in fruit yield per unit area was recorded due to a decrease in the 

duration of the pod filling period under high soil temperature conditions. Dreyer 

eta/. (1981) observed that at soil temperatures of 30" to 34°C pods have greater 

growth rates than at 23°C. Although higher pod growth rates were observed at 

high soil temperatures (32"C), a decrease in pod yield occurred due to decrease 

in pod initiation rate (Golombek and Johansen, 1997). 

Combinations of high air and soil temperatures are especially detrimental to pod 

yields. Vara Prasad et a/. (2000b) reported that when high air and high soil 

temperature were experienced during the flowering and podding periods, pod 
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yields declined largely in an additive manner: by 18-26% at high air temperature, 

30-39% at high soil temperature, and 49-52% by a combination of high air and 

soil temperatures. 

Studies on the effects of temperature on biomass partitioning in groundnut are 

inconclusive. Partitioning has been identified as the main cause for yield 

reductions in controlled environments (Wheeler et a/., 1997) and in the field 

studies (Ntare et a/., 1998). Ntare ef a/. (1998) showed that decline in 

partitioning is more closely related to minimum temperature than to maximum 

temperature during the day because the minimum temperature occurs during 

the periods of fertilisation in groundnut. In a recently reported study by Ntare ef 

a/. (2001) higher pod yield was significantly associated with greater partitioning 

to pods (Fig. 2.2), hence genotypes (e.g. 55-437, ICG 1236) which fall in 

Group 1 were considered tolerant. In studies by Wheeler et a/. (1997) a day 

temperature of 45°C reduced HI to 87% and 41% of the value in the control 

(30°C) plants in high temperature-tolerant (HTT) and high temperature-sensitive 

(HTS) genotypes, respectively. In contrast, in a study with two Virginia and two 

Spanish cultivars in Australia, Bell et a/. (1991a, 1993) recorded an increase in 

partitioning with increase in night temperature, from 17" to 23% at a constant 

high temperature during day (33°C). These studies indicate that differences for 

partitioning at high temperature exist in groundnut genotypes. 

2.2.2.5 Root growth 

Roots growth compensates for the effects of above ground stress events, like 

high temperature, by supplying additional water and nutrients to the shoot under 
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Fig. 2.2 Classification of 625 groundnut genotypes based on pod yield 
(t ha") and partitioning (proportion of dry matter partitioned into 
reproductive sinks) in 1991. (Source: Ntare eta/., 2001). 
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stress. Any injury to the roots due to the high air temperature may aggravate the 

stress effects. In the Spanish cv Spantex, root dry weight decreased rapidly with 

increasing temperature so that root weight at 35°C was only 35% of that 

recorded at 20°C after 47 d from sowing (Wood, 1968). There was no effect of 

night temperature per se on root growth 

In a study comparing the performance of HTT and HTS genotypes, Wheeler et 

a/. (1997) recorded that root biomass declined in both genotypes at 45°C. The 

decline in the root biomass of the HTS genotype ICGV-SM-86021 was more 

rapid, than in the HTT genotype 55-437 during the 41d period after flowering. 

Thus, high temperatures advanced the natural ontogenic decline in root-shoot 

ratio which occurs as groundnut crops progress through the reproductive phase 

to maturity and death (Wheeler et a/., 1997). 

The effects of soil temperature on root growth are less well understood. For 

example, high soil temperature between flowering and maturity increased the 

amount of dry matter partitioned to roots in the study of Vara Prasad et a/. 

(2000b). In contrast, Golombek and Johansen (1997) observed a decrease in 

root weight with increase in soil temperature from 20"114°C (daylnight) to 

38"/32"C, when imposed from emergence to maturity. Hence, further studies are 

required to find the critical temperature, growth stage, and genotypic differences 

for root growth. 
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2.2.3 Temperature effects on pollen, stigma and ovary 

Pollen grains once dispersed from the anther remain as independent functional 

units and are exposed to the prevailing environmental conditions for various 

periods. Depending on the period and severity of the environment, the quality of 

pollen grains, particularly their viability and vigour, may be affected during this 

pre-pollination phase (Shivanna and Sawhney, 1997). 

Extensive work has been undertaken in several legumes and cereals on the 

processes of pollen production, pollen germination and pollen tube growth when 

exposed to high temperatures. These studies have established beyond doubt 

that high temperatures reduce pollen viability, pollen germination, and pollen 

tube growth (Farlow et a/., 1979; Herrero and Johnson, 1980; Saini and Aspinal, 

1982; Saini and Westgate, 2000). 

High temperatures are also known to reduce progress in ovary and embryo 

development (Ahmadi and Stevens, 1979; Saini et a/. ,  1983). It has also been 

established that genotypic differences exist for pollen tolerance to high 

temperature. The following review summarises the effects of temperature on 

pollen, stigma and ovary. Stages in the life of a groundnut flower and with 

special reference to pollen are presented in Plate 2.1. 

2.2.3.1 Pollen Viability 

Not much is understood about high temperature effects on groundnut pollen 

which is tricolpate and bicelled with a large vegetative nucleus and a small 

generative nucleus (Xi, 1991). In a recent study, Vara Prasad et a/. (1999a) 
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reported that groundnut pollen viability as assessed by staining with 2,3,5, 

triphenyle tetrazolium chloride (TTC) was reduced when pollen was exposed to 

night temperatures of 22" and 28°C with day temperatures increasing from 28" to 

48°C (Fig. 2.3). A threshold temperature of 34°C was recorded for pollen viability. 

and there was a strong linear negative relation between fruit set and pollen 

viability at temperatures > 34°C. Further studies are needed to confirm the role 

of pollen viability in peg and pod set in explaining genotypic differences in 

response to high temperature. 

Pollen viability of other crop plants has been studied using various staining 

techniques. Staining tests with TTC (Weaver et a/., 1985), Alexanders stain 

(Shelby et a/., 1978), propionic caramine (Halterlien et a/., 1980), flurochromatic 

reaction (Baki, 1992), were used to study pollen viability in different crop species. 

Along with staining techniques, cross pollination (Dickson and Boettger, 1984; 

Gross and Kigel, 1994) and pollen germination tests (Rudich et a / ,  1977) have 

also been used in crops to indicate the viability of pollen exposed to different 

temperature regimes. 

In a study by Halterlien et a/. (1980) with four cvs of bean (PI 271997, Oregon 

1604, UI 11 1 and Bontac), no differences were found in the viability of pollen at 

the lowest temperature, 25"/2O0C. However, at high temperature (35"/2O0C) the 

pollen viability of PI 271997, for example. was reduced, from 86 to 25%. Weaver 

eta/. (1985) also reported that pollen viability in newly opened flowers of the high 

temperature-sensitive bean cv 5BP-7, was reduced by nearly 50% at 35°C and 

pollen was killed at 41°C. They also noted a significant decrease in viability of 
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other cultivars. Similar observations were made by Dickson and Boettger (1984), 

and by Gross and Kigel (1994) in other cultivars. 

0 
1 2  3 4 6 6 

Duration of temperature treatment (d) 

Fig. 2.3 Effect of day temperatures of 28" (o), 34" (o), 42" ( A )  and 48°C (A) 
on pollen viability (angular transformed) over time during 6 d period of 
stress. Bars denote s.e. and are shown where they exceed the size of the 
symbol. (Source: Vara Prasad etal., 1999b). 

Temperature effects on tomato pollen are well documented (Rudich etal . ,  1977; 

Shelby etal . ,  1978; Ahmadi and Stevens, 1979; Weaver and Timm, 1989; Dane 

et a/., 1991). While screening tomatoes for high temperature tolerance, Weaver 

and Timm (1989) showed that pollen viability was greatly reduced when flowers 

were exposed to temperatures of 40" and 48°C and genotypes varied 

significantly in their percent viable pollen. Pollen viability of most tomato cultivars, 

except for Redcherry and PI 190256, was severely reduced when exposed to 

temperatures of 35"-36°C (Dane et a/., 1991). 
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Pollen viability has also been studied in maize (Zea mays L.) by Schoper et a/. 

(1986); Lyakh et a/. (1991) and in wheat (Triticum aestivum L.) by Saini and 

Aspinall (1982); Zeng et a/. (1985). In contrast to these studies Brassica juncea 

(L.) Czern. pollen grains remained viable even at temperatures of 60°C, and at 

75°C pollen viability was reduced by only 20% (Rao eta/.. 1992). 

2.2.3.2 Pollen germination 

Even though pollen grains are viable based on a chemical stain reaction, the 

ability to germinate and sustain pollen tube growth on exposure to abiotic stress 

and so the effective fertilisation of the ovary are thought to be more important 

and not necessarily correlated with percentage viability (Ahmadi and Stevens, 

1979). Hence, it is necessary to understand the response of pollen germination 

to temperature. In the studies reviewed below, a pollen grain is considered to 

have germinated when the pollen tube is equal to or longer than the diameter of 

pollen grain under study. The percentage pollen germination and cardinal 

temperatures for pollen germination in different crop species are shown in Table 

2.2. 

The Tmin, Topt and Tmax temperatures for groundnut pollen germination in cv 

Spantex were reported to be 18", 32" and 35"C, respectively (Oakes, 1958). Not 

only do crop species differ in their response to temperature, but genotypic 

differences are also found within-species. In most crops, the maximum/lethal 

temperature (Tmax) for pollen germination is > 35°C. For example, in tomatoes, 

pollen germination was severely reduced when temperatures were more than 

40°C (Maisonneuve and Den Nijs, 1984; Weaver and Timm, 1989). Weaver and 
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Table 2.2 Pollen germination (%) at three cardinal temperatures in different 
crop species. 

Pollen germination Temperature 
Crop (%) at 

(Oc) - Reference 
Tmln TOP, Tmax Tm,, Toot T,,, 

Groundnut 
(Arach~s hypogaea) - 18 32 35 Oakes (1958) 

French bean Farlow et a1 
(Phaselous vulgar~s) 0 5 85 0.5 4 7 38 (1979) 

Snake guard Matlob and Kelly 
(Cucum~s meio) 5 100 0 10 37 48 (1973) 

Bottle guard lap~chino and Loy 
(Lagenana srcerana) - 80 0 - 30 38 (1987) 

Chinese cabbage 
(Brass~ca campeslr~s 
ssp Pek~nens~s) 12 41 15 10 20 32 Kuoetal(1981) 

Cucumber Matlob and Kelly 
(Cucumis sativus) 10 90 0 10 21 43 (1973) 

Muskmelon Maestro and 
(Cucum~s melo) 50 100 - 20 40 - Alvarez (1988) 

Pear Vasilakak~s and 
(Pyrus communis) 10 100 - 5 15 - Porltngls (1985) 

Avocado Louppassakl et 
(Persea amer~cana) 17 65 - 15 25 - a1 (1997) 

Walnut 
(Juglans sp.) 6 47 0 14 28 40 Luza etaL (1987) 

(- = not reported) 



Literature Review 

Timm (1989) also recorded genotypic differences for pollen response to 

temperature. Studies are essential in groundnut to identify the genotypic 

differences for tolerance of pollen to high temperature. 

2.2.3.3 Pollen tube growth 

Once pollen germinates, it takes between 5 to 6 h in groundnut (Lirn and Gurnpil, 

1984) and 3-4 d in tree species such as apple (Jefferies and Brian, 1984) for the 

pollen tube to reach the ovary. During this period of growth along the style to the 

ovary, the pollen tube may be exposed to temperature extremes that increase in 

severity as the day progresses. Hence, tolerance of pollen tube growth to 

surrounding environmental extremes may be essential for successful seed set. 

Differences exist for in-vitro pollen tube length among crop species, which can be 

related to differences in style length. Crops also differ in their cardinal 

temperatures to pollen tube growth indicating their adaptation to specific 

conditions (Table 2.3). 

Only one record for groundnut pollen tube response to temperature has been 

published (Oakes, 1958). At an optimum temperature of 32"C, a pollen tube 

length of 1800 vm was observed in in-vitro studies. No pollen tube growth was 

observed beyond 35°C. Genotypes also differ in their pollen tube growth 

response to temperature. In tomato cv Grivorski, no reduction in pollen tube 

length was observed after exposure to 40°C for 60 min. Pollen tube length was 

reduced by 14% and 21%, respectively, in cvs Patio and VF-6 at 40°C. In other 

cultivars the reduction was as much as 54% (Weaver and Timm, 1989). 
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Table 2.3 Final pollen tube lengths (pm) at three cardinal temperatures in 
different crop species. 

Pollen tube length Temperature 
Crop (pm) at L C )  Reference 

Tm,n Topt Tmax Tmln Topt Tmax 

Groundnut 
(Arachis hypogaea) 500 1800 0 18 32 35 Oakes (1958) 

French bean Farlow et a/. 
(Phaselous vulgaris) 30 400 75 4.5 16 7 38 3 (1979) 

Snake melon Matlob and 
(Cucumis melo) 2 700 0 10 32 48 Kelly (1973) 

Ch~nese cabbage 
(Brassica campestris Kuo et a1 
ssp Pekinensis) 26 127 66 10 20 32 (1981) 

Cucumber Matlob and 
(Cucumis sabvus) 3 270 0 10 21 43 Kelly (1973) 

Muskmelon Maestro and 
(Cucumfs melo) 48 60 20 20 30 40 Alvarez (1988) 

Apple Jeffertes and 
(Malus domestics) 9190 13490 3780 3 5 18 5 33 5 Br~an (1984) 

Pear 
(Pyrus communis) 

Vasilakakis and 
5 25 - Porltngls (1985) 

Walnut Luza et a/. 
(Juglans sps) 9.- 61 0 16 33 37 (1987) 

(- = not reported) 
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2.2.3.4 Stigma, Style and ovule 

Although pollen viability, germination and tube length are very sensitive to high 

temperature, and are usually the major cause of sterility, the female reproductive 

structures (i.e. style, stigma and ovary) may also be affected by high 

temperature. 

Little attention has been paid until recently to stigma receptivity under high 

temperatures in groundnut. However, studies by Talwar and Yanagihara (1999) 

have shown that high temperatures of 35"/30°C, compared to 25"120°C, 

increased hypanthium length and caused stigma exertion, hence reducing the 

chances of successful fertilisation. Therefore, further studies are necessary to 

identify the causes for lower fruit-set when exposed to high temperature. Studies 

are also necessary to quantify the role of male and female reproductive 

structures in imparting tolerance to high temperature. 

Reports on the role of female reproductive parts in inducing sterility under high 

temperatures are available. Gross and Kigel (1994), from their experiments on 

common bean, concluded that along with lower pollen viability, female 

performance was impaired in a large number of flowers resulting in lower fruit- 

set. Reciprocal crosses made in bean (Monterrosso and Wein, 1990) with pollen 

from plants grown at high temperature or from heat-treated flowers indicated that 

pollen was more affected by heat stress than female structures. 

In tomatoes, sterility under high temperature (>35"C) conditions has been 

reported to reduced stigma receptivity (Charles and Harris, 1972), denatured 
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macrospores (Levy et a/., 1978; Ahmadi and Stevens, 1979), and increased style 

length (Rudich et a/., 1977). These morphological changes in stigma and style 

reduce the chances for successful fertilisation. 

When emasculated flowers of tomato exposed to high temperature (37"/27"C) 

were crossed with normal pollen, a significant decrease in fruit set was recorded 

in all genotypes (Ahmadi and Stevens, 1979). Studies along similar lines to 

differentiate the response of male and female tomato organs to high 

temperatures by Peet eta / .  (1997) indicated that viable pollen supply alone is not 

sufficient for fruit set under high temperatures. 

Saini and Aspinall (1982), from experiments on wheat plants exposed to 30°C, 

suggested that female sterility may also have contributed to a decrease in grain 

yield. In a further study, Saini et a/. (1983) reported that one-third of heat 

stressed ovaries (30°C for 3 d just prior to anthesis) contained abnormal 

embryos. Abnormalities ranged from the complete absence of an embryo sac 

accompanied by reduced nucellus development, to small embryo sacs that 

contained the full complement of cells. They also observed that when fertilised 

with fertile pollen, heat stressed stigmas had fewer pollen tubes reaching the 

ovary, which decreases the chances for a successful fertilisation. 
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2.3 SCREENING FOR HEAT TOLERANCE 

Early identification of tolerance to high temperature in screening trials and 

crossing studies would enable the breeder to cross genotypes in the same 

season. Several simple tools have been used to define tolerance to temperature 

stress in crop plants. Techniques like chlorophyll fluorescence (Sipos and 

Prange, 1986; Moffat et a/., 1990) and cellular membrane thermostability 

(Sullivian, 1972; Martineau et al., 1979) have been in use to identify crop 

tolerance to high temperature stress. 

2.3.1 Chlorophyll fluorescence 

In a study with chickpea (Cicer arietinum L.), pigeonpea (Cajanus cajan L.), 

groundnut and soyabean (Glycine max), Srinivasan et a/. (1996) identified 

groundnut as the most heat-tolerant legume crop based on FvIFm (variable 

fluorescence I maximum fluorescence) ratio. The ratio indicates high thylakoid 

membrane integrity and stable photochemical efficiency of plant cells (Krause 

and Weiss, 1984) 

Groundnut cultivars differed in their tolerance to temperature stress based on 

fluorescence test. Cultivars ICG 1236, Florunner and Virginia Bunch were 

tolerant, whereas Chico, ICGS 44 and Shulamit were highly sensitive to extreme 

temperature (55°C) (Srinivasan et al., 1996). Chauhan and Senboku (1997) have 

also shown that chlorophyll fluorescence or chlorophyll concentration can be 

used to identify tolerance in groundnut. Genotypic differences in Fv response to 

high temperature stress and the positive relation of Fv and its stability to overall 

yield were also observed in wheat (Moffat et al., 1990). 
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2.3.2 Membrane thermostability 

Cell membrane therrnostability is based on the observation that when leaf tissue 

is injured by exposure to high temperature, cellular membrane permeability is 

increased and electrolytes escape. 

Selection for membrane thermostability may be a means to improve heat 

tolerance of the groundnut crop (Ketring, 1986). Groundnut genotypes differ in 

their response to high temperature for cellular membrane stability with the 

Spanish cv. ICG 1236 being particularly tolerant (Srinivasan et a/., 1996). Similar 

observations for genotypic differences to membrane therrnostability were also 

made by Chauhan and Senboku (1997). 

In general, the groundnuts are more tolerant to high temperature compared with 

many other crops. Srinivasan eta/.  (1996), in a study with four legumes, showed 

differences in heat killing temperature (temperature which causes 50% injury) 

and heat killing time (time required to cause 50% injury at a given temperature). 

Heat killing temperatures in chickpea, pigeonpea, soyabean and groundnut were 

44", 50°, 51" and 54"C, respectively. Heat killing time was much longer in 

groundnut (2.3 h) than in soyabean (0.85 h), pigeonpea (0.78 h) or chickpea 

(0.68 h). 

Genotypic differences in membrane thermostability for soyabean were also 

recorded by Martineau et a/. (1979). Genotypic differences were greatest in 

newly developed leaf tissues, and genotypic differences were consistent across 
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sampling dates, indicating that assay can be conducted during any phase of 

vegetative growth. 

Membrane thermostability has been used to identify tolerance to heat stress at 

the seedling stage of the cowpea crop. In a recent study reported by lsmail and 

Hall (1999), a genotype with tolerance to high temperature at flowering and pod 

set (1393-2-1) had higher membrane stability (lower electrolyte leakage) than the 

susceptible genotypes (e.g. 1393-2-1 1 and CB5). 
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2.4 ACCLIMATION FOR HIGH TEMPERATURE 

Acclimation refers to the non-heritable modification of characters caused by the 

exposure of organisms to new climatic conditions, such as warmer, cooler, or 

drier weather (Kramer, 1980). Henle and Dethlefsen (1978) have defined heat 

acclimationlacquired thermotolerancelheat hardening as the ability of organisms 

to tolerate normally lethal high temperatures due to an initial exposure to an 

elevated but sub-lethal temperature. Alternatively, heat acclimation has been 

defined as the ability of plants to increase their tolerance to heat following 

exposure to acclimation temperatures (Li etal., 1991). 

Studies conducted to date have shown that a sudden imposition of high 

temperature, in controlled environments during the sensitive reproductive phase. 

reduces fruit set and yield in groundnut (Vara Prasad etal . ,  1998, 1999a, 2000b; 

Wheeler etal., 1997). However, under natural conditions in the field, temperature 

changes are more gradual, and acclimation may occur. Heat acclimation can 

enable plants to reduce heat injury. Levitt (1980) suggested that thermal 

tolerance of different genotypes should be compared when plants are at the 

acclimated stage because the ability of genotypes to tolerate high temperature is 

significantly and differentially affected by their heat acclimation potential. That is 

the ranking of heat tolerance for a given group of genotypes may vary depending 

on whether or not the exposure to high temperature was preceded by heat 

acclimation. 

Acclimation of plant processes such as photosynthesis (Berry and Bjorkman, 

1980; Bjorkman et a/., 1980) and respiration; acclimation of enzymatic activity 
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(Teeri et a/., 1980) and acclimation of membrane activity (Raison eta/., 1980) are 

well documented in the literature for a number of crops, but not for groundnut. In 

common bean, Chaisompongan et al. (1990) expressed photosynthetic 

acclimation to high temperature in terms of Oz evolution. Without heat 

acclimation, heat stress at 42°C decreased 0 2  evolution in six genotypes from 50 

to more than 95% compared with the control. A 45°C heat stress almost inhibited 

O2 evolution. In plants acclimated to heat by placing them at 37°C for 24 h, heat 

stress at 42°C had no effect on O2 evolution. However, little is known as to how 

acclimation of these processes results in increased grain yield of field crops 

exposed to high temperatures. 

Two genotypes each of bean, potato (Solanum tuberosum L.), and soyabean and 

tomato, with known differences in heat sensitivity based on their yield and fruit 

set under high temperatures, were used in a study of acclimation of leaf tissues 

to heat stress (Chen eta/.. 1982). Tomato cv. Saladatte (heat tolerant) and UC- 

828 (heat susceptible) were both killed after about 15 min at 50% when plants 

were grown in a 2O0115"C daylnight temperature regime. However, after a 24 h 

treatment at 4O0130"C, the heat-killing time of Saladatte was increased to 65 min, 

while sensitive UC-82B could survive up to 50 min. Similarly in beans, heat killing 

time for leaf tissue increased from 5 to 85 min in BBL-415-1 (HT) and from 5 to 

50 min in BBL-47 (HS). The acclimating temperatures at which genotypes 

showed difference in heat killing temperature was 37.5% for soyabean and 

potato, and 40°C for tomato and bean. Similar studies in common bean by Li et 

a/. (1991) support these findings. 
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Acquired thermotolerance has also been reported for reproductive process such 

as pollen tube growth. If the incubation temperature of pollen is raised gradually 

by 4°C increments every 15 min from 29" to 4I0C, pollen tube growth continues 

at 41% in Tradescantia paludosa, although at a rate slightly slower than for the 

tubes growing at 29°C (Altschuler and Mascarenhas, 1982; Mascarenhas and 

Altschuler, 1983; Xiao and Mascarenhas, 1985). No growth was observed in 

pollen exposed directly to 41°C. 

Ability of crop plants to acclimate to high temperature is useful only when it is 

reflected in terms of economic yield. Most acclimation studies have been 

process-oriented and did not concentrate on relating acclimation to yield. Studies 

in wheat by Stone and Nicolas (1995) have shown that mechanisms exist in 

plants that could translate acclimation potential into economic yield. In their study 

with two wheat cvs Oxley and Ergot, a sudden rise to high temperature (40°C) 

resulted in a greater reduction of wheat yield (25%) than in response to a gradual 

(6°C h-I) rise to midday and a later fall (6°C h-I) of temperature resulted in 10% 

reduction only in the sensitive variety Ergot. 

Studies on groundnut acclimation to heat stress are yet to be conducted. Hence, 

there is a need to conduct research of groundnuts to identify if any acclimation 

mechanism to heat stress exists, before developing heat toleranffresistant 

cultivars. 
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2.5 PHYSIOLOGY OF WATER STRESS IN GROUNDNUT 

Water stress is one of the major environmental factors limiting groundnut yield in 

the tropics and sub-tropics (Virmani and Singh, 1986). Erratic rainfall is also 

responsible for yield fluctuations in these areas (Kanwar et a/. ,  1983). The effect 

of water stress on groundnut growth and development depends on the stage of 

crop growth, the duration of water stress, and the intensity of the stress. Ninety 

percent of the variation in yield in a study with 800 genotypes and 12 different 

water stress patterns, were accounted for by the intensity of water stress, and 

the cumulative duration of the stress/(es) (Williams et a/. ,  1986). This literature 

review concentrates on the effects of water stress on growth, development and 

yield. 

2.5.1 Water stress effects on development 

Certain stages of crop development are more sensitive to water availability than 

the others. Groundnut developmental stages close to flowering and the post- 

flowering stages are especially sensitive to water stress. Hence, the following 

review concentrates on these stages. 

2.5.1.1 Leaf and branch appearance 

Water stress inhibits leaf expansion and stem elongation through a reduction of 

relative turgidity (Slatyer, 1955; Allen et a/. ,  1976; Vivekanandan and Gunasena, 

1976), thus altering both leaf and stem morphology. 

Water stress imposed during early flowering phase reduced leaf number 

significantly more than stress at pod development phase as recorded at maturity 
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(Ike. 1986; Nageswara Rao et a/., 1988; Stirling et a/., 1989). The intensity of 

water stress also modifies leaf number by reducing the size and rate of leaf 

production (Illina, 1958; Lin et a/., 1963; Ong et a/., 1985). 

In a study with cv. Robut 33-1, differences in leaf number were apparent as early 

as 30 DAS. After 60 DAS total leaf number in I ,  2, 2.5 and 3 kPa water stress 

treatments was reduced by 11, 28, 38 and 49%, respectively relative to the 

control (irrigated) treatment (Ong et a/., 1985). The rate of leaf production also 

declined in this study from 0.3 to 0.23 leaves d" as soil water deficit increased 

from 10 to 80 mm. 

The main stem and coteledonary branches were fewer in number and also 

shorter in water-stressed groundnut plants (Ochs and Wormer, 1959; Lin et a/., 

1963; Su eta/., 1964; Gorbet and Rhoads, 1975; Boote and Hammond, 1981). 

In a study by Nageswara Rao et a/. (1988) water stress (total water use = 550 

mm) during flowering reduced internode length to 90 mm whereas it was 170 

mm in the irrigated (total water use = 725 mm) treatment. Similarly branch 

number was also less (9 plant") in water-stressed plants compared to irrigated 

plants ( I  5 plant-'). 

2.5.1.2 Leaf Area index 

Reductions in leaf number and individual leaf size contribute to decreases in leaf 

area (Ong, 1984; Ong et a/., 1985; Kulkarni et a/., 1988; Ravindra et a/., 1990). 

The extent of the reduction is determined by the intensity and duration of water 
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stress and stage of crop at which the stress is imposed (Nageswara Rao etal., 

1988; Meisner and Karnok, 1992). 

Meisner and Karnok (1 992) measured LA1 at harvest for water stress imposed at 

various stages of crop growth. Water stress imposed by withholding irrigation and 

imposed for a 30 d period beginning at 20, 50, 80, or 110 DAS reduced LA1 

significantly to between 5.0 and 5.7 when compared with control value of 6.45. 

S~milar observations were made by Kulkarni etal. (1988) and Nageswara Rao et 

a/. (1988). 

2.5.1.3 Time to first flower 

Only severe water deficits delay flowering. lllina (1958) reported that flower 

~n~tiation was delayed when soil moisture was maintained at or dryer than 35% 

field capacity. In most studies, there was just a 1-2 d delay (Illina, 1958; Lin etal., 

1963; Lenka and Misra, 1973). In contrast, pre-flowering water stress had no 

effect on the t~me to flowering in a series of water stress treatments studied by 

Nageswara Rao et a/. (1988). Similarly, Nautiyal et a/. (1999) also recorded that 

all cultivars in their study flowered between 37 and 39 DAS, irrespective of the 

intensity of water stress imposed during the pre-flowering phase. 

2.5.1.4 Time to peg and pod initiation 

The culmination of successful fertilisation results in pegs leading to pods. Water 

stress either reduces or stops sink development based on the degree of stress. 

Sink initiation ceased in all the cultivars within 9 d of the start of the water stress 

treatment, but resumed within 4 d of rewatering (Chapman et a/., 1993~).  The 
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rate of peg elongation in these water deficit treatments was halted 3-4 d after the 

initiation of water deficit (Chapman etal . ,  1993~) .  

In a study with cv. Kadiri-3, at ICRISAT in India, Stirling and Black (1991) 

recorded peg initiation at 45 DAS in the rainy season when VPD averaged to 1-2 

kPa. However, at the same location peg initiation was observed at 70 DAS in the 

dry season when VPD was 4-6 kPa. A delay in peg initiation results in a delay of 

pod initiation. Stirling et a/. (1989) also recorded that pod initiation occurred at 52 

DAS in the rainy season but it was delayed until 110 DAS in the dry season. 

Similar delays in peg and pod initiation under water stress conditions were made 

by Rajendrudu and Williams (1987) and Sexton etal. (1997) 

2.5.2 Water stress effects on growth 

2.5.2.1 Flower number 

Total flower number decreases when water stress is experienced during the pre- 

or post-flowering stage (Nageswara Rao et a/., 1988; Ravindra et a/., 1990; 

Ferreria et a/., 1992; Meisner and Karnok, 1992; Patel and Golakiya, 1993; 

Nautiyal et a/., 1999). 

With cv. Florunner (Meisner and Karnok, 1992), water stress imposed by 

withholding irrigation for a 30 d period at 20, 50, 80 and 110 DAS and was 

compared with an adequately irrigated treatment. Water stress which began at 

20 and 50 DAS reduced flowering. On rewatering, flowering recovered and 

continued for 10 d longer than in the control treatment. At later stages only a 

slight decrease in flower number occurred. Rewatering of the late-stressed plants 
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did not result in any flowering as flowering stopped at 110 DAS. Thus, reduction 

in flower number is significant if water stress occurs during early period of 

flowering. Similar observations were reported by Janamatti ef a/. (1986), and 

Patel and Golakiya (1993). 

2.5.2.2 Peg number and growth 

Peg number is reduced when water stress is imposed. A decrease in peg 

number was recorded by Chapman et a/. (1993a): when water stress was 

imposed during the peg development period plants produced only 58 pegs 

plant", whereas control plants produced 76 pegs plant-'. 

Under water stress conditions pegs may fail to reach the soil due to a decrease 

in turgidity due to water stress that restricts the rate of peg elongation. Peg 

production was insensitive to water potential in the range of -0.53 to -0.76 MPa 

but the rate declined rapidly below -0.82 Mpa (Chapman eta/., 1993a). The rate 

of peg elongation in these water deficit treatments halted 3-4 d after initiation of 

water deficit. Peg elongation rates were around 0.5 to 0.6 mm d" in all cultivars 

whereas water deficit during the early reproductive period (49-84 DAS) reduced 

the peg elongation rates to 0.1 to 0.2 mm d". 

Cultivars differ significantly in peg set (percentage flowers forming pegs) under 

water stress conditions. In a study with cvs J-11 and M-13 in India, 64 and 75% 

of flowers formed pegs, respectively, in the irrigated treatment. The percentage 

was reduced to 46 and 67% in these cultivars under unirrigated treatment (Bhatia 

et a/., 1984). 
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2.5.2.3 Pod number and growth 

The proportion of subterranean pegs converted to pods was reduced by drought 

at all stages of post-flowering growth (Rajendrudu and Williams, 1987) but most 

severe effect was recorded when water stress occurred at pegging (R3) and 

podding (R4) stages. 

Pod number was greater in late irrigated plants (40 plant") when compared to 

early-irrigated plants (13 plant") (Chapman et a / ,  1993b). The effect of water 

stress during early reproductive phase (49-84 DAS) was studied in three cultivars 

(Chapman et a/., 1993b). In all cultivars there was a delay of at least 15 d in the 

time to the start of a rapid linear increase in pod biomass in the water stress 

treatment when compared to fully irrigated treatment. 

Water deficit during the early reproductive phase (49-84 DAS) reduced both pod 

size and pod number. The decrease was associated with lower pod growth rates 

during water deficit (Chapman et a/., 1993b). Pod growth rates (PGR) were 

reduced to 0.22 Kg ha.' ("~d). '  in genotypes supplied with one-third of water as 

given to the control. Water deficit from 84 DAS reduced the number of pods 

produced from pegs. In all the cultivars studied by Chapman et a/. (1993d), water 

deficit from 84 DAS reduced the pod number between 105 DAS and maturity, 

indicating pod abscission 

In a dry pegging zone, Sexton et a/. (1997) and Bennet et a/. (1990) observed 

that the percentage of pegs converted to pods was reduced from 81% in irrigated 
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(7-12% of gravimetric water content) to 57% in the water stressed treatments (c 

0.5% of gravirnetric water content). 

2.5.2.4 Dry matter accumulation 

Water deficits reduce dry matter production in vegetative components (Fourrier 

and Prevost, 1958; Ochs and Wormer, 1959; Su et a/., 1964; Lenka and Misra, 

1973; Stansell et a/., 1976; Vivekanandan and Gunasena, 1976; Pallas et a/., 

1979) as well as crop growth rate (Slatyer etal., 1955). 

In a study with four water stress treatments (Sarma and Sivakumar, 1989), 

where the net amount of water applied was 623, 522, 477 and 27 mm, total 

above-ground dry matter was 6000, 5900. 4200 and 1800 kg ha.', respectively. 

Similar decreases In dry matter under water stress conditions have been 

recorded by several researchers (Williams et a/., 1986; Nageswara Rao et a/., 

1988; 1989; Wright et a/., 1991). 

Crop growth rates (CGR) were recorded in a G x E study involving 36 genotypes 

grown in five environments. At 33% of irrigation, a CGR of 2.1 1 kg ha.' ( "~d)"  

was recorded as compared to 2.33 kg ha" ( " ~ d ) "  in the irrigated control 

(Greenberg et a/., 1992). Similar decreases in CGR under water stress 

conditions have been recorded by Chapman etal. (1993b). 

In contrast, transient moisture stress during the vegetative phase did not reduce 

the leaf area and vegetative weight at final harvest (Nautiyal et a/., 1999). 
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Nageswara Rao et a/. (1985) also showed that maximum yields of groundnut 

could be achieved with decreased irrigation during early phases. 

2.5.2.5 Pod yield and partitioning 

A decrease in dry matter, flower, peg and pod number, and a delay in peg and 

pod initiation, under water stress conditions individually and in combination 

contribute to reductions in pod and seed yield. Reductions in pod yield were 

more pronounced when stress was imposed at the pod development and 

flowering phases than during the vegetative phase (Stirling eta/., 1989; Ravindra 

et a/., 1990; Wright et a/., 1991; Meisner and Karnok, 1992; Chapman et a/., 

19934). 

Studies were conducted by Reddy and Reddy (1993), maintaining adequate 

water (actual evapo-transpiration (Eta) = maximum evapo-transpiration (ETm)), 

or severe water stress during the flowering and yield formation stages. Yields of 

2345 to 2548 kg ha.' in 1984, and 3009 to 3098 kg ha.' in 1985 irrespective of 

moderate (60%) or severe (80%) depletion of available soil moisture at 

vegetative stages. When moderate or severe water stress was induced during 

the sensitive stages of flowering and pod development, 25% and 50% less 

groundnut yields were recorded, respectively. This study confirms again the 

acute sensitivity of flowering and pod development stages to water stress. 

A drought screening study with 800 genotypes exposed to three combinations of 

timing and duration of drought and six to eight intensities of drought within each 

pattern of drought was conducted by Williams et a/. (1986) at ICRISAT in India. 
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Pod yields decreased in a linear fashion as the intensity of drought increased 

(Fig. 2.4). In a comparison study with four cvs TMV 2 ,  Robut 33-1, Nc Ac 17090, 

EC 76446 they identified that the largest differences between genotypes were 

due to effects of drought on their reproductive growth. TMV 2 produced highest 

pod yield in drought, with a harvest index 84% greater than that of EC 76446, the 

most susceptible genotype. They identified the ability to produce pods under 

drought (as in TMV 2) and the ability to recover from drought with greater pod 

growth (as in Robut 33-1) as two different mechanisms for higher yield under 

drought conditions. 

In a study with 33 genotypes at the ICRISAT Sahelian center, Niamey, Niger, 

partitioning coefficient decreased from 0.52 (100% irrigation) to 0.24 (33% 

irrigation) as environments became less favourable (Greenberg et a/., 1992). 

They also identified genotypic differences for partitioning to pods. They observed 

that under drought already established pods have priority for partitioning of 

assimilates. Partitioning differences between genotypes were also attributed to 

ability of genotypes to initiate pod under drought conditions. 

2.5.2.6 Root growth 

Water stress reduces the uptake of nutrients and water per unit root mass 

(Marschner, 1988). This reduces the total amount of assimilate produced per unit 

of resources available that are translocated to roots. This decrease in assimilate 

translocation hampers root growth. 
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Fig. 2.4 The effects of drought intensity on pod yields in a long-duration 
drought. A : Y(0-70%) = 693 (k27.7) - 1.95 (k0.49) X; % var = 95; B: Y (80- 
100%) = 97 (k4.72) - 0.95 (+0.52) X; % var = 23. (Source: Williams et a/., 
1986). 
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Root growth was studied in water stress treatments imposed by withholding 

irrigation for a 30 d period beginning at 20, 50, 80 or 1 I 0  d after sowing (Meisner 

and Karnok, 1992). Stress imposed at 20 and 50 DAS significantly reduced root 

growth compared to the well-watered treatment during the same period. No other 

stress period resulted in significant reductions. The later stress periods had no 

effect on root growth as 95% of total root length had been established by 80 

DAS. Similar observations were made by McCloud (1974). This natural decline in 

root growth after 80 DAS has been attributed to change of sink from root to pod. 

Differences in cultivar root volume, root dry weight, root length and number have 

also been recorded (Ketring et a/.. 1982; Ketring. 1984). Rooting depth of 

Spanish cultivars varied between 1.9 (cv. Spancross) to 1.4 m (cv. Comet). In 

Virginia cultivars rooting depth varied between 0.2 (cv. Florunner) and 1.2 m 

(cv. Dixie runner). Rooting volume of Florunner was only 23 ml whereas cv. UF 

77318 recorded 37 ml. These differences impart relative tolerance to water stress 

in groundnut and can be exploited in breeding tolerant groundnut genotypes. 

2.5.3 Water stress effects on pollen, ovule and embryo 

Reproductive development from meiosis to seed set is highly vulnerable to water 

stress, which can cause pollen sterility, spikelet death or embryo abortion of 

newly formed seed (Saini and Lalonde, 1998). 

2.5.3.1 Pollen viability 

Failure of fertilization due to inadequate pollen germination could be an important 

factor for poor peg formation during water stress conditions. Very few studies 



Literature Review 

have related pollen viability to peg and pod failure under water stress conditions 

in groundnut. In a study under irrigated conditions by Bhatia eta/. (1984), the first 

formed flowers had about 70% pollen germination but this declined to 35% by 84 

d after flowering in cvs J-11 and M-13. In the absence of irrigation, pollen 

germination was 25-35% during the 35-63 DAS in these cultivars. Pollination was 

impaired in the studies of Jain et al. (1997) when water stress was imposed 

during the flowering period. 

Shen and Webster (1986) studied the effects of water stress on pollen of 

Phaseolus vulgaris L. and observed that the earlier stages of flower bud are most 

sensitive. Three stages of reproductive bud were subjected to water stress, tiny 

green buds (anthers containing tetrads or free microspores), green buds (anthers 

with uninucleate microspores with incipient exine formation), and white buds with 

tightly enfolded petals (anthers with binucleate pollen grains with well-developed 

exines). Plants in the tiny green bud stage recorded more aborted pollen grains 

and smaller pollen germination percentage than those at green bud or white bud 

stage. This study confirms that the green bud stage with microspores is most 

sensitive to water stress. 

Increases of pollen sterility due to water stress has been reported in several 

cereal crops: wheat (Skazkin, 1961; Saini and Aspinall, 1981; Lalonde et a/. ,  

1997); barley (Skazkin and Zavadskaya, 1957); rice (Sheoran and Saini, 1996) 

and maize (Downey, 1969). Water deficit is also known to cause anther 

abnormalities (Sheoran and Saini, 1996). Such studies have not yet been 

conducted in groundnut. 
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2.5.3.2 Ovule and Embryo 

Studies have not been conducted in groundnut to see if water stress affects 

female fertility. Indeed, few attempts have been made to find out if water stress 

also affects female fertility in crops such as wheat (Saini and Aspinall, 1981), oat 

(Skazkin and Lukomskaya, 1962) or maize (Moss and Downey, 1971). 

Water stress during embryo sac development in maize caused various 

abnormalities including a complete suppression of development (Moss and 

Downey, 1971). Depending on the severity and duration of stress, 15 to 43% of 

the ovules were abnormal, compared to just 2.5% in well watered plants. The 

failure of maize embryo sacs to develop into seeds was attributed to the failure of 

fertilised embryo sac to develop beyond 2-3 d because of poor embryo and 

endosperm development and a lack of seed coat differentiation (Westgate and 

Boyer, 1986). More research is needed to identify the precise causes for yield 

reduction under water stress conditions in groundnut. 
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2.6 EFFECT OF TEMPERATURE AND WATER STRESS ON GROUNDNUT 

Water stress and high temperature stress are often found to occur 

simultaneously in the SAT. Research on their combined effects has been limited 

not only in groundnuts but also for crops in general. As described earlier both 

water stress and high temperature have detrimental effects on crop growth and 

development. Thus, questions remain unanswered as to whether the quantitative 

and qualitative effects of stress on groundnut production in rainfed areas are 

simply an effect of water stress or an additive effect of combined high 

temperature and water-stress. 

The temperatures of the groundnut crop canopy and the soils in which crops are 

cultivated increase under water stress conditions when compared to those grown 

with full irrigation. Sivakumar and Sarma (1986) recorded the afternoon canopy 

temperature of plants under irrigated conditions to be 28.5"C, compared with 

35°C in other treatments where three combinations of drought and soil 

temperature were imposed. Canopy, stem and pod temperatures were 8", 10" 

and 10°C warmer, respectively in water stressed (33% of full irrigation) plants 

compared to the irrigated plots (Leong and Ong, 1983). Similar increases in 

canopy temperature due to water stress have been recorded by Sanders et a/. 

(1985b), Musingo eta/.  (1989), and Craufurd et a/. (1999). 

In a study involving water stress imposed during the vegetative and reproductive 

periods of groundnut growth, soil temperatures at 0-50 mm depth (i.e, in the 

podding zone) were 0.7 to 4.9% warmer in the water stressed than in irrigated 

plots (25°C). A greater increase in soil temperature, to about 36.2"C, was 
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recorded during the later stages of pod development, which is even more 

detrimental for pod yield. Similar increase in soil temperature under water stress 

conditions was also recorded by lshag (1982) and Ravindra etal. (1990). 

Although canopy temperature increased under water stress, Craufurd et al. 

(1999) did not find any significant interaction between temperature (27" and 

34°C) and water stress (50 and 100%) for biomass or its components in 

groundnut. They also reported that temperature and water deficit have different 

and opposite effects on water use efficiency (WUE) and specific leaf area (SLA). 

Water deficit reduced water use and SLA, and increased WUE. High temperature 

had no effect on water use, but decreased WUE and increased SLA. 

As well as any decrease in biomass or yield, any loss of quality will also greatly 

reduce groundnut market value. Musingo et a/. (1989) suggested that water 

stress (period longer than 30 d) and high soil temperature (around 28°C) cause 

an increase in accumulation of carbohydrate and polypeptides, which may 

enhance the Aspergillus invasion and aflatoxin production. 

The combined effect of extreme temperature and water stress on wheat grain 

yield was described by Nicolas et a/. (1984). Water stress alone significantly 

reduced final grain weight. The reduction was greater when water stress was 

applied late rather than the early period of during endosperm cell division 

(reductions of 37% and 24%, respectively, relative to the control treatment). High 

temperature alone also significantly reduced final grain weight but the reduction 

was smaller (5% in early and 13% in late periods) than that caused by water 
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stress treatments. The combined effect of water stress and high temperature was 

much more pronounced than that of each treatment alone, as final grain weight 

was reduced by 49% and 60% when the combined treatment was applied during 

the early and late periods of cell division, respectively. 

These reviews of literature leave no doubts that further studies are essential to 

account for the combined effects of high temperature and water stress in 

groundnut. Such research will help to identify the quantitative and qualitative 

effects of stress that are required to better target future groundnut breeding 

strategies in the SAT. 
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2.7 Crop Simulation models 

Crop modelling can be defined as the dynamic simulation of crop growth by 

numerical integration of constituent processes with the aid of computers (Sinclair 

and Seligman, 1996). Several authors have reviewed the advantages and 

shortcomings of crop simulation models (Moorby, 1987; Curry etal., 1990; Baker, 

1996; Boote and Jones, 1988; Monteith, 1996; Sinclair and Seligman, 1996; 

Porter and Jamieson, 1999). The efficiency of a simulation exercise depends on 

the objectives for which the crop simulation model is being used. A simple water 

balance model was found superior to complex simulation models of cotton 

(Gossypium hirsutum) such as COTTAM and GOSSYM in approximating crop 

water stress and field water balance (Asare etal., 1992). An empirical equation 

was found superior to the complex CERES model in predicting annual potential 

wheat (Triticum aestivum L.) yields in Mexico (Bell and Fisher, 1994). SOYGRO, 

a mechanistic model for soyabean, was found inferior to a simple average of a 

sample in predicting soyabean yield in an unsampled population (Colson et a/. ,  

1995). 

Simulation models can be used as research tools, management tools and policy 

tools. As a research tool, simulation models can be used to model specific crop 

process and to design experiments to fill in gaps in knowledge. Along with aiding 

decision making for crop production under current conditions, crop models also 

help to identify the crop sensitivity to future predicted climates (Curry etal., 1990; 

Holloway et a/., 1995; Semenov and Porter, 1995; Luo and Lin, 1999; 

Saseendran et a/., 2000). The model SOYGRO has been used to study the 

potential impact of global climate change on soyabean production (Curry et a/., 
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1990). Sensitivity of models to changes in temperature and photoperiod have 

been studied in soyabean and groundnuts (Boote et a/., 1992; Hoogenboom et 

a/ . ,  1990). As it is difficult to simulate the future climates under field conditions, 

crop models can act as surrogates for designing future crop genotypes and 

cropping systems. This may help in identifying areas for crop improvement in 

order to sustain crop yields in predicted harsh climates of increased temperature, 

increased C02 and decreased water availability. 

Crop models not only help in designing strategies for yield improvement at a field 

scale, but can also work as a tool for predicting regional and national food grain 

yields (Meinke and Hammer. 1995) when combined with Geographic Information 

Systems (GIS) (Lal et a/. ,  1993; Thornton et a/., 1997; Hartkamp et a/. ,  1999). A 

combination of crop models and GIS, such as AEGIS (Calixte et a/., 1992; 

Calixte, 1992) and AEGlSiWlN (Engel et a/., 1997) can help in identifying the 

gaps from field to regional to national scale in order to realise the potential crop 

yields in the tropics. 

Advances in crop models can be attributed to both an increase in understanding 

of crop physiology and an increase in computer processing power. An increase in 

understanding of crop physiology genetics is enabling crop modellers to use this 

knowledge to accurately predict crop yields with genotypic specificity. "Gene 

Gro", a gene based simulation model has been developed that integrates action 

of seven genes into a common bean model (White and Hoogenboom, 1996, 

Hoogenboom et a/. ,  1997). The results from this study support the use of 

genotype specific information to represent cultivar differences in crop models. 
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With increased understanding of genetics and physiology, a progressive 

improvement is probable in crop models. This continuous improvement needs an 

alteration of the complex and cumbersome source code of crop models, currently 

in FORTRAN. To overcome this, modular (Porter etal., 2000) or object oriented 

approach (Evert and Campbell, 1994; Pan et a/. ,  2000) is becoming popular to 

handle the improvements to crop models. Large data sets are available from 

experiments that are difficult to handle. In certain experiments, the relation 

between the inputs and outputs cannot be well defined based on the current level 

of statistical and modelling knowledge base. Artificial neural networks offer a 

solution due to their dynamic state response to inputs and ability for supervised 

learning. Neural networks can be viewed as a computer system with 

interconnected processing elements similar to the neuron network found in brain 

(McClelland, 1986). These artificial neural networks are beginning to be used in 

the next generation of crop models (Elizondo etal., 1994; Parmar etal., 1997). 

Rapid advance In Internet technology is also moving the current PC based crop 

models to the Internet, thus enabling access to many individual researchers, 

model developers and farmers. These web-based models are developed using 

JAVA, an object oriented programming language. Even though the examples of 

such crop models are few (Pan et a/., at http://thl90-50.agn.uiuc.edu/Simulator), 

an increase in spread of the Internet in the tropics and semi-arid tropics would 

enable farmers and researchers to gain access to these otherwise elusive crop 

models. 
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This revolution would enable farmers to learn the deficiencies in their 

management practices. Although not internet based, two examples are worth 

mentioning here to show how farmers can learn efficient crop production and 

management from crop models. The SIRATAC model for cotton pest 

management in Australia (Ives et a/ . ,  1984) and the EPIPRE model for wheat 

pest management in The Netherlands (Rabbinge and Rijsdijk, 1987) have a 

central processing centre. These centers receive data from farmers and run the 

simulations to provide growers with updated pest management 

recommendations. The simulated recommendations from model improved the 

pest management along with increased membership. However membership 

declined later as the growers felt they had learned the lessons of the models and 

could now manage on their own (Weiss, 1994). 
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2.8 CROP SIMULATION MODELS FOR GROUNDNUT 

2.8.1 PEANUTZ 

PEANUTZ is a first generation FORTRAN computer program developed to 

simulate the growth and development of groundnuts from the date of planting 

until harvest (Young et a/. ,  1979). The model begins by simulating the time of 

seedling emergence. Then, for each day of the growth cycle, it simulates the 

weight of photosynthate produced, the maintenance respiration, the change in 

peg mass, and peg numbers, the flower count, and the change in leaf and stem 

mass. Growth respiration for each plant part is predicted within blocks simulating 

growth of that part. This model helped to identify areas for further research to 

improve the understanding of groundnut growth and development and laid the 

future for developing more sensitive and complicated models for groundnut. 

2.8.2 PNUTGRO 

The groundnut model PNUTGRO is a process level model developed by an 

interdisciplinary research team in the USA to simulate growth and yield (Boote et 

a/. ,  1986; 1989). The major components of the model are vegetative and 

reproductive development, and carbon, nitrogen, and water balance modules. 

The model initiates the simulation of development immediately after sowing. It 

predicts the periods from sowing to emergence; to first full leaf expansion; to the 

start of flowering; to first pod occurrence; to the beginning of seed filling; to the 

end of leaf growth and expansion; to the end of pod growth and expansion; 

physiological maturity; and harvest maturity (Fig.2.5). The model also predicts 

leaf area development and vegetative node formation on the main stem. 
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Temperature 
I 
I Time 

Juvenile Phase 

' Flower Initiation 

"""' First Pod Set 

First Seed Set 

.. ..... . ............ Last Pod Set 

End Leaf Growth 

Physiological Maturity 

Fig. 2.5 Vegetative and reproductive development in PNUTGRO, represented by 
successive development stages, as a function of photoperiod andlor temperature, 
represented by accumulator bars. (As shown here the stage from sowing to unifoliolate 
leaves is a function of temperature and time only, while most of other cases are a function 
of temperature, photoperiod, and time). (Source: Hoogenboom eta/., 1992). 
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Each of the stages mentioned has a optimum thermal time value. For most 

stages in the model only a temperature effect is included, based on temperature 

response curve, rather than a degree day concept as used in many other 

models. It is assumed that development will occur at an optimum temperature or 

maximum relative rate of unity (photothermal days per calendar day) for a given 

optimum range. The model uses two kinds of response functions for crop 

development: (1) a linear function for the vegetative stage progression defined by 

a base temperature (TI,), optimum temperature (T,), and maximum temperature 

(T,); and (2) a full sine function for reproductive development which is a function 

of base temperature and optimum temperature. For vegetative stages the 

cardinal temperatures are proposed as. 

Tb = 13.5°C, To = 28 - 35'C and T, = 55°C 

Three different sine functions are used to calculate physiological days from 

emergence to flowering (Tb = 9.5'C and To = 27.ZoC); flowering to pod-initiation 

(Tb = 9.5% and To = 25.8"C); and beginning seed growth to physiological 

maturity (Tb = 5.0°C and To = 25.g°C). 

The model predicts total canopy photosynthesis on a daily basis as a function of 

daily photosynthetically active radiation, converted from daily total solar radiation. 

After daily photosynthesis is calculated, daily maintenance respiration is 

subtracted to account for the daily turnover of proteins. Partitioning to vegetative 

and reproductive structures is determined based upon development phase. 

Values for LA1 are calculated based upon dry matter partitioned to leaves and 

leaves abscised due to senescence. Leaf senescence is predicted as a function 

of plant age. The daily soil water balance in the model uses Ritchie's (1985) one- 
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dimensional soil water balance approach. Evapo-transpiration is estimated using 

the procedures defined by Ritchie (1972). Growth of new roots is distributed over 

the various soil layers as a function of a root preference factor for each layer, the 

amount of extractable water in each layer and whether root progression has 

reached a given layer. 

The model needs inputs of location, weather, soil and management data. Local 

variables are latitude and longitude (radians). Daily weather variables are solar 

radiation (MJ m"), rainfall (mm), and maximum and minimum temperature ("C). 

In addition to these data, the model also uses crop-specific and cultivar-specific 

coefficients. 

The PNUTGRO model predicts the timing of vegetative and reproductive growth 

stages from emergence to physiological maturity, daily growth increments of 

plant components, leaf area index, specific leaf area, root distribution in the soil, 

percent nitrogen in the crop canopy, final yield, yield components, and harvest 

index (Fig. 2.5). In addition, daily soil water balance components, namely soil 

evaporation, transpiration, drainage, and surface runoff are also estimated. 

Further details about PNUTGRO are given by Boote et a/. (1998, 1999) 

2.8.3 QNUT 

The framework and the logic employed in the QNUT model of Hammer et a/. 

(1995) are presented in Fig. 2.6. The main objective of the model is to predict 

pod yield as the product of biomass and harvest index (HI). Daily increase in 
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total above ground biomass (ABT) is required to predict pod yield and is 

calculated as: 

A B T = R x I x R U E X R T  [2.11 

I = 1.0 - exp (-k x LAI) [2.21 

where R = incident solar radiation 

I = fraction of the radiation intercepted by the crop 

RUE = radiation use efficiency 

RT = relative transpiration 

k = extinction coefficient of canopy 

Crop leaf area is required to predict biomass accumulation and is calculated as 

the product of leaf area per plant (PLA) and plant density. A power function was 

fitted to the progression of effective leaf number (ELN) on main stem nodes 

(NODES), where: 

ELN = 0.1808 (NODES)'~~' for nodes <I= 15 P.31 

When NODES exceeded 15, ELN is incremented by 19 leaves for each new 

node. The potential increment in leaf area is calculated as the product of leaf 

size (individual leaf area and increment in ELN). Phenological development is 

based on accumulation of thermal time. A base temperature of 9°C and optimum 

temperature of 29°C (temperatures above this cause reduction in branching, 

thus reducing leaf area growth) were used to calculate the thermal time for 

different phenological stages. Maturity was taken as the estimated time of 

accumulation of maximum biomass. 
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Matur~ty 

Node Number 

Branch~ng 

FTSW 
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Fig.2.6 Schematic representation of the framework and top-down logic used in the QNUT 
model. Boxes represent major modules. Solid arrows denote logical connections and 
broken arrows denote connections to climatic, soil, management, and crop specifications. 
(RUE is the efficiency with which the intercepted radiation was used to produce biomass; 
k is the extinction coefficient of the canopy; FTSW is the fraction of transpirable soil 
water; VPD is vapour pressure deficit; TTSW is total transpirable soil water). (Source: 
Hammer eta/., 1995). 
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Values for HI increase linearly with time. A linear regression defined the harvest 

index slope and time of Onset of HI increase for each data set whereby: 

HIt = Hit.l + AH1 L.41 

ABp = B,,!.1 [ Hit / ( I -  Hit)] - Bp 

Bp,t = B0,t.l + ABp 

B,,t = B,,t.l + ABT - 1 .5ABp P.71 
where, Hit = Harvest lndex on Day t 

Hit., = Harvest lndex on Day t-1 

AH1 = slope of Harvest lndex increase (day.') 

AB, = change in pod biomass 

B,,t.l = vegetative biomass on Day t-1 

Bp,,.l = pod biomass on Day t-I 

Bpt = pod biomass on day t 

ABT = increase in the above ground biomass (g m" day") 

2.9 PERFORMANCE OF GROUNDNUT CROP MODELS 

The PNUTGRO and QNUT models were used by Bell and Wright (1998) to 

calculate cumulative thermal time from sowing to maturity in groundnuts grown 

in the humid tropics of Indonesia, in the SAT of north-west Australia, and in 

humid coastal and inland elevated areas of Australia. Neither model was able to 

adequately predict degree day accumulation across average temperatures 

ranging from 22.5" to 30.5% and thus could not predict the occurrence of key 

crop growth stages accurately. The models also had considerable difficulty in 

predicting reproductive maturity across environments. 
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The limitations in the QNUT model were thought to reflect an inability to cope 

with reduction in rate of development at supra-optimal temperatures. In 

pNUTGRO predicted developmental rates were too high at high temperatures 

(>3I0C) and too low at moderate to cool temperatures (<27OC), which could 

reflect differing developmental responses to temperature by and within both 

vegetative and reproductive components. 

The model PNUTGRO has been widely used to study the effects of various 

abiotic and biotic stress factors on groundnut growth and development. Singh ef 

a/. (1994a) used the model to evaluate crop response to water availability, 

sowing dates and seasons in India. Changes in vegetative growth stages, total 

dry matter accumulation, growth of pods and seeds, and soil moisture were 

predicted accurately. Predicted pod yields were strongly correlated (?=0.90) with 

observed yields. They concluded that under biotic stress-free situations, the 

model PNUTGRO can be used to predict groundnut yields in different 

environments as determined by season, sowing date and moisture regimes. 

PNUTGRO was also evaluated for crop response to plant population and row 

spacing using field data of groundnut crops sown at varying plant populations 

between 10 to 40 plants m2 and at row spacings of 20, 30 and 60 cm. The model 

predicted the occurrence of vegetative and reproductive stages, canopy 

development, total dry matter production and its partitioning to seeds and pods 

accurately. 

Kaur and Hundal (1999), using the results obtained from PNUTGRO for five 

consecutive crop seasons found satisfactory predictions of phenology, growth 



Literature Review 

and groundnut yield and hence concluded that the model can be used for 

forecasting growth and yield of groundnut in Punjab state of India. In their study, 

the phenological events showed deviations from observed times of only -3 to +3 

days for flowering, -3 to +2 days for pegging and 4 to +2 days for physiological 

maturity of the crop. The model predicted pod yield from 89 to 11 1% and seed 

yield from 90 to 110% of the observed yields. 

In summary, PNUTGRO, once calibrated for a given location, can effectively 

predict groundnut yields under a given set of biotic stress-free conditions. 

However, in addition to water stress and plant competition, the areas where 

groundnut is cultivated are also prone to extremes temperature. The information 

on groundnut responses to temperature is meager or unavailable (Boote et a/ . ,  

1998) and the model has not been tested at supra-optimal temperatures. It is in 

these circumstances and especially in the SAT that reliable models are needed. 



CHAPTER 3 
-- 

EFFECTS OF TEMPERATURE AND WATER STRESS ON GROUNDNUT IN 
CONTROLLED ENVIRONMENTS 
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3.1 INTRODUCTION 

The groundnut crop cultivated in the semi-arid tropics rarely achieves its full 

genetic potential due to limitations imposed by environmental stresses. In these 

semi-arid environments of the world, which contribute to 90% of global groundnut 

production, the occurrence of high temperature and water stress are not 

exclusive of one another (Nix, 1975; Kramer, 1980). The severity of these 

environmental stresses is likely to increase in the future based on climate 

predictions (IPCC, 2000). 

The groundnut crop is exposed to both mid-season and end-season water stress, 

which may coincide with flowering and pod development, respectively, the 

periods most sensitive to water stress (Kulkarni et al., 1988; Jain et al., 1997; 

Nautiyal et al., 1999). The flowering period in groundnuts is sensitive also to high 

temperature episodes (Vara Prasad et al., 2000a). Temperature is the dominant 

factor controlling the rate at which groundnut plants develop (Fortanier, 1957; De 

Beer, 1963; Cox and Martin, 1974: Cox. 1979). Studies conducted so far have 

concentrated mostly on the effect of water stress in groundnut, rather than high 

temperature effects, even though the manner in which high temperature affects 

plants is probably better understood (Kramer, 1980). Experimental studies have 

not been carried out in groundnuts to study the interaction of these stresses. 

Such studies are also few in other crops (e.g. maize - Schoper et al., 1986; 

wheat - Nicolas et al., 1984). In this experiment the combined effect of water 

stress and high temperature on the growth, development and yield of groundnuts 

was investigated using controlled environments. 
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The objectives of this study were: (1) to investigate the effects of water stress 

and high temperature on the growth, development and yield of groundnut; and 

(2) to investigate the effects of an interaction between water stress and high 

temperature on groundnut yield. 

3.2 MATERIALS AND METHODS 

3.2.1 Growth conditions 

Seeds of groundnut cultivars ICG 796 and ICGV 86015 treated with Apron Combi 

453 FS (Ciba, Agriculture, Cambridge, UK) were sown in module trays filled with 

compost. After germination, seedlings of similar size were transplanted to pots 

0.75 m deep and 0.30 m diameter (Plate 3.la), containing 17 kg of sterilized 

rooting medium. The rooting medium comprised sand, gravel, vermiculite and 

loamless peat compost mixed in proportions of 4:2:2,1, by volume, respectively. 

A commercial controlled-release fertiliser (0.15 kg kg-' N, 0.10 kg kg -' P, 0.12 kg 

kg-' K, 0.02 kg kg-' MgO plus trace elements; Osmocote Plus, Scotts UK Ltd, 

UK) was incorporated into the mixture at the manufacturer's recommended rate 

of 5 g L". Seeds were not inoculated with rhizobia and so plants were dependent 

on inorganic nitrogen. All pots were soaked and drained for 24 h before seedlings 

were planted; there after they were hand-watered based on the water stress 

treatment. The sides of the pot were painted white to reduce radiative heating. 

The experiment was carried out in a poly-tunnel at Plant Environment Laboratory, 

Shinfield, University of Reading, UK (Plate 3.la). A photo- and thermo-period of 

12 h d-' (0800 to 2000 h) was maintained in the poly-tunnel throughout the 

experimental period. A manually operated black-out facility controlled the 

photoperiod. A plastic bubble (Plate 3.lb) was constructed in the poly-tunnel to 

69 
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impose high temperature treatments. Thin, 40-gauge (40 p) polythene, with 95% 

transmission, was used to minimise differences in radiation levels between plants 

in the poly-tunnel and those in the plastic bubble. Air temperature and humidity in 

the poly-tunnel and bubble were measured with screened and aspirated copper- 

constantan thermocouples positioned at the top of plant canopy. Readings were 

taken at 10 s intervals and means of successive 10 min periods were stored 

using a data logger (Delta-T Devices, Ltd, Cambridge, UK). Carbon dioxide 

fluctuated at near ambient concentrations (360 ppm) and relative humidity during 

the day was controlled by automatic water sprinklers and ventilation to give a 

VPD close to 2 kPa in both tunnel and bubble. The poly-tunnels transmitted 

about 75% of incoming photosynthetically active radiation (PAR) during the 

experiment period in 1998. 

All plants were healthy and there were no serious pest or disease problems. 

Torque (a.i. Fenbutatin Oxide) controlled a mild incidence of red spider mite 

(Tetranychus urticaei Koch.) at 80 DAS. 

3.2.2 Treatments 

The experiment consisted of a factorial combination of three water stress 

treatments, two temperature treatments and two genotypes. Each treatment 

combination was replicated four times. 

The genotypes used in the study, ICGV 86015 and ICG 796, are Spanish bunch 

types requiring about 120 d for maturity. ICGV 86015, which originated from a 

cross between ICGS 44 and TG 2E, was released in 1993 as an early maturing, 

high-yielding line. It is particularly well adapted to rainfed conditions. ICG 796, 

70 
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Plate 3.1 Photographs showing (a) inside of poly-tunclel with special pots 
used in the study and (h) bubble inside pofy-tunnel {rsecd to impose high 
temperature treatments. 
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which is popularly known as Punjab 648, performs well under irrigated 

conditions. Genotype ICGV 86015 was classified as moderately tolerant to water 

stress and high temperature, while ICG 796 is susceptible to both the stresses. 

Water stress treatments were; D l  - irrigated to maintain field capacity (FC, 

where the available soil moisture (ASM) is 100% at field capacity) throughout the 

study; D2 -early water stress (40% ASM) from flowering to pod initiation; and D3 

- late water stress (40% ASM) from pod initiation to harvest. Available soil 

moisture (ASM) is defined here as the difference in soil moisture percentages at 

field capacity (FC) and permanent wilting point (PWP). In both water stress 

treatments irrigation was withheld 7 d prior to the start of the treatments. The aim 

was to reduce the moisture content to 40% ASM when the treatments started. 

Pots were weighed daily, from 7 d before the start of the treatment, with a Mettler 

PM30-K balance weighing up to 32 kg with an accuracy of l g .  The amount of 

water used each day was determined, and pots were re-watered to maintain 

them at the required ASM level. Amount of water lost on each day was 

considered as daily evapo-transpiration (ET). 

The rooting medium had a water holding capacity of 13.5% wlw at FC measured 

at pressure of '13 bar, and PWP of the medium was 4.2% w/w measured at a 

pressure of 15 bars, using a pressure plate apparatus. Figure 3.1 indicates that 

the rooting medium holds 13.5% w/w of moisture at a suction of 50 cm H20. The 

measured saturated hydraulic conductivity of the medium was 1 . I 4  x m s.'. 

Groundnut plants were also exposed to two temperature treatments: T1 - 

optimum temperature of 28O122 "C (daylnight); and T2 - high temperature of 
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40°/22 "C (daylnight) for a period of 10 d starting when the genotypes reached 

50% flowering. The high temperature treatment (T2) was imposed by transferring 

four plants from each of the water stress treatments into the plastic bubble 

erected in the poly-tunnel. These T2 plants were grown at 28°1220C for the rest of 

the growing period. 

3.2.3 Observations and data analysis 

Plants were harvested at 20 DAS, 50% flowering (RI -  35 DAS), pod initiation (R3 

- 50 DAS) and finally at 87 DAS. At each harvest plant height, leaf number and 

total leaf area, peg and pod numbers, and root length (mesocotyl to tip of main 

root) of every individual plant were recorded Plants were separated into leaves. 

stems, roots, pegs and pods. The respective dry weights of leaves, stems, roots 

and pods per plant were recorded after oven-drying these components at 80 "C 

to a constant weight. Total dry weight (excluding senesced leaves and roots) and 

pod harvest index (ratio of pod to total dry weight) were calculated from the 

weight of individual components. Values for pod dry weight in the study were 

adjusted by multiplying recorded data by a factor of 1.65 to allow for the oil 

content of the seeds (Duncan et a/., 1978). Data on plant dry weight were log 

transformed before analysis to ensure homogeneity of variances. Water use 

efficiency (WUE) was calculated as the ratio of total above ground biomass dry 

weight (including pods) to total ET. Root weights were not included in the 

biomass for W U E  to enable comparison with the field study. 

Duration (d) from sowing to appearance of first fully opened flower, 50% 

flowering (RI), first peg (R2) and to pod initiation (R3) - when tip of peg was 
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more than twice the diameter of peg (Boote et a/., 1982), were recorded on all 

plants. Daily flower counts were also made on all plants during the experimental 

period. At each harvest the total number of pegs and pods per plant were 

counted. The proportion of flowers setting pegs (peg-set) was calculated as the 

ratio of peg number to total cumulative flower number. The proportion of flowers 

setting pods (pod-set) was calculated as the ratio of pod number to total 

cumulative flower number. Similarly, the proportion of pegs forming pods (peg- 

pod) was calculated as a ratio of pod to peg number. The data on percentage 

peg-set, pod-set and peg-pod were subject to angular transformation before 

analysis to ensure homogeneity of variances. 

Data was analysed using ANOVA in GENSTAT 5 (Genstat 5 Committee, 1997) 

as a factorial design, replicated four times. ANOVA tables for observations made 

at 50 and 87 DAS are in Tables 3.1 and 3.2. Significance of SED values is 

depicted with " or ** or **" which correspond to probability (p) levels of p<0.05, 

p<0.01 and pc0.001, respectively. In graphs, SED is represented as vertical bar. 
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3.3 RESULTS 

3.3.1 Environment 

The daily maximum and minimum temperatures were fairly constant about an 

average maximum and minimum of 28.8% (+SE 0.09) and 22.5% (+SE 0.04), 

respectively (Fig.3.2). The 10 d high air temperature treatment (T2) had a mean 

day temperature of 36.7"C (5% 0.6), 3°C below the target temperature of 40°C. 

The average water status of the mixture was 60% of ASM in D2 and 40% of ASM 

in D3 (Fig 3.3). The PAR received during the experimental period averaged 565 

(+SE 0.01) pmoles mm2 s-'. During the 10 d high temperature period relative 

humidity (RH) under optimum conditions averaged to 79.5% ( iSE 0.75) giving a 

vapour pressure deficit (VPD) of 0.84 kPa, while in the bubble with hot air 

temperature RH was 71 . I% (fSE 0.70) with a high VPD of 1.71 kPa. 

0 

0 10 20 30 40 SO 60 70 80 90 100 
Time (DAS) 

Fig. 3.2. Daily record of maximum and minimum temperatures during the 
crop growth period. 
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3.3.2 Growth harvests 

TWO harvests were made in this experiment, one at pod initiation (50 DAS) and 

the other at maturity (87 DAS). The harvest at 50 DAS, at the end of the high 

temperature and early water Stress treatments, was taken in order to examine 

the interaction between high temperature and water stress. 

At 50 DAS there were significant main effects of water stress, but few water 

stress x cultivar interactions (Table 3.1). There were significant effects of 

temperature and temperature x water stress interactions. There was, however, 

little difference between cultivars and only one temperature x cultivar interaction 

for pod number. 

At final harvest (87 DAS) there were significant effects of water stress, cultivar 

and water stress x cultivar interactions. The main effects of temperature were 

also significant, but there were no interactions between water stress and cultivar 

with temperature (Table 3.2). 

The results described below have therefore been divided into three main 

sections: cultivar effects, water stress x cultivar interactions (at final harvest), and 

temperature x water stress interactions (at 50 DAS). 





Table 3.2 Analyses of variance with mean squares and treatment significance for growth and development 
parameters recorded at 87 DAS. 

- -  - - 

Source of varlatlon Df PH MSN LN LA L W l  SLA S W l  VWT PN PWT BM WUE FLN R W l  
- -- -- 

Repltcate 3 6 0 8  363 61961 3 629 1 4 43 71 80 204 0 5  610 18 

Water stress (WS) 2 420"' 45". 5344'*' 11 566556"' 287"' 8260"' 557"' 2963**' 988"' 1948"' 9709*^' 28"' 36552"' 258"' 

WSxT 2 9  4 319 402208 7 225 16 87 66 5 77 0 3 2046 8 

WSxTCV 2 12 3 335 340190 7 244 13 81 33 8 137 0 4 467 8 

Restdual 33 28 2 198 222484 5 388 6 29 1392 97 161 0 4  1063 10 
- -- - - - 

(', ", "' indicate significance at 0.05, 0.01 and 0.001 levels of probab~lity, respectively; df = degrees of freedom, PH = 
plant height (cm), MSN = main stem node number, LN = leaf number. LA = leaf area (cm2). LVVT = leaf weight, SLA = 
specific leaf area (cm2 g-'). SVVT = stem weight, V\NT = vegetative weight. PN = pod number, PVVT = pod weight, EM = 
biomass, WUE = water use efficiency (g L-'), FLN = flower number, RVVT = root weight; all weights are g plant-' and all 
numbers are per plant). 
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3.3.3 Cultivar differences 

NO significant difference in the phenology of the two cultivars could be observed 

under control (T IDI )  conditions. Both ICGV 86015 and ICG 796 had their first 

flower at 28 DAS, reached 50% flowering by 35 DAS, and had their first peg (R2) 

and pod (R3) at 39 and at 50 DAS, respectively. High temperature treatment did 

not alter these dates. 

Cultivar differences were significant ( ~ ~ 0 . 0 5 )  only at 87 DAS for biomass. 

Cultivar ICG 796 recorded higher vegetative weight and in turn higher biomass 

than ICGV 86015 (Table 3.3). Similar differences were also recorded for leaf and 

stem weights. However, there were no significant differences in pod weights 

among cultivars due to higher HI (p < 0.01) in ICGV 86015 (0.54) than ICG 796 

(0.39). 

Table 3.3 Cultivar differences between ICG 796 and ICGV 86015 for dry 
weights of  leaf, stem, vegetative, biomass and HI observed at 87 DAS. 
Values in  parenthesis are original values and analysed based on log 
transformed values. 

Character ICG 796 ICGV 8601 5 SED 

Leaf weight (g 1.11 (13.90) 0.94 (9.04) 0.025*** 

Stem weight (g PI-') 1.11 (14.65) 0.95 (9.4) 0.025*** 

Vegetative weight (g pl") 1.57 (41.4) 1.37 (24.4) 0.023*** 

Biomass (g pf') 1.79 (67.4) 1.72 (55.4) 0.029* 

HI (ratio) 0.30 0.54 0.01 1" 
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The principal difference between the two cultivars was in the flower production. 

Cultivar ICGV 86015 produced 55% more flowers than ICG 796, and this 

resulted in 36% more pegs, and 38% more pods (Table 3.4). This was 

assoc~ated with a faster rate of flower production per day (Fig. 3.4), particularly in 

the first 30 d after flowering. Pod Size was not significantly different. 

Table 3.4 Cultivar differences in  peg and pod number, and pod set of  ICG 
796 and ICGV 86015 observed at 87 DAS. Values in  parenthesis are original 
values and analysed based on log transformed values. 

Character ICG 796 ICGV 86015 SED 

Flower number 74 167 9.4*** 

Pod number (PI-') 28 45 1.8"' 

Pod weight (g PI-') 1.36 (25.9) 1.45 (27.9) 0 . 0 4 7 ~ ~  

Pod set (%) 39.8 32.9 3.6**' 
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Time (Days after anthesis - DAA) 

Fig. 3.4 Daily flower production in groundnut genotypes, ICGV 86015 (a) 
and ICG 796 (b). 
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3.3.4 Water stress effects and interaction with cultivars 

The two cultivars differed in their sensitivity to water stress. The differences 

observed at 50 DAS for early water stress persisted until final harvest. Hence, 

only water stress effects at final harvest (87 DAS) are described here. 

3.3.4.1 Water use and water use efficiency 

Water use is described here as the total amount of water lost through evapo- 

transpiration (ET). Cumulative ET and WUE at 87 DAS are given in Table 3.5 

and the effect of water stress treatments on WUE over time is shown in Fig. 3.5. 

0 25 50 75 100 
Time (DAS) 

Fig.3.5 Cumulative water use efficiency (WUE) in groundnut plants exposed 
to different irrigation treatments. D l  - fully irrigated; D2 - early water 
stress; and D3 - late water stress. Vertical bars indicate SED. 
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Table 3.5 Cumulative ET (ml plant-') and WUE recorded at 87 DAS in fully 
irrigated (Dl), early (D2) and late (D3) water stress treatments. 

Water stress ET (ml plant") WUE (g L.') 

D 1 19505 4.59 

SED 12*'* 0.221*** 

Total ET in the fully irrigated treatment (D l )  was 19505 ml and early (02) and 

late (D3) water stress increased ET by 1323 and 71 1 ml, respectively (Table 3.5). 

In D l ,  cumulative WUE increased over time from 0.4 g L-' at 20 DAS to 4.6 g L ~ '  

at 87 DAS (Fig. 3.5). Early and late water stress reduced cumulative WUE by 

about 50% at 87 DAS (Table 3.5). The reduction in WUE at 50 DAS following the 

early water stress persisted until the final harvest. Greater cumulative ET in 02  

over D l  is due an addition of excess water to bring the D2 pots to FC at 50 DAS. 

In addition to this, more water was added daily in D2 and D3 pots after and 

during the stress treatments, respectively, than in D l  pots. This was to account 

for excess evaporation (as the plant size was small in these pots) in order to 

maintain the pots at or near the pre-determined moisture content. 

The values for WUE during the stress period are presented in Fig. 3.6. There is a 

severe decrease in WUE due to both early and late water stress treatments. 

During the period of early stress, WUE was 1.96 g L-' in D l  while it was only 0.13 

g L" in D2. During the period of late stress, WUE was 8.57 g L" in D l  and 3.17 g 

r' in D3, a reduction of >50%. WUE in D2, which during this period was 
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maintained at 100% ASM, was only 4.83 g L-', well below that of the control, D l .  

The higher WUE in D l  during the 50-87 d period is due to a rapid accumulation 

of biomass (about 75 g) during this period 

35-50 50-87 
Time (DAS) 

Fig. 3.6 Water use efficiency (WUE) in  groundnut plants exposed to 
different irrigation treatments (Dl - fully irrigated; D2 - early water stress; 
and D3 - late water stress) during the early (D2 - 35-50 DAS) and late (D3 - 
50-87 DAS) water stress periods. Vertical bars indicate SED. 

3.3.4.2 Leaf number and leaf area 

There were significant effects of water stress and interaction with cultivar on leaf 

number and leaf area at 87 DAS (Table 3.2). The total number of leaves per 

plant increased linearly over time in the fully-irrigated treatment from < 20 at 20 

DAS to about 100 at 87 DAS (Fig. 3.7). Early water stress had a substantial 

effect on leaf (and branch) production and leaf senescence, and total leaf 

number at 50 DAS was about 50% that of D l ,  less than that at 35 DAS. 
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However, upon rewatering from 50 DAS leaf production rate increased and at 87 

DAS leaf number was only about 20% less than Dl. The late stress treatment 

also reduced leaf number significantly and at final harvest this treatment had the 

least number of leaves. Water stress had similar effects on plant height and node 

number (not presented). 

0 25 50 7 5 100 
Time (DAS) 

Fig. 3.7 Effect of water stress on total leaf number over time in  groundnut. 
(Dl - fully irrigated; D2-early water stress; and D3-late water stress). 
Vertical b a n  indicate SED. 

Cultivar ICG 796 was more sensitive to water stress than ICGV 86015 (Fig. 3.8). 

Both cultivars had similar total leaf number in Dl, but water stress reduced leaf 

number in ICG 796 by 20 and 40% in D2 and D3, respectively, compared with 

reduction of <5% and 22%, respectively, in ICGV 86015. Although leaf numbers 

were similar in Dl, leaf area in ICG 796 was significantly greater than ICGV 

86015 because ICG 796 had larger leaves. The reduction in leaf area due to 
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early water stress (02) was also greater in ICG 796, while in 03 both cvs had 

similar leaf areas. 

a 
4500 E ICG 796 120 b 

D l  D2 D3 D 1 0 2  D3 

Water stress treatments 

Fig. 3.8 Cultivar differences on leaf area (a) and leaf number (b) in 
groundnut due to water stress treatments at 87 DAS. Dl-fully irrigated D2- 
early water stress and D3-late water stress. Vertical bar indicates SED. 

3.3.4.3 Specific leaf area 

Specific leaf area (SLA) is the ratio of leaf area to leaf dty weight. No interaction 

was observed for the SLA values between genotypes and water stress 

treatments in this study. Values of SLA in the water stress treatments at the end 

of 02 and D3 treatments are presented in Fig. 3.9. An increase in SLA values 

was observed during the periods when either early (D2) or late (D3) water stress 

treatments were imposed. In treatment D2, the SLA was 225 cm2 g-' at 50 DAS 
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and increased upon rewatering to 261 cm2 g-' at 87 DAS. The value for SLA in 

the irrigated treatment (Dl)  was 216 cm2 g-' at 50 and 87 DAS. 

50 87 
Time (DAS) 

Fig. 3.9 Specific leaf area (SLA) values of groundnut plants exposed to 
different irrigation treatments (Dl - fully irrigated; D2 - early water stress; 
and D3 - late water stress) at end of early (D2 - 50 DAS) and late (D3 - 87 
DAS) water stress periods. Vertical bars indicate SED where significant. 

3.3.4.4 Reproductive development 

Flowering in groundnut is a sensitive reproductive process and a significant water 

stress x cultivar interaction was recorded. The interaction was mainly associated 

with cultivar differences in flower production (Fig. 3.11) combined with a 

differential response to D2 and D3 (Fig. 3.10). Under fully irrigated conditions, 

ICGV 86015 produced many more flowers than ICG 796, and the rate of Rower 
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~roduction d-' over the first 15 D M  was 5.8 and 3.5 flowers d-', respectively. The 

imposition of early and late water stress reduced the rate of flower production to 

2.7 and 2.5 flowers d-' during D2 (0 -15 D M )  and 1.3 and 0.2 flowers d" in D3 

(16 - 56 D M ) ,  respectively. These effects were relatively greater in the more 

profusely flowering genotype ICGV 86015. 

15 ICGV 86015 15 

12 

ICG 796 

1 6 11 16 21 26 31 36 41 46 51 56 1  6 11 16 21 26 31 36 41 46 5 1  56 

Time ( D M )  

Fig 3.10 Daily flower production in groundnut genotypes subjected to early 
(D2) and late (D3) water stress treatments. Blue lines indicate the period of 
stress. Green line indicates the daily values of flower production under 
control conditions. 

The late water stress (from 15 D M )  was unrelieved and in both genotypes flower 

Production effectively ceased within about 10 d of starting D3. The early water 

stress was relieved at 15 DAA, and in ICGV 86015 flower production rapidly 
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recovered, though the rate was still below that in D l  over the same period. In 

contrast, in ICG 796 the release of water stress had little effect on flower 

production (Table 3.6). At final harvest, early and late water stress therefore both 

reduced flower number, the effect of stress being greater in D3 than D2. The 

relative reduction in flower number in ICGV 86015 and ICG 796 was similar, 

about 66 and 41, and 55 and 36%, in D2 and D3, respectively. However, 

because of greater flower production in ICGV 86015, the number of flowers 

produced in D2 and D3 were nonetheless greater or similar to ICG 796 under 

~rrigated conditions 

ICG 796 ICGV 8601 5 

Cultivar 

Fig. 3.11 Cumulative flower number at 87 DAS as influenced by water 
stress treatments (Dl-fully irrigated; DZ-early water stress and D3-late 
water stress) in  groundnut genotypes ICG 796 and ICGV 86015. Vertical bar 
indicates SED. 
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Table 3.6 Effect of water stress treatments on flower production (plant 
d") i n  groundnut genotypes ICGV 86015 and ICG 796 during the early and 
late water stress periods in  fully irrigated (Dl), early (D2) and late (D3) 
water stress treatments. 

Genotype 
Water stress .................................. 

ICGV 86015 ICG 796 
--------------- 35-50 DAS --------------- 

D 1 5.8 3.5 

D2 2.7 2.5 

SED 0.62** 

--------------- 50-87 DAS ---------------- 

D 1 4.3 6.6 

D2 4.2 0.9 

D3 1.3 0.2 

SED 0.42'* 

3.3.4.5 Biomass and partitioning 

Water stress had a significant effect on biomass and on root:shoot ratio, but not 

on the partitioning of biomass to pods (HI), and there were no genotype x water 

stress interactions for biomass, HI or root:shoot ratio. 

In D l ,  most biomass was accumulated between 50 and 87 DAS, i.e, during the 

reproductive phase (Fig. 3.12). Early water stress reduced biomass from 13.8 to 

10.1 g plant-' at 50 DAS, and although stress was relieved at 50 DAS, final 

biomass was nonetheless 43% below that in D l .  Late stress also reduced final 

biomass by 49%. 
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partitioning of biomass to roots was also significantly affected by water stress. 

The root:shoot ratio in D l  was 0.18 and D2 reduced this slightly to 0.15. In 

contrast late water stress (D3) increased root:shoot ratio to 0.24. 

0 25 50 75 100 

Time (DAS) 

Fig. 3.12 Effect of water stress treatments on biomass (Dl-irrigated, D2- 
early water stress and D3-late water stress). Vertical bar indicates SED. 

3.3.4.6 Yield components 

Although there were no genotype x water stress interactions for biomass and 

Partitioning to pods and roots, there were genotype x water stress interactions for 

yield components. 
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The early and late water stress treatments had similar effects on flower 

production, pod number and pod weight when compared at the end of their 

respective treatment period, i.e, at 50 and 87 DAS in D2 and D3, respectively 

(Table 3.7). Both stresses, D2 and D3, reduced flower production, pod number 

and pod weight by 60 and 55, 62 and 40, 61 and 51%, respectively. However, 

podset in the early stress was reduced from 22 to 7%, while in late stress it was 

~ncreased from 34 to 41%. By final harvest, the early stress had recovered to 

some extent, though values were still well below D l  values. 

Table 3.7 Flower number, pod number, and pod set in  irrigated (Dl), early 
water stress (DZ) and late water stress (D3) treatments as observed at 50 
and 87 DAS. 

Water Flower Pod set Pod weight 
stress number (PI-') 

 PI^') (%) (g PI.') 
................................. 50 ............................... 

D 1 56 8 21.5 0.62 

D2 2 3 3 6.6 0.25 

SED 7.3'* 1.3*** 2.9*** 0.145' 
.................................. 87 .................................. 

D l  171 45 33.5 41.1 

D2 113 35 34.7 23.1 

D3 77 30 40.8 21.1 

SED 11.5*** 2.3*** 4.4*** 3.49"' 

Cultivar ICG 796 was more sensitive to early water stress than ICGV 86015 

(Table 3.8). Early water stress reduced pod number by 10 and 40% in ICGV 

86015 and ICG 796, respectively. Late water stress, which had a similar effect in 

both cultivars, reduced pod number by 40%. 
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Table 3.8 Interaction between water stress treatments and genotypes for 
pod number recorded at 87 DAS. 

Water ICG 796 ICGV 86015 
stress 

SED 3.24"* 

3.3.5 Temperature effects and interaction with water stress 

Temperature interacted significantly with early water stress in the harvest made 

at 50 DAS, but the interaction had disappeared by 87 DAS, and only main effects 

of temperature were significant at 87 DAS. Temperature treatments also had no 

significant interaction with cultivars, other than for pod number at 50 DAS. No 

significant interaction could be identified between temperature treatments and 

cultivars used in the study. 

3.3.5.1 Water use and water use efficiency 

Increase in temperature increased the amount of water lost from 35 to 50 DAS 

through ET, though only by 3.3% (Table 3.9). High temperature had a significant 

(p<0.05) effect on WUE during the treatment period (between 35 and 50 DAS). 

During the high temperature treatment, normalised WUE values were higher 

indicating an increase in leaf area (section 3.3.5.3) and biomass (section 

3.3.5.4). 
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Table 3.9 Cumulative ET (ml plant-'), WUE (g L.'), VPD (kPa) and normalised 
wUE (WUE x VPD g kPa L") recorded at  50 and 87 DAS in  two temperature 
treatments T land T2. 

Temperature ET WUE VPD Normalised WUE 

T2 4067 1.22 1.42 1.73 

SED 1.8"' 0.062* 

SED N S 0.181' 

However in the period from 50-87 DAS, plants previously exposed to high 

temperature recorded significantly lower WUE compared to plants in optimum 

temperature. Normalised WUE during the post-high temperature period was 

lower (4.34 g L") in plants previously exposed to treatment T2 (37/2Z°C) 

compared with 4.93 g L" in plants exposed continuously to T I  (28"122"C) 

3.3.5.2 Leaf area 

There was a significant interaction between temperature and water stress on leaf 

area at 50 DAS (Fig.3.13). Early water stress (D2) reduced leaf area by 48%, 

whereas high temperature (T2) increased leaf area by 13%, though not 

significantly. However, the combination of these two stress treatments resulted in 

a severe and significant reduction in leaf area of 57% compared to T I  D l .  
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The effect of this interaction had disappeared when plants reached final hamest. 

At 87 DAS only temperature treatments were significant (pc0.05) for leaf area. 

plants exposed to high temperature (T2 - 37122°C) had an area of 0.24 m2 per 

plant when compared to those under ambient temperature (T1 - 28122°C) which 

had a leaf area of 0.28 m2 per plant. 

Treatments 

Fig. 3.13 Response of total leaf area at 50 DAS of groundnut plants 
exposed to both temperature (Ti-28122 and T2-37/22 "C) and water stress 
(Dl-fully irrigated and DZearly water stress) treatments. Vertical bar 
indicates SED. 

3.3.5.3 Reproductive development 

There was no effect of high temperature, or interaction between temperature and 

genotype, on flower production at 50 DAS. However, high temperature did affect 

the total flower number produced by 87 DAS (Fig. 3.14). due to an early 
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~essation of flower production in T2 (Fig. 3.14a) that lowered rate of flower 

production (Fig. 3.14b). 

The effects of high temperature were visible towards the final harvest stage (87 

DAS), where a significant reduction of 20% in flower numbers was recorded due 

to high temperature (T2) when compared to control (TI), which had 134 flowers 

per plant (Table 3.10). The plants in control (TI) treatment maintained a 

significantly (p<0.05) higher rate of 3.6 flowers plant" d-' until 55 DAA. The rate 

of flower production was reduced and finally ceased in the high temperature 

treatment after 40 DAA, thus high temperature treatment recorded an average 

rate of 2.9 flowers planfl d-l. 

Time (DM)  Temperature treatments 

Fig. 3.14 Effect of temperature treatments (Ti-28\22" and T2-40122°C) on 
cumulative flower production (a) and daily flower production rate from 
anthesis to harvest (b). 
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3.3.5.4 Biomass 

High temperature (T2) and early water stress (D2) treatments interacted in 

reducing the leaf, stem and total biomass at 50 DAS (Fig 3.15). High temperature 

slightly increased biomass, whereas early water stress reduced biomass. The 

combination of high temperature and early water stress further reduced biomass 

to <50% of D l .  However, following relief of early water stress and high 

temperature stress, these interactions disappeared and at 87 DAS biomass was 

not significantly different in temperature treatments T I  (65 g plant-') and T2 (58 g 

Treatment 

Fig. 3.15 Effect of temperature and water stress on biomass as recorded i 
50 DAS. 

3.3.5.5 Yield components 

Although high temperature had no effect on flower number during the high 

temperature treatment (Fig. 3.14a), it did significantly reduce pod set, pod 

number and pod weight in both cultivars (Table 3.10). However, at 87 DAS high 
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temperature did not significantly affect pod number or weight, and there was no 

interaction between high temperature and cultivars either. The decrease in flower 

number was compensated for by a small increase in pod set. 

Table 3.10 Effect of high temperature (T2 - 37122°C) as compared to that at 
optimum temperature (T I  - 28122°C) on reproductive components of 
groundnut observed at 50 and 87 DAS. Values for pod weight are log 
transformed for analysis and original values are in parenthesis. 

Character T I  T2 SED 

............................ 50 -AS ........................... 

Flower number (plant-') 52 5 1 7.26NS 

Pod number (plant-') 7 4 1.3" 

Pod weight (g plant.') -0.380(0.64) -0.80(0.23) 0.164* 

Pod set (%) 17 11 2.8* 

.......................... 87 -,A,- .......................... 

Flower number (plant*') 134 107 9.4** 

Pod number (plant-') 37.9 35.8 1 .87NS 

Pod weight (g plant") 1.41 (29.0) 1.40(27.9) 0.047 NS 

Pod set (%) 35 38 3.6 NS 
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3.4 DISCUSSION 

Drought is a common occurrence in the SAT and is a major constraint to 

productivity of groundnuts. Drought is a result of water stress or water deficit and 

is closely associated with heat stress. The interaction between these stresses 

has not been investigated so far in groundnuts. 

In the current study an interaction between water stress and high temperature 

was found for biomass only at the end of the concurrent early water stress and 

h~gh temperature treatment. While high temperature increased growth and 

biomass, and water stress reduced biomass, the combination of the stresses 

exacerbated the negative effects of water stress. However, upon rewatering 

andlor a return to ambient temperature, these interactions disappeared and at 

final harvest, there was a significant effect of only water stress, but not for high 

temperature or interaction. These responses to water stress and temperature are 

summarised in Fig. 3.16 and discussed below in more detail. 

The early water stress treatment (D2) was for a period of 15 d from anthesis to 

pod initiation, while the late water stress treatment was for a period of 35 d from 

pod initiation to final harvest, coinciding with phases when groundnuts are known 

to be sensitive to water stress (Stirling et a/., 1989; Chapman et a/ . ,  1993d). A 

water stress of 60% ASM was achieved in 02, while the target moisture stress of 

40% ASM was obtained in D3. Differences in intensity, duration and stage of 

water stress did not have any influence on the final biomass or yield recorded at 
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Fig. 3.16 Summary of the results of high temperature and water stress 
effects on growth and development of groundnut in controlled 
environment. (Thick black line - main route of assimilate flow; thin black 
line - minor route of assimilates; broken arrow = information flow; Red 
arrow - high temperature effects; Blue arrow - water stress effects; Red 
and blue arrow - interaction effect; Labile = current and stored assimilate 
Pool; W = weight; PDNO =pod number; PGNO = peg number; FLNO = 
flower number). Direction of redlblue arrows opposite to assimilate route 
indicates negative effects. 
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87 DAS. This shows that flowering period is more sensitive than pod 

development for water stress. Similar observations were made in studies of 

Reddy and Reddy (1993), when a moderate (60%) or severe (80%) depletion of 

available soil moisture was induced during the sensitive stages of flowering and 

pod development, groundnut yields were reduced by 25 to 50%. 

The water stress treatments imposed in this study resulted in a decrease in WUE 

(total above ground biomassltotal water added) of the genotypes studied. The 

decrease in WUE was due to a decrease in total biomass accumulated (Fig. 

3.12) and only a small increase in total water added (ET) Therefore, differences 

in biomass were due either to differences in the proportion of ET used for 

transpiration (T) or soil evaporation (Es) andlor differences in transpiration 

efficiency (total above ground biomass/transpiration). 

Although T and transpiration efficiency (TE) were not measured directly, TE can 

be calculated from specific leaf area (SLA) and VPD following the procedure of 

Wright et a/. (1996). Transpiration efficiency (TE), the ratio of assimilation rate (A) 

to stomatal conductance (gs) can be described by the following equation: 

TE = A 1 gs = [ pa (1 - p,/ pa)] 1 1.6 (el - e,) (mol m.' s") [3.1] 

where A is the assimilation rate (p mol m" s-'), gs is stomatal conductance (mol 

m'2 s.'), e, and e, (Pa), p, and pa (mg L") are the intercellular and atmosphere 

vapour pressure for water and COz, respectively. From the above relation it is 

apparent that decrease in pi/pa at a constant ei - ea (VPD) will increase TE. Also 

increase in e, -e, or VPD will decrease TE. 
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Wright et al. (1996) and Craufurd et a/. (1999) showed that there exists a strong 

relation between SLA and carbon isotope discrimination (A - i.e. ratio of the 

concentration of 13c to that of 12c, Farquhar et a/., 1989). From a wide range of 

field environments (Wright et al., 1996) and in controlled environments (Craufurd 

eta/., 1999), A can be predicted from SLA by 

A = 0.03 SLA + 14.0 L.21 

Tanner and Sinclair (1983) introduced the concept that TE (g L-' of water used) 

was inversely proportional to VPD (kPa): 

TE = k 1 VPD (g L-') P.31 

re-ordering the equation gives that: 

k = TE x VPD (g kPa L-') P.41 

where k is the transpiration efficiency constant or nomal~sed TE for VPD. Wr~ght 

et a/. (1988, 1994) measured TE and VPD values from a number of experiments 

and then normalised TE for VPD using eq. 3.4 to obtain values of k.  Wright et al. 

(1996) then regressed the values of A (carbon isotope discrimination) on k (Fig. 

3 17), which was described by the following equation: 

k = -0.53 A + 14.4 (g kPa L-l) P.51 

Hence, if SLA is known the A values can be obtained using eq. 3.2. The A values 

so obtained can then be used to estimate k values from eq. 3.5. Finally, TE can 

be estimated by substituting the estimated k and measured VPD in eq. 3.3. 

Values of TE were therefore calculated from above equations using SLA at 50 

and 87 DAS and mean VPD from sowing to 50 and 87 DAS (Table 3.11). The 

Calculated values of TE were in the range of 3.4 to 4.2 g L-', Similar to 
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Fig. 3.17 Relationship between transpiration efficiency coefficient (k) and 
leaf carbon isotope discrimination (A) for data derived from groundnut 
transpiration efficiency studies in field based mini-lysimeters. (Source: 
Wright et a/., 1996). 

Table 3.11 Observed specific leaf area (SLA) and vapour pressure deficit 
(VPD) in water stress treatments, and estimated values of carbon isotope 
discrimination (A), transpiration efficiency (TE), transpiration (T) from 
sowing to 50 DAS and sowing to 87 DAS, using the equations described by 
Wright et a/. (1996). 

Water 
stress S LA A K VPD TE T 

.treatment (crn2 g-') (Ratlo) (g kPa L ') (kPa) (g L ~ ' )  (L plant ') 
-. 
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other published values (Wright et al., 1996 - 2.8 - 4.1 g kg.'; Brown and Byrd, 

1996 - 2.57 - 4.34 g kg"). Values of TE at the end of D2 (50 DAS) and D3 (87 

DAS) were 4.05 and 3.96 g L-', respectively, only slightly below the value of 4.23 

g L-' in irrigated treatment. Therefore, TE was only slightly reduced by water 

stress during the stress period. Reductions in TE of up to 20% under water stress 

were also reported by Wright etal. (1994) and Mathews etal. (1988). 

However, over the whole sowing period (i.e. from sowing to 87 DAS) TE was 

greatly affected by the early stress (D2) and was only 3.37 g L' compared to 

4.22 g L" in D l  recorded at 87 DAS - despite the fact that both the treatments 

were fully irrigated between 50 and 87 DAS. Leaf area was smaller in D2, as was 

plant biomass at 87 DAS, suggesting that recovery from early stress was not 

complete. Hsiao (1973) suggested that when stressed plants are rewatered, CO2 

assimilation recovers readily but not necessarily fully. In cases where stress is 

not severe, full recovery was achieved in a fraction of a day, but in cases with 

severe stress, as in this study (60% ASM), recovery after rewatering may require 

one to several days. 

Once TE is known, the amount of water transpired (T) could be estimated using 

the below given relation: 

T = above ground biomass (including pods) 1 TE (L) K.61 

Transpiration was very low during the first 50 d, only 3.4 L (32% of total applied) 

in D l ,  because of the small plant size and leaf area (Fig. 3.7). At 87 DAS, T was 

estimated to be 21.3 L, slightly higher (10%) that the total amount of water 
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applied (ET). This difference can be attributed to the fact that equations (3.2 to 

3.6) were derived from experiments under field conditions where the VPD p1 .2  

kpa) and radiation levels (-1400 p moles m-2 s-') were higher than those 

recorded in the current study. The results also show that there was rapid 

increase in biomass between pod initiation and harvest, 85% of biomass was 

accumulated between 50 and 87 DAS. This rapid accumulation of biomass over 

this short period gave rise to the measured value of WUE of 8 g L", about double 

that of seasonal values obtained in field experiments (Brown and Byrd, 1996; 

Hubick eta / . ,  1986; Wright et a/., 1996) and double that of estimated TE. Thus it 

is also possible that the mean value of TE estimated from SLA at 87 DAS is not 

capturing variation in TE over short time scales, and that TE was higher than 4 g 

L-' between 50 and 87 DAS. Thus, further studies are required under controlled 

environments to verify the validity of this set of equations 

The final T values obtained in D2 and D3 were 30 and 50% lower, respectively, 

than that recorded in D l .  The values show that more water was lost through Es 

In the water stressed treatments as more soil was exposed to direct action of 

environmental factors (VPD and radiation) due to smaller canopy size. In 

summary, water stress had little or no effect on ET or on TE, but did greatly 

reduce T. Therefore, the reduction in biomass due to water stress in this 

experiment was due to a reduction in T. Similar reductions in biomass of about 

60°h, when transpiration was reduced by 60 -70% were recorded under field 

conditions by Hubick eta / .  (1986) and Wright et a/. (1996). 
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plants exposed to high temperature recorded slightly higher SLA (non-significant) 

when compared to ambient treatment, indicating that TE was slightly increased in 

this treatment. This higher SLA can be attributed to larger leaf area with thinner 

leaves (Craufurd et a/., 1999) that enable the plant to dissipate heat. Although, 

differences for TE are small, the higher value for normalised WUE in the high 

temperature treatments (Table 3.9) is due to an increase in biomass during the 

h~gh temperature period. This confirms that higher WUE in h~gh temperature 

treatment is due to an increase in T component of ET, due to larger leaf area. 

This increase in leaf area is essential for the plant to meet the excess 

transpiration for lowering the canopy temperature (Hsaio, 1973; Black et a/., 

1985). Patil and Patil (1993) have shown that lowered T, by with holding irrigation 

for a period of 4 d, increased leaf temperatures on an average by 6°C. Thts 

confirms that increased transpiration is essential to maintain leaf temperature 

near or lower than ambient temperature. The slight decrease in WUE during the 

post-high temperature period can be attributed to the disruption of the 

photosynthetic apparatus during the later period of 10 d high temperature 

treatment (Berry and Bjorkman, 1980; Bhagsari et a/., 1974). 

Water stress reduced vegetative development, including main stem length and 

node number (not reported), leaf number and leaf area. Similar reductions for 

these parameters were reported in the literature (Lin eta/., 1963; Su et a/., 1964; 

Gorbert and Rhoads, 1975; Ochs and Wormer, 1959; Boote and Hammond, 

1981; Nageswara Rao et a/., 1988, Stirling et a/., 1989). The rate of leaf 

development was slowed down in water stress treatments resulting in a lower 
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leaf number at both pod initiation and final hawest. This would be due to a 

lowered relative turgidity (Slatyer, 1955, Allen et a/. ,  1976) that inhibits cell 

division and expansion that are essential for leaf growth. 

Water stress treatments reduced total biomass due to a reduction in both 

vegetative and pod weight. Similar results have been reported in many studies 

(e.g. Chapman et a/., 1993~) .  However, water stress did not alter the partitioning 

to pods (HI) and therefore pod yield varied with biomass. These results are in 

contrast to those obtained by Greenberg et a/. (1992) and Chapman et a/. 

(1993c), who observed significant reductions for HI in water stressed plants. This 

contrast in the effect on HI could be attributed to the level of stress imposed in 

these studies. In the current study, plants were subjected to 60% ASM in D2. In 

D3 plants were maintained near the pre-determined level of 40% ASM during the 

stress periods and plants at most only suffered a transient daily moisture stress 

more severe than this. In other studies water stress treatments were either more 

severe than 40% ASM (Chapman et a/. ,  1993c), or the duration of irrigation 

interval was as long as 15 d to impose a water deficit of 33% of control treatment 

(Greenberg et a/., 1992). It is well documented in other crops (e.g. maize, 

sorghum, pearl millet) that HI is only reduced when stress levels are severe 

(Muchow, 1988). 

In groundnuts, flower production is synchronised with leaf production once 

flowering is initiated. The flowers appear at the axils of the cataphylls or foliage 

leaves. The reproductive and vegetative axes appear to emerge from the same 
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node (Norden, 1980). Due to reduced branching and leaf number, flower 

production was also slowed down under water stress periods, resulting in lower 

flower number at 50 and 87 DAS, respectively. Harris et a/. (1988) made similar 

observations for leaf and flower production in groundnuts. 

A reduction in flower number early in the cycle reduces the potential number of 

pegs and pods. Water stress also reduced the percentage of pegs and pods set. 

This effect on fruit-set was greater than the effect on flower number. Hence, 

other factors than just reduction in flower number are responsible for reduced 

peg and pod number under water stress. A slower accumulation of assimilates 

under water stress, due to delayed leaf development, further reduced total 

number of pegs or pods formed (Williams et a/., 1986; Nageswara Rao et a/. ,  

1988; 1989; Wright et a/ . ,  1991). The reduction in peg and pod number can be 

related to impaired pollinat~on under water stress conditions during flowering 

(Jain et a/., 1997). This decrease in peg and pod number could also be due to 

anther abnormalities as observed in wheat (Sheoren and Saini, 1996) andlor due 

to ovule abnormality under water stress as observed in maize (Moss and 

Downey, 1961). 

Greater the number of flowers produced during the first two weeks after anthesis, 

greater is the number of pods produced (Sastry et a/., 1985). Thus, the earlier 

Plants establish their potential sink the greater will be the pod yield. It was 

observed in groundnut that only 20% of flowers under optimum conditions 

(Donovan, 1963, One, 1979), and sometimes less than 15% (Lim and Hamdan, 
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1g84), produce pods. In the late stress flowering was halted 10 d after ~mposition 

of stress and only the flowers produced early resulted in final pod yield. Plants 

exposed to early Stress flowered on rewatering, and an increase in peg and pod 

set was recorded. This did not add to the final pod yield as most of the pegs 

formed did not reach the soil or those that reached the soil could not mature into 

full pods to add to final yield by 87 DAS. Similar observations were made in other 

studies on peg elongation and peg conversion to pods (Chapman et a/., 1993a; 

Harris eta / . ,  1988). 

Unlike early or late water stress, no reduction in flower number occurred due to 

high temperatures (37122 "C) imposed for 10 d, starting at anthesis, but a 

decrease in peg and pod number was observed in the harvest made at 50 DAS. 

There was no reduction in leaf number or branch number under high temperature 

conditions at 50 DAS. Hence, the sites for flower production are not limiting 

which was not the case in water stress treatments. Previous studies by Ong 

(1984), Ketring (1984) and Vara Prasad et a/. (1999a) have shown that under 

high temperatures (>3d°C) peg and pod numbers were reduced by 33-50%. 

Similar reductions were observed in the present study. A reduction in peg and 

pod numbers would also result from damaged pollen mother cells (Warrag and 

Hall. 1984), poor pollen viability (Halterlien, 1979; Halterlien el a/., 1980; De 

Beer, 1963), impaired style and ovule function (Gross and Kigel, 1994) or failure 

of fertilisation (Ormrod et a/., 1967). These effects are examined in more detail in 

Chapter 4 and 5. This decrease in peg and pod number lowered the pod weights 

by 63%. 
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~esp i t e  a decrease in flower numbers, no differences for pod weight could be 

observed at final harvest between temperature treatments. This decrease in 

flower number could be a result of damage to reproductive primordia during the 

high temperature period as reported by Vara Prasad et a1 (1999a). Fortanier 

(1957) recorded similar decrease in flower number at later stages (80 DAS) of 

crop growth. However, no difference in pod weights at final harvest could be 

observed as flower reduction occurred after heat stress and flowers formed late 

in the crop growth do not contribute to final yield 

High temperature d ~ d  not significantly affect the number or weight of vegetative 

components in the harvest made at 50 DAS, at the end of the treatment. In the 

harvest made at 87 DAS, a significant decrease in leaf area and leaf weight was 

recorded. Ketring (1984) recorded similar delay in the effect of high temperatures 

on leaf area and weight. When high temperature of 35°C was started at 21 DAS, 

reduction in leaf area and leaf weight was recorded only at 63 DAS. This delay in 

damage or lack of instantaneous effect could be attributed to the greater heat 

killing time required for groundnut tissue membranes when compared to crops 

like soyabean, chickpea and pigeonpea (Srinivasan et a/., 1996). A decrease in 

stem weight was also observed under high temperature conditions, which was 

visible at final harvest. This is an indication of movement of stored assimilates to 

source survival (leaves) or sink (pod) development under stressed periods. 

Poorter and Nagel (2000) made similar observations in their review of 

environmental effects on biomass allocation in cereal Crops. 
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Interaction between temperature and water stress was found to be negative for 

vegetative components. High temperature increases vegetative components and 

water stress decreases these same components. The increase in vegetative 

weight could be attributed to higher optimum temperature of the photosynthetic 

process compared to the optimum of 28°C for vegetative and reproductive 

growth (Boote et a/., 1999). Studies in identifying the tolerance of this process is 

essential in groundnut, as around 48-49°C was required for inactivation of 

photosynthesis in Tridestromia oblongifolia (Bjorkman et a/., 1980). Talwar et a/. 

(1999) In their study with three genotypes, ICG 1236, ICGS 44 and ICG 476, 

o b s e ~ e d  genotypic differences for photosynthetic rates. ICG 1236 and ICGS 44 

recorded 28.7 and 18.7 mmol m-2 s-', respectively, at 35"13O0C (daylnight), 

compared to 16.5 and 18.9 mmol m.* s", respectively, at 25"/25"C. Further 

studies to confirm temperature tolerance of photosynthesis that would lead to 

incorporating this character into genotypes for areas with hot climates are 

rewired. 

A comb~ned effect of stresses, water stress and high temperature, further 

decreased vegetative components that were reduced due to water stress. This 

combination of stress treatments would have raised the leaf temperatures to 

above critical for processes like photosynthesis and membrane thermostability, 

ihus causing a severe decrease in assimilate production and in turn vegetative 

weight. Similarly, Paulsen (1994) reported a marked interaction between high 

temperature and water stress, which combine to exacerbate injury to 

Photosynthesis in wheat. High temperature aggravates drought injury by reducing 
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photosynthesis and preventing plants from adjusting osmotically to stress. These 

Interactions were significant only at 52 DAS in the present study. But, they 

d~sappeared as plants reached 87 DAS, ~ndicating the plasticity of groundnut 

plants to recover from stress treatments. 

Observations for increased seventy of water stress under h~gh temperatures 

could not be recorded for peg or pod number or pod weight. No interaction was 

observed for reproductive weights. Pod filling starts 15 d afler flowering, 

combined stress was withdrawn before the initiation of pod filling and hence 

provided unstressed per~od for pod and seed development. Observations 

conform to those made by Nicolas et a/. (1984) that a decrease in grain yield 

occurs only when heat stress and water stress are comb~ned durlng the grain 

fllllng period. 

Cultivars interacted and reacted differently to water stress but not to high 

temperature. Greater reductions for leaf weight and stem weight were found in 

ICG 796 than in ICGV 86015 under similar water stress conditions. These effects 

are mainly due to differences in cultivar ability to establish vegetative or 

reproductive components during ontogeny. ICG 796 established greater biomass 

and hence greater reductions for these components occurred when compared to 

ICGV 86015. Greater decrease in ICG 796 can be attributed to use of stored 

assimilates for maintenance processes (e.g, respiration) for a greater plant size. 

Such genotypic differences to water stress in groundnut are widely reported in 

literature (Williams eta/. 1986; Chapman et a/., 1993a), 
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Under similar levels of water stress ICGV 86015 is superior to ICG 796 due to 

faster and larger flower and pod number established by the genotype, but no 

s~gnificant differences in reproductive dry weights was evident. This is due to 

s~gnificantly greater number of immature pods in ICGV 86015 than in ICG 796 

(data not shown). These immature pods had smaller seeds and thus reduced 

reproductive yield in ICGV 86015. Presence of higher number of developing pegs 

and pods created intra-sink competition for available assimilates (Chapman et 

a / ,  1993a) and thus prevented effective pod format~on in ICGV 86015. The lack 

of differences for pod weights could also be due to the fact that the plants were 

harvested before reachlng maturity. 

3.5 CONCLUSIONS 

It is evident from this study that water stress either independently or in 

combination with high temperature affects growth and development of 

groundnuts. Water stress reduces groundnut yield by reducing vegetative plant 

growth. Water stress also reduces reproductive weight by reducing flower 

number and hence pod number that are visible at final harvest. In contrast, hlgh 

temperature severely disrupts reproductive processes. High temperature 

decreases peg and pod number by disrupting pollen viability and pollination 

instantaneously in flowers. A combination of these two stresses further 

aggravates reductions in groundnut biomass components, mainly by reducing 

vegetative components, i.e, source, and by decreasing potential sink 

establishment. Thus, tolerance to both water stress and high temperature is 

essential to improve groundnut yields of SAT. 



CHAPTER 4 

MEMBRANE THERMOSTABILITY AND THE RESPONSE TO TEMPERATURE 
OF POLLEN GERMINATION AND POLLEN TUBE GROWTH IN GROUNDNUT 
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4.1 Introduction 

High temperature studies conducted so far In groundnuts have shown that 

temperatures '34°C during the reproductive period severely reduce both peg 

and pod number (Ketring, 1984; Wheeler e l  a/.. 1997; Vara Prasad et a/., 1999a, 

1999b, 2000a). Temperatures >36"C during the first 6 h of the day (morning) 

severely reduced peg and pod number; whereas high temperature during 

afternoon had no effect on peg or pod set (Vara Prasad et a/., 2000a). This 

reductton in peg and pod number has been attr~buted to fewer pollen grains and 

poorer pollen viability (Vara Prasad et a / ,  1999b). It has also been established 

that a single day of heat stress during the most sensitive stages of flower 

development - microsporogenesis and anthesis - is sufficient to reduce 

groundnut pod numbers significantly (Vara Prasad et a/., 2001). 

Fruit set is reduced by h~gh  temperature [e.g. 35123°C in tomatoes (Baki and 

Stommel, 1995; Peet and Bartholomew. 1996); 32127°C in common bean (Gross 

and Kigel, 1994) and 30120°C in wheat (Saini eta/ . ,  1983)] in many crops due to 

a decrease in pollen v~ability and germination, and the disruption of pollen tube 

growth. Genotypic differences In response to temperature have also been 

Identified for pollen germination and pollen tube growth, and in tomato high 

temperature tolerant genotypes have been identified (Rudich et a/., 1977; Shelby 

et a/., 1978; Ahmadi and Stevens, 1979; Weaver and Timm, 1989; Dane et a/., 

1991). 



Response to temperature of pollen germination and pollen tube growth has not 

been examined in groundnut. However, the structure and development of pollen 

(Willcox et al., 1990, Xi, 1991), pollen product~on (Trivedi and Verma, 1975), 

temperature requirements for viability and germination (Oakes, 1958; De Beer, 

1963), and in vitro germination and growth (Faucett~ and Emery, 1974; Niles and 

Quesenberry, 1992) have been studied. Lim and Gumpil (1984) concluded that 

pollen dehiscence and pollination occur around 7:OO-8:00 AM and fertilisation 

takes place at midday. Oakes (1958) recorded that temperatures >36"C are 

lethal for pollen germination and pollen tube growth 

Membrane thermostability is another important technique that has been widely 

used in different crops, such as, soyabean (Martineau et a/., 1979; Srinivasan et 

a / .  1996); chickpea and pigeonpea (Srinivasan e t a / ,  1996); and cowpea (Ismail 

and Hall, 1999), to classify genotypic tolerance to temperature. Stud~es have also 

been conducted in groundnuts to ~dentify heat tolerance based on membrane 

thermostability (Ketring, 1985; Srinivasan e l  a/., 1996; Chauhan and Senboku, 

1997; Talwar et a/., 1999). Membrane dysfunction is a physiological process 

d~sturbed most by heat stress (Levitt, 1980; Quinn, 1989). It results in increased 

permeability and leakage of electrolytes, which, in turn, reduces photosynthetic 

or mitochondria1 activity, and the ability of plasmalemma to retain solutes and 

water (Lin et a/., 1985). Membrane thermostability indicates the general heat 

tolerance of a crop species or genotype; whether this general tolerance is 

associated with tolerance of specific processes like pollen germination or pollen 

tube growth has not been yet established. 
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The evaluation of genotypes in the field for high temperature tolerance is not 

forward, as facilities capable of controlling temperature over a large area 

are required (e.g. Morfo and Hall. 1992). If natural hot env~ronments are used, 

confounding between environmental variables cannot be easily avoided. 

Techniques like in vitro pollen germination and pollen tube growth can be used to 

screen many genotypes quickly and economically for h~gh temperature tolerance. 

The main objective of this study was to investigate the capacity for pollen 

germmation and pollen tube growth in vitro among groundnut cultivars in 

response to a range of controlled temperatures; and hence to identify heat 

tolerant genotypes. 

4.2 Materials and Methods 

4.2.1 Experimental material 

Groundnut plants of twenty-one genotypes were grown in a poly-tunnel facility at 

the Plant Environment Laboratory, The University of Reading, Reading, UK. 

These genotypes were selected based on their known varying tolerance to water 

stress and temperature (Table 4.1). Pre-germinated seeds were sown in 15 cm 

high by 10 cm diameter pots contaln~ng a soilless mixture of sand, gravel, 

vermiculite and loamless peat compost mixed in proportions of 4:2:2:1, by 

volume, respectively A commercial controlled-release fertiliser (0.15 kg kg-' N, 

0.10 kg kg -' P, 0.12 kg kg" K,  0.02 g kg-' MgO plus trace elements; Osmocote 

Plus, Scotts UK Ltd, UK) was incorporated into the mixture at the manufacture's 

recommended rate of 5 g L-'. Seeds were not inoculated with rhizobia and so 

Plants were dependent on inorganic nitrogen. All pots were soaked and drained 
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for 24 h before seedlings were planted; thereafter they were hand-watered. 

plants were grown continuously at 28122°C (daylnight) with a 12 h photoperiod. 

4.2.2 Membrane thermostability 

Membrane thermostability was determined following the procedure described by 

srlnlvasan et al. (1996). The top 3rd or 4'h tetra-foliate leaf from plants grown 

under optimum temperature regime of 28"122"C (daylnight) was p~cked at 

flowering. Six sets of 10 leaf discs of 2 cm diameter were cut from the leaflets 

using a cork borer. Each set of 10 leaf discs was used as a replicate. Three 

replications were used for each temperature treatment. The leaf discs were 

washed three to four times in deionised water to remove electrolytes from injured 

cells at the cut edge and any surface adher~ng electrolytes. Sets of 10 leaf discs 

were immersed in 30 ml of water (at 25°C) in test tubes and were then subjected 

to a temperature stress of 54°C for 15 mln in a water bath. The control tubes 

were maintained at 25°C. A temperature of 54°C was identifled by Srlnlvasan et 

a/.  (1996) as the optimum heat killing temperature in groundnut. After cooling to 

room temperature, samples were incubated at 10°C for 16 h and conductivity 

was measured with a conductivity meter (Fisher Scientific, Pittsburgh, USA) The 

tubes were then covered with aluminum foil and autoclaved at 120°C for 15 min 

to release all electrolytes. After cooling to 25"C, the contents were mixed and 

final conductance was measured. The injury (RI) was determined as follows: 



Table 4.1 Pedigree, origin, ecotype, and known tolerance to water stress and high temperature, of the 21 
groundnut genotypes used in the study. 

Genotype Ped~gree Ortgln Ecotypet -- Tolerances -- 
Water stress Htgh temperature Membranfierm~stat$y _ - ---- - 

ICG 1236(Ah 6179) - 7 lnd~a SB T T T 
ICGV 8601 5 ICGS44 x TG 2E lnd~a SB S MT MS 
ICGV 92109 ICGV 87399 x Ah 7827 lnd~a 
ICGV 92113 ICG 1697 x ICG 4790 lnd~a 
ICGV 921 16 (TMV 10 X CHICO) X ICGV 86742 lnd~a 
ICGV 921 18 ICGV 87340 X ICGS 11 lnd~a 
ICGV 92120 ICG 3736 X (TMV 10 X CHICO) Indla 
lCGV92121 Ah 7827 X ICGS 11 lndta 
ICGV 93232 ICGV 87399 X Ah 7827 lnd~a 
ICGV 93233 ICGV 87399 X Ah 7827 lnd~a 
ICGV 93255 ICGS 30 X ICGS 11 lnd~a 
ICGV 93260 ICGS 1 I X ICG 4728 lnd~a 
ICGV 93261 ICGS 11 X ICG 4728 lndta 
ICGV 93269 I C G S l l  XJL24 lnd~a 
ICGV 93277 ICGV 87399 X Ah 7827 lnd~a 
47-16 (ICG 2904) lnd~a 
55437 (ICG 8242) Selection from a population Argentma 
ICGS11 Select~on Robut 33-1-18-8 lndta 
Kadlrl-3 Robut 33-1 lndta 
TMV2 Select~on from Gud~anthum bunch lnd~a 

TS32-1 Selectlon followtng hybrld~satlon. SB T MT MT 
--___- -- -- 

(t SB = Span~sh bunch VB = Vlrgln~a bunch $ T = tolerant MT = moderately tolerant MS = moderately susceptible S = 
susceptlblen = no lnformat~on ava~lable) 



where T and C refer to the conductance in treatment and control tubes, and 

subscripts 1 and 2 refer to readlngs before and after autoclaving, respectively. 

The conductance in treatment tubes is a measure of electrolytes leaked from 

cells due to the degree of injury to membranes. The control gives the measure of 

leakage due solely to the cutting and incubation of leaf discs. 

4.2.3 Pollen collection 

Flowers were collected from each genotype (7-8 days after flower initiation) at 

the time of anther dehiscence, between 0700 and 0800 h (Lim and Gumpil, 

1984), and were placed in petri-dishes lined with moistened filter paper to avoid 

pollen desiccation. Pollen was extracted either by pressing the keel petal or by 

removing pollen from the anthers usrng a needle. Pollen from 10 flowers was put 

on a sllde and mixed thoroughly using a nylon ha~r  brush. Pollen was then 

transferred, within half an hour of picking the flowers, on to the growth medium. 

4.2.4 Growth media 

The germinating media consisted of 100 g kg-' sucrose, 100 mg kg-' H3B03, 250 

mg kg-' Ca(NO&, 200 mg kg.' MgS04 and 100 mg kg" KN03 in deionised water 

(Niles and Quesenberry, 1992). The media was solidified with 2% Agar. Pollen 

germination and tube growth were determined by placing 2 ml of germinating 

media on a glass slide and inoculating it with a sample of pollen. Slides with 

media and pollen were placed In petri-dishes lined with moist filter paper thus 

servlng as germination chambers By gently tapping the nylon hair brush loaded 



pollen grains, an even spread of pollen on the surface of the growth medium 

was achieved. 

4.2.5 Temperature treatments 

Petri-dishes containing pollen of each genotype were exposed to different 

temperatures ranging from 10" to 45°C at 2.5"C ~ntervals in incubators. 

Temperature of the medium in the incubators was measured using copper- 

constantan micro-thermocouples. The temperatures were logged at 10s interval 

and averaged every 10 min. The temperature averaged during the period of 

germination was used for calculating the response to temperature. 

4.2.6 In-vitro pollen germination 

A pollen grain was considered to have germinated when the germinated pollen 

tube length was equal or more than the diameter of pollen. Pollen was allowed to 

germinate for 45 min before any counts were made. Counts were made at 

random in three fields under a low power, 6.5x, microscope (Nikon Scientific, 

Japan). Each field was considered as a replicate for statistical analysis. Around 

1500 pollen grains were used for determining the germination percentage. 

Germmated pollen was counted until no further pollen germination was observed. 

Germination percentage was calculated using equation 4.2: 

number of germinated pollen per field 
Germination (%) = X I  00 [4.21 

total number of pollen per field 
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4.2.7 In-vitro pollen tube growth 

The ~n-vitro elongation of pollen tubes was measured on germinated pollen grain. 

pollen tube length was measured at 45 mln ~ntervals. An ocular micrometer was 

used to measure pollen tube length under a high power, 40x, microscope (Fisher 

Scientific, Pittsburgh, USA). In each temperature treatment, three sets, each of 

15 pollen tubes, were considered as three replicates. Length of 15 pollen tubes 

was measured at each observation time and was averaged. Measurements were 

made until 4 h after germination, beyond which no increase In pollen tube length 

was recorded. Observations made at d~fferent temperatures were used to fit 

response of pollen tube length to temperature. 

4.2.8 Statistical analysis 

Values obtained for membrane thermostab~lity (RI %) were analysed uslng the 

ANOVA procedure in GENSTAT 5 (GENSTAT 5 Committee, 1997) with three 

replications (Srinivasan et a1 , 1996). 

Percentage germination and pollen tube length were analysed using linear and 

non-linear regression techniques (Fig. 4.1). The best fit of a regression equation 

was identified for response of germination percentage and pollen tube length to 

temperature based on the amount of variation the fit accounted for. Quadratic 

(Yan and Wallace, 1996, 1998), cubic or higher order polynomial (Tollenaar et 

a/. ,  1979), beta distribution model (Yin et a/., 1995), bi-linearlbroken stick 

(Omanga et a/ . ,  1995, 1996; Craufurd et a/. ,  1998) and modified bi-linear 

(Omanga, 1994) equations were tested for goodness of fit. 
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When temperature transgresses the optimum temperature, the use of bilinear 

model may not always be meaningful. Craufurd et a/ .  (1998) point out that the 

est~mation of Tm,, (or Tb) Usually requires considerable extrapolation and the 

standard error (S.e.) of this Tm,, is large in comparison with the s.e of optimum 

temperature (Top,). Further, the maximum rate of any process at To,, is likely to be 

over estimated since it is obtained from two linear equations, while the real 

response curve is generally somewhat smooth. To overcome this, equation 4 3 

described below (Omanga, 1994) can be used to study the response across a 

range of temperatures, where 

Pollen germination (%) 
or pollen tube length = a + bl(T-Top,) + b2 ABS (T-TOP,) P.31 

where Top, = the optimum temperature to be estimated; T= the temperature at 

wh~ch pollen germination or pollen tube length was recorded; a = maximum rate 

of germination where T = To,,; b l  and b2 = parameters combined to determine 

the sensitivity to the mean temperature both below and above Top,; ABS = 

absolute values of T-Top,. Values of min~mum (T,,,) and maximum (T,,,) 

temperatures for each genotype were calculated by using the following equations 

4 4 and 4.5. 

Tmln = a + (b2- b l )  Top, k .41  

Tmax = a - (b2+ b l )  ' Top, 

b l  +b2 
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Observed h -Quadratic 

15 20 25 30 35 40 45 50 
Temperature ("C) 

Fig. 4.1 Comparison of fitted equations for pollen tube length response to 
temperature between 10 OC and 47.5% in groundnut genotype ICG 1236. 
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This modified bi-liner equation gives a smooth fit to the temperature response 

and reduces the over estimation of the minimum, optimum and maximum 

temperatures for a given process. 

Equation 3 can be easily fitted to the experimental data using the PROCNONLIN 

procedure in SAS 6.2 (SAS Institute) or through the non-linear regression 

procedure in GENSTAT 5. The Newton-Gauss Maximum Likelihood program in 

GENSTAT 5 has been used for this purpose. GENSTAT 5 uses an iterative 

process to determine the Top, based on the least root mean squared deviation 

value between observed and predicted values. Values of maximum pollen 

germ~nation and maximum pollen tube length obtained after 225 min in each field 

or repl~cation of different temperature treatments were used to fit the modified bi- 

hear  equation. The values of T,,,, Top,. T,,,, for maximum germination and 

pollen tube length for each replicate were analysed using ANOVA of GENSTAT 5 

to identify the genotypic differences 

Pollen tube growth rate in response to temperature was also studied. The time to 

reach 50% of maximum length was calculated as the time at which length 2 0.5 x 

length at 225 min, as shown in equation 4.6: 

t112 = ( Io~~( (L I ,A) IB) )  I (IogeR) P.61 

where A, B and R are the estimates of intercept, slope and constant, respectively 

from the exponential fit (eq. 4.7) to the pollen tube length values across time at 

different temperatures: 
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w.71 

The inverse of t112, the rate of tube growth, was then plotted against temperature 

and linear regression fitted. The linear model (eq. 4.8) obtained for each of the 

genotypes was used to calculate the base temperature (Tb) where: 

Pr~ncipal component analysis (PCA) for pollen germination and pollen tube 

growth parameters was carried out uslng GENSTAT 5 to identify heat tolerant 

genotypes. Values of reduction in pollen germ~nation (RGER) and pollen tube 

length (RPTL) at 40°C over that at optimum temperature, cardinal temperatures 

(T,,,. To,, and T,,,) obtained from modified bi-linear fit, RI values, and reciprocal 

of time to reach 50% of maximum pollen tube length (lltIl2 PTL) obtained in this 

study for each genotype were used in PCA analysis. 



4.3 Results 

4.3.1 Membrane therrnostability 

There were clear differences among groundnut genotypes in RI when subjected 

to 54 "C for 15 min (Table 4.2). The mean value of RI was 22% and most 

genotypes were significantly higher or lower from this value. 

Table 4.2 Percentage relative injury (RI) of 21 groundnut genotypes. 
-. - 

Genotype RI (%) 
- - 

ICG 1236 45 

ICGV 86015 15 

ICGV92109 16 

ICGV92113 7 

ICGV 921 16 7 

ICGV 921 18 6 

ICGV 92120 8 

ICGV 92121 5 

ICGV 93232 10 

ICGV 93233 32 

ICGV 93255 8 

ICGV 93260 9 

ICGV 93261 17 

ICGV 93269 20 

ICGV 93277 11 

47-16 40 
55-437 52 

ICGS l l  35 

Kadln-3 31 

TMV2 30 

TS32-1 - 2 1 

Mean 22 
6 1 SED (p<O 001) 



Genotypes ICG 1236 and 55-437 showed less injury with high RI values of 52 

and 45% respectively, and were therefore the most thermotolerant. Moderate 

injury was observed in genotypes 47-16, ICGS 1 I, Kadiri 3, TMV 2 and ICGV 

93233, with values between 30 and 40%. The rest of the genotypes had very 

high injury with RI values around or less than 20%, of these ICGV 92121 and 

ICGV 921 18 were most injured, with values of 5 and 6%, respectively. 

4.3.2 Pollen germination 

Pollen germinated quickly and reached their maximum percentage germination 

within 60 min of their contact with the agar medium. The observed values for 

germination and their modified bi-linear fits are shown in Fig. 4.2. The model 

parameters describing the fit with their R' values are shown in Table 4.3. 

Genotypes significantly differed in their maximum percentage of germination 

(Table 4.4), which ranged from 35.7% in ICGV 93269 to 76.3% in ICGV 93233, 

w~th a mean germination of 56%. 

Genotypes differed significantly in their T,,,, To,, and T,,,, obtained from the 

modified bi-linear fit (Table 4.4). Min~mum temperature for pollen germination 

averaged 14.0 k2.5"C. Among the genotypes studied, pollen of four genotypes 

(e g. ICGV 921 18) initiated germination at temperatures of 4 2 ° C  while in TS 32- 

1 a temperature of 16.6% was required. Pollen germination reached a maximum 

at Top,, which was specific to each genotype. Optimum temperature ranged from 

25.5" to 35.0°C, with a mean of 30°C. Genotypes ICG 1236, TMV 2, TS 32-1 and 

lCGS 11 had high values of Top, >33"C. 
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Maximum temperature (T,) or lethal temperature beyond which no germination 

occurred in the in vitr0 medium averaged to 43.4 i3.80C (Table 4.4). The most 

sensitive genotypes were Kadiri 3 and ICGV 921 16, which recorded a maximum 

temperature of only 36.7" and 38.6"C, respectively, at which no pollen 

germination was observed. All genotypes that had high values for TWt also had 

correspondingly higher values for T,,. No significant correlation could be 

recorded for T,i, versus TWt or T,,. A slightly higher correlation (r=0.29) was 

recorded between T,, and T,,,. 

Susceptible OICGV 92116 

Moderate ICGV 92118 

80 Tolerant 55.437 

10 15 20 25 30 35 40 45 50 

Temperature (OC) 

Fig. 4.2 Effect of temperature on percentage pollen germination of 
susceptible (To,, c mean-LSD), moderately tolerant (Top, = mean+LSD) and 
tolerant (To,, r rnean+LSD) genotypes. Symbols are observed values and 
lines are fitted values. 
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Table 4.3 Model parameters from Newton-Gauss Maximum Likelihood 
program in GENSTAT 5 describing pollen germination response to 
temperatures between 10 "C and 47.5 O C .  

Genotype a + s.e b l  k s.e. b2t T,,,is.e. R* (n) 

ICG 1236 52 412 04 -1 42tO 251 -4 02 34 4+0 51 95 7 (9) 

ICGV 8601 5 77 4 i 2  89 +O 3350 31 5 -5 01 29 4iO 58 95 5 (9) 

ICGV 921 09 45 9+2 88 -0 5110 325 -3 63 29 6-0 79 91 5 (8) 

ICGV 921 13  42 4 i l  72 +O 7110 123 -2 82 25 5iO 63 89 2 (8) 

ICGV 92116 37 4+2 89 -0 09iO 355 -3 02 26 5+0 97 87 5 (7) 

CGV 92118 601+445 -07110715 -423 3 0 6 i 1 0 7  8 5 1 ( 8 )  

ICGV 92120 44 3 i2  53 -0 03-0 328 -2 95 28 2+0 98 89 3 (9) 

ICGV 92121 65 5-4 74 -0 42+0 595 -4 41 31 1-1 03 85 6 (9) 

ICGV 93232 69 6-3 05 -1 15t0 494 -5 09 32 Or0 64 94 3 (8) 

ICGV 93233 78 4+3 75 +O 24+0 393 -4 83 30 9iO 76 93 4(10) 

ICGV 93255 54 7+1 74 +O 48iO 188 -3 77 28 0+0 45 97 1 (9) 

ICGV 93260 

ICGV 93261 

ICGV 93269 

ICGV 93277 

47-16 

55-437 

ICGS 11 

K3 

TMV 2 

TS 32-1 

26 1+0 75 

31 5 t0  79 

28 4tO 69 

28 8+0 95 

28 9i-1 52 

31 9x0 50 

35 O i O  51 

26 3+0 42 

34 8+0 43 

34 4iO 62 

t b l  and b2 have same s.e. values. 
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Table 4.4 Maximum germination, and three cardinal temperatures (from bi- 
linear fit) for in vitro pollen germination of groundnut. 

--- 
Maximum 

Genotype germination T,,, To,, T,,, 
("0) - 

ICG 1236 52 0 143  344 4 4 1  

ICGV 86015 72.7 14.9 29.4 45.9 

ICGV 92109 51.3 14.9 29.6 40.7 

ICGV 921 13 46.7 13.4 25.5 43.7 

ICGV 921 16 40.0 13.8 26.5 38.6 

ICGV 921 18 51.3 11.7 30.6 40.7 

ICGV 921 20 42.0 11.9 28.2 41.9 

ICGV 92121 55.0 11.8 31.1 41.9 

ICGV 93232 65.3 13.7 32.0 42.7 

ICGV 93233 76 3 14.2 30.9 46.3 

ICGV 93255 55.3 15.2 28.0 44.7 

ICGV 93260 

ICGV 93261 

ICGV 93269 

ICGV 93277 

47-16 

55-437 

lCGSl I 

Kadiri-3 

TMV2 

62 3- TS32-1 166  344  -422 
Mean 56 0 1 4 1  3 0 1  430  

SED(p<O 001) 123 025  037  012  
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4.3.3 Pollen tube growth 

The response of pollen tube growth to temperature was similar to that of pollen 

Maximum pollen tube length was reached after 225 min. Observed 

and fitted values for pollen tube length are depicted in Fig. 4.3. The model 

parameters for the genotypes with their fits shown by R* are presented in Table 

4.5. Pollen tube length in the twenty-one genotypes studied varied from 450 to 

1450 pm (Table 4.6). Most genotypes recorded pollen tube length between 850- 

1050 pm. Genotype ICGV 93261 recorded the least pollen tube length of 450 

rim, while 55-437 and ICGV 93232 recorded pollen tube lengths of 1410 and 

1450 pm, respectively 

Genotypes showed significant differences in their T,,,, Top, and T,,, 

temperatures obta~ned from modified billnear equations (Table 4.6). Minimum 

temperature for pollen tube growth was similar to that for germination, and 

averaged to 14.6 ~3 .5 "C .  Genotype ICGV 92120 and ICGV 93269 recorded 

lowest T, ,, 11 .go and 12.4OC, respectively for pollen tube growth Genotypes 

ICG 1236 (16.8%) and TS 32-1 (18.0°C) had highest values of T,,,. Average 

optimum temperature for pollen tube elongat~on, 34.6"C, was higher by 4°C than 

that required for pollen germination. The Top, for genotypes ranged from 30.5" to 

37.6"C. Genotypes ICGV 92116 and ICGV 93261 recorded lowest To,, of 30.5% 

and genotypes 55-437 and ICGV 93255 recorded highest Top,, 37.6' and 39.4% 

respectively. 
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Maximum or lethal temperature beyond which no pollen tube growth was 

~bserved averaged to 43.4"C, similar to that for pollen germination. Maximum 

temperatures (T,) ranged from 37.5' to 46.5%. Genotype ICGS 1 1  and ICGV 

93277 had highest values of T,, 46.2" and 46.5~2, respectively. 

NO significant correlation could be observed for T,,, versus T,, or T,,. However 

a relatively high correlation of 0.40 was recorded between T,, and T,,,. 

Susceptible . ICGV 921 16 
Moderate 4 ICGV 8601 5 

7~oiernnt m55-437 

a n 
2 6 
C \ 

0 ' I - - / b aD 4 / = 
im 

2 
I .  

rn I 
,/. 

o -- - - i 
10 15 20 25 30 35 40 45 50 

Temperature ("C) 
Fig. 4.3 Effect of temperature on pollen tube length of susceptible (Torn < 
mean-LSD), moderately tolerant (TOpt = mean?rLSD) and tolerant (Topt > 
mean+LSD) genotypes. Symbols are observed values and lines fitted 
values. 
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Table 4.5 Model parameters from Newton-Gauss Maximum Likelihood 
program in GENSTAT 5, describing pollen tube growth response to 
temperature between 10 O and 47.5 "C. 

Genotype a +  s.e. bl  * s.e. b2t TQPt(ts.e.) R' (n) 

ICG 1236 12 6120 972 -0 81t0 151 -0 88 36421 06 8 7 6  (9) 

ICGV 8601 5 10 76iO 780 -0 39.0 098 -0 39 35 011 01 86 2 (10) 

ICGV 92109 12 84+0 543 -0 36r0 101 -0 36 34 010 53 95 2 (7) 

ICGV 92113 I2 42+0 704 -0 28t0 088 -0 84 34 420 86 89 2 (10) 

iCGV 921 16 10 92+0 735 -0 4210 164 -1 13 30 5:O 80 89 1 (6) 

ICGV 921 18 11 88+0 626 -0 64iO 148 -1 20 33 5 ~ 0  63 93 5 (7) 

ICGV 92120 10 28+0 291 -0 52iO 739 0 95 35 110 39 97 3 (9) 

ICGV 92121 12 05+0 339 -0 4010 056 -0 40 34 1+0 38 97 4 (9) 

ICGV 93232 13 95+1 200 -0 34+0 293 -1 05 35 8+1 21 84 6 (8) 

CGV 93233 11 48+0 792 -0 64+0 200 -1 13 36 8 i0  72 86 3 (9) 

ICGV 93255 8 38+0 312 -0 5710 076 -1 93 39 1+0 32 92 7 (9) 

CGV 93260 11 95i0 889 -0 30i0 216 -0 86 34 9r0 82 72 3 (8) 

ICGV 93261 5 8910 918 +O 0110 115 0 01 30 5+2 07 60 2 (7) 

ICGV 93269 10 11+0 525 -0 2 2 ~ 0  064 -0 75 31 7+0 69 91 8 (8) 

lCGV 93277 9 84+0 41 1 -0 18kO 068 -0 66 34 3-0 66 92 1 (9) 

47-16 102310416 -03110067 -082 341-053 937(8)  

TMV 2 10 48x0 588 -0 2310 073 -0 71 34 010 81 92 2 (10) 

t b l  and b2 have same s.e. values 



Table 4.6 Maximum pollen tube length and the three cardinal temperatures 
( 0 ~ )  (from bi-linear fit) for in vitro pollen tube growth of groundnut. 

Maximum pollen Card~nal temperatures 
Genotype 

tube length (Pm) Tmln Top, Tmax 
. . -- -- 

ICG 1236 1280 16.0 36.4 45.5 

ICGV 86015 980 14.9 35.0 45.3 

ICGV92109 1190 17.5 34.0 42.6 

ICGV92113 1040 13.9 34.4 45.5 

ICGV 921 16 1080 15.3 30.5 37.7 

ICGV 921 18 1120 12.2 33.5 39 9 

ICGV 921 20 940 11.9 35.1 42.8 

ICGV 92121 

ICGV 93232 

lCGV 93233 

ICGV 93255 

ICGV 93260 

ICGV 93261 

ICGV 93269 

ICGV 93277 

47-16 

55-437 

ICGS11 

Kadiri-3 

TMV2 

TS32-1 -- ~- - 

Mean 

SED(p<0.001) 
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4.3.4 Pollen germination and pollen tube growth 

There was a good relationship between values of T,,, (R2=0.35) and T,, 

(R2=0.75) for pollen germination and for pollen tube growth. The relations 

indicate that genotypic values of T,,, and T,, largely reflect the similar overall 

adaptation of plant processes for extreme temperatures, particularly lethal 

temperatures. The lack of correlation (R2=0.003) between values of optimum 

temperatures (Fig. 4.4b) for pollen germination and tube growth indicates that 

there is independent genotypic variation in the response of germination and tube 

10 12 14 16 18 20 

T,,, ("C) - Pollen tube 
25 3 3 3 6 4 0  

TOpt (OC) - Pollen tube 

- 
A ,! % 

?5 40 45 50 

T,, ("C) - Pollen tube 

Fig. 4.4 Correlation between (a) T,,,, (b) Topi and (c) T,., temperatures for 
Pollen germination and pollen tube growth for the 21 groundnut genotypes. 
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length to temperature and that at high value of T,, for germination does not 

necessarily mean that tube length will also have high optimum temperature. 

4.3.5 Rate of pollen tube growth 

There was a Strong linear relationship between the rate of pollen tube growth 

(expressed as reciprocal of time to 50% maximum length) and temperature in the 

sub-optimal temperature range (i.e. between T,,, and T,,,), for pollen germination 

(Fig. 4.5). At higher temperatures, where the percent pollen germination was 

much lower, rates of pollen tube growth were very variable. 

am 

ace 

a01 4 / 
0 

0 1 0 2 D 3 3 4 ) 5 ) 0  10 23 3 40 50 

Temperature ("C) 

Fig. 4.5 Reciprocal of time to reach 50% of final pollen tube length versus 
temperature for genotypes (a) TMV 2 (y = -0.033+0.0021x; R' = 0.84) and (b) 
Kadiri 3 (y = -0.0317+0.0019x; R'= 0.86). 

The rate of tube growth ranged from 4.5 to 31.4 p min-', with an average of value 

of 12.7 p min-' (Table 4.7). Genotypes ICG 1236, 55-437 and TMV 2 all had 

significantly faster rates at optimum temperature by a factor >2 than most other 



genotypes. Genotypes ICGV's 921 16, 92118, 93260 and 93261 had pollen tube 

growth rates of <7 11 min.'. 

Table 4.7 Rate of pollen tube growth at the optimum temperature from 
linear fit for pollen tube growth for 21 groundnut genotypes. 

Genotype 

ICG 1236 

ICGV 86015 

ICGV 92109 

ICGV 921 13 

ICGV 921 16 

ICGV 92118 

ICGV 92120 

ICGV 921 21 

ICGV 93232 

ICGV 93233 

ICGV 93255 

ICGV 93260 

ICGV 93261 

ICGV 93269 

ICGV 93277 

47-16 

55-437 

lCGSl I 

Kadm 3 

TMV2 

TS 32-1 

Mean 

Rate of tube 
growth (p min") 

26.3 

18.6 

9.0 

7.8 

6.7 

6 9 

9.1 

11.9 

7.0 

10.8 

17.9 

6.3 

4.5 

7.0 

8.0 

10.1 

28.9 

11.0 

15.9 

31.4 

12.4 

12.7 
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4.3.6 Principal component analysis 

A PCA analysis was carried out with the pollen germination and pollen tube 

length parameters, and RI, to characterise genotypic tolerance in response to 

h~gh temperature. The parameters used included the values of T,,,, To,, and T,,, 

for pollen germination (GERM) and pollen tube length (PTL), RI and I/tIn PTL. 

To describe the response to high temperature, pollen germination (RGER) and 

tube length (RPTL) at 40°C were expressed relative to values at the optimum 

temperature. 

The first three PCA scores accounted for 41, 24 and 12% of the variation, 

respectively (Table 4.8). The first PCA score discriminated genotypes with poor 

germination and rate of pollen tube growth, indicated by a large relative reduction 

In germinat~on (RGER) and pollen tube length (RPTL) at 40°C. The first PCA 

score also accounted for genotypes with higher values of T,,,GERM and 

T,,,PTL Therefore, genotypes with a positive score were susceptible to high 

temperature and those with a negative score tolerant. 

The second PCA discr~minated genotypes with high values for Tm,n for 

germination, high values for T,,, for pollen tube length and high values for RI. 

Genotypes with positive score for second PCA were susceptible to high 

temperature and those with a negative score tolerant. The third PCA 

discriminated the genotypes with low values of To,, for pollen tube length. The 

first and second PCA scores, along with the latent vectors, are plotted in Flg. 4.6. 

Latent vectors are the coefficients for principal components and are standardised 
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ICGS 11 

ICGV 93261 
Kadfrl 3 

ICGV 92109 

ICG 1236 ' 47% 
a ICGV 9 m 8  

Tmt  PTL , \ I T n  
55437 ICGV 86015 l'l"PT 

ICGV- TmaxGE o tGC0 

4w2 lrcw79$ ICGV 93232 

PTL 
Iln GER 

D!::L ICG 93269 Y 

ICGV 932601 
IC V92120 0 

-4 

-4 -3 -2 -1 0 1 2 3 4 
First PCA score (40.6%) 

Fig. 4.6 First and second Principal Component Analysis (PCA) scores for 
the identification of genotype response to high temperature. The latent 
vectors are indicated by red lines showing the direction (angle) and 
magnitude (length). (RGER-reduction in pollen germination at 40 "C 
compared to values at optimum temperature; RPTL- reduction in pollen 
tube length at 40 OC compared to values at optimum temperature; T,in, Topt 
and T,, are cardinal temperatures for pollen germination (GER) and pollen 
tube length (PTL); Iltl,2PTL - reciprocal of time to establish 50% of pollen 
tube length). 



so that the sum of the squares of the coefficients is unity for each one of them. 

Genotypes on the far left are classed as tolerant to high temperature and those 

on the far right are susceptible to high temperature. Genotypes ICG 1236, 55- 

437, TMV 2, ICGV 86015 and 93233 were all tolerant and exhibited similar 

temperature response characteristics. ICGS 11 also had similar characteristics to 

the previous group, but had low RI as well. The most susceptible genotypes were 

Kadiri 3 and ICGV 921 16. 

Table 4.8 Principal component analysis vectors of Axes 1, 2 and 3, and the 
variation accounted for by each axis. See text for description of  
parameters. 
- -- - - - -- - 

Pr~nc~pal component vectors 
Parameter 
-- - AXIS 2 A= A x e  
RGER 0 44 -0 01 -0 05 

RPTL 0 39 0 31 0 25 

Tm nGERM -0 13 0 54 -0 21 

TmlnPTL -0 27 -0 28 -0 02 

ToptGERM -0.43 -0.15 -0.06 

ToptPTL -0.07 0.34 -0.71 

TmaxGERM -0.28 0.29 0.42 

TmaxPTL -0.44 -0 21 -0.08 

RI -0.26 0.42 -0.03 

l I t i 1 2  PTL -0.22 0.29 0.45 
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4.4 DISCUSSION 

AII biological processes respond to temperature and this response can often be 

described in terms of the rate (in the sub-optimal and supra-optimal range) and 

the cardinal temperatures: base or mlnimum (T,,,), optimum (To,,) and maximum 

(Tmax) temperature. The current study shows very clearly that the processes of 

pollen germination and pollen tube growth can also be described in these terms. 

The response to temperature of pollen germinailon and tube growth, and the 

estimated values for T,,,, Top, and T,,, were similar to values reported for seed 

germination and other developmental and growth processes in groundnut 

(Mohamed, 1984. Ong. 1986). Values of T,,,. Top, and T,,, for pollen germination 

ranged from 12-16', 26-35" and 37-46°C compared with values of 8-72", 29-37" 

and 41-47°C for seed germination (Mohamed, 1984). Pollen tube length had 

slightly higher values of T,,, (12-18"C), but similar values for Top, and T,,,. This 

'un~versal' response to temperature, particularly at the upper and lower extremes 

of the range is to be expected given the biochemical basis of rate response to 

temperature (Johnson and Thornley, 1985) 

Pollen germination and pollen tube growth occur very rapidly in groundnut. The 

maximum percentage pollen germination occurred within 25 to 30 mln and pollen 

tubes attained 75 to 80% of their maximum length within 45 min. The rate of 

Pollen tube elongation ranged from 5 to 30 p min.' and the maximum pollen tube 

lengths (at To,,) from 450 to 1450 p. Rapid germination and tube growth is an 

adaptive response to the unique flowering habit of groundnuts. In groundnut, the 
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flower buds develop very rapidly dur~ng the night and open soon after dawn; and 

by midday, flowers wither (Pattee and Mohapatra, 1986). The open flower is 

borne on a unique structure called hypanthium, which may vary In length from 

2 5 to 7.5 cm (Lu, 1990). The ovary is situated at the base of hypanthium. Rapid 

germmation and pollen tube growth is therefore essential if pollen tubes are to 

reach the ovary and fertilisation to occur before flowers wither and when 

environmental conditions are most favourable to the plant at the start of the day. 

Values of To,, for germination and tube growth were between 26O-35"C and 30"- 

36"C, respectively and temperatures warmer than these significantly reduced the 

number of pollen grains germinating and the length of the resultant pollen tubes. 

Pollen germination was particularly sensitive to warm temperatures of 35°C or 

more, with lethal temperatures as low as 37°C in Kadiri 3. Fruit-set in groundnut, 

is also susceptible to high temperature and the floral temperature above which 

temperature reduces fruit-set is about 34°C in ICGV 86015 (Vara Prasad et a/., 

1999a, 2000a). This is wholly consistent with the observed effects of temperature 

on pollen germination and tube length for ICGV 86015, where Topt for 

germination and tube growth were 29.4" and 35.0°C, respectively. 

Groundnut genotypes also differed in leaf membrane thermostability or RI 

(described as 100-RI, such that higher values of RI describe greater tolerance). 

Membrane thermostability has been used by Ketring (1985) and Chauhan and 

Senboku (1997) to identify temperature tolerance in groundnut. Based on RI 



values, the most heat tolerant genotypes in the current study were ICG 1236 and 

55437, that had RI values '45% and double that of the overall mean RI of 22%. 

Similar values (47 and 50%) have been recorded for ICG 1236 by Srinivasan et 

a/. (1996) and Talwar et al. (1999). These two cvs are therefore considered heat 

tolerant. Cultivar 55-437 is a drought-tolerant cv, widely grown in the sub- 

Saharan Africa while other cvs, with high RI values such as TMV 2 (30%) and 

ICGS 11 (35%) are widely grown In drought prone reglons of Ind~a. Heat 

tolerance per se may therefore be an important component of overall tolerance to 

env~ronments prone to abiotic stress, as Greenberg et a1 (1992) suggested. 

Pollen germination is the process most closely associated with the stability of the 

pollen cell membrane, and there was a pos~tive relationship between RI and 

pollen germination (Fig 4.7). Pollen germinates only when the cell membrane is 

intact and disruption of the membrane due to stress results in the failure of 

germination (Shivanna and Sawhney, 1997). This injury to cell membrane would 

also reduce photosynthesis, respiration and other membrane associated 

mechanisms 

Evidence from other crops suggests that tolerant genotypes selected by this test 

Perform well and give stable yields in hot environments. For Instance, Saadalla ef 

a/. (1990) reported that heat tolerant genotypes of wheat, determined based on 

electrolyte leakage, outyielded sensitive ones by 19% under field conditions. Kuo 
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et a/. (1981) showed that vegetable species with low RI were more stable in 

different growing seasons. 

RI (%) - Log transformed 

Fig. 4.7 Relation between percentage relative injury values for membrane 
thermostability and o timum temperature for pollen germination (y = 
1.9231Lnlx) + 25215; Rb.32) .  

The difference in genotype tolerance can be accounted for the greater tolerance 

or adaptability of pollen to high temperature, due to presence of heat shock 

proteins or due to rapid synthesis of heat shock proteins on exposure to high 

temperature. In a study with groundnut cultivars (ICG 1236, ICGS 44 and Chico) 

Talwar and Yanagahira (1999) attributed the greater tolerance of ICG 1236 to the 

presence of proline, a cellular amino acid. Proline has been shown to induce 

tolerance in pollen of several crop plants including, cowpea (Mutters et a/., 

1989), and Petunia and Lilium longiflorum (Qi and Croes, 1983). In these crops, 

greater the amount of proline in pollen, greater is the tolerance to high 

temperature as up to 50% of the cytoplasmic proline is used for protein synthesis 

during pollen tube elongation (Qi and Croes, 1983). Along with proline, crop 



plants (e.g. sorghum, barley) are also known to synthesize HSPs on exposure to 

heat stress that are in the range of 16 - 25 kDa and 70 - 84 kDa (Howarth, 

1991). Hence, studies in groundnut are necessary to identify presence of these 

proteins and the associated genes for developing heat tolerant varieties. 

There was considerable genotypic variation in the cardinal temperatures for 

pollen germination and tube length, rate of pollen tube length and RI, which may 

contribute to variation in heat tolerance. The Principal Component Analysis 

(PCA) was used to characterise and group genotypes for their pollen responses 

to temperature and RI values. The first PCA identified tolerant and susceptible 

genotypes based largely on their relative ability of pollen to germinate and grow 

at supra-optimal temperatures. Genotypes 55-437, TMV 2, ICG 1236, ICGV 

86015 and ICGV 93233 were all classed as heat tolerant on this basis, and this 

classification accords with the wider adaptation of these genotypes (55-437 in 

Sudano-Sahel~an region and TMV 2 in SAT of India). In contrast, Kadiri 3, ICGV's 

92116, 92118 and 93269 were all susceptible to heat. In 92-series of ICRISAT, 

ICGV lines are all tolerant drought-breeding lines that mostly have little tolerance 

to temperature. 

Pollen germination and pollen tube growth of the genotypes under high 

temperatures can be used as a screening tool in selecting heat tolerant 

genotypes. This simple technique requires less input than screening entire 

Plants. Its advantage is that it can be used as a tool to select heat tolerant 

genotypes in the field at the most sensitive stage, i.e. flowering. Such screening 



techniques also help the breeder to select the heat tolerant parents for quickly 

advancing them into next generation. 

4.5 CONCLUSIONS 

Groundnut genotypes differ in their tolerance to temperature based on 

membrane thermostability, pollen germination and pollen tube growth. General 

tolerance to high temperature, identified by membrane thermostability in this 

study, was found to extend to specific reproductive processes like pollen 

germination in groundnut Of the genotypes tested, ICG 1236, 55-437 and TMV 2 

are consistently tolerant to high temperature for the processes studied and can 

be used for cultivation in areas with high temperatures during crop season or for 

breeding heat tolerant groundnut genotypes. 



CHAPTER 5 

ACCLIMATION TO HIGH TEMPERATURE IN GROUNDNUT 
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5.1 INTRODUCTION 

Heat stress studies conducted so far with groundnuts have shown that a sudden 

imposition of high temperature, during the sensitive reproductive phase, reduces 

fruit set and yield (Ketring, 1984; Wheeler et a/., 1997, Vara Prasad et a/., 1998; 

1999a). However, under natural conditions in the field temperature changes are 

more gradual (e.g. over a number of days). It is possible that acclimation to high 

temperature may occur during the day and over the period of temperature 

Increase. Hence, heat acclimation may enable plants to reduce the effects of 

heat injury. 

Heat acclimation, also known as acquired thermotolerance or heat hardening 

(Henle and Dethlefsen, 1978), is the ability of organisms to tolerate normally 

lethal high temperatures due to an initial exposure to high but not lethal 

temperature. Alternatively, it has been defined as the ability of plants to increase 

their tolerance to heat following exposure to acclimation temperatures (Li et a/. ,  

1991). Levitt (1980) suggested that thermal tolerance of different genotypes 

should be compared when plants are at the acclimated stage because the ability 

of genotypes to tolerate high temperature is significantly and differentially 

affected by their heat acclimation potential. 

Response to acclimation temperature prior to heat stress varies with the crop and 

genotype. It has been shown following the imposition of acclimat~on temperatures 

early in the growth cycle in wheat that yield was reduced less in a heat sensitive 

variety without any improvement in the heat tolerant cultivar (Stone and Nicolas, 
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1995) In common bean (Li et a/., 1991) acclimation temperature increases the 

tolerance, and causes less reduction in yield, of genotypes subsequently 

exposed to high temperature episodes at later stages of the growth cycle. It is 

therefore important to determine whether acclimation at different stages of 

development affects fruit set in groundnuts, and particularly whether processes 

affecting fruit-set (e.g. pollen production, germination, pollen tube growth) can 

acclimate. 

Heat injury during flower development in cowpea was associated with decreased 

prolrne accumulation in pollen and greater accumulation of proline in the anther 

wall (Mutters et a/., 1989). Studies indicate that a gradual increase in 

temperature permits not only a far greater protein synthesis at 50 "C but also that 

the proteins synthesised at this temperature include heat shock proteins - HSPs 

(Howarth, 1991). Pollock and Howarth (1990) also suggest from their studies that 

sub-lethal heat shock pre-treatment induced thermotolerance in sorghum. Such 

studies have not been conducted in groundnuts, and if such thermotolerance 

exists in groundnuts, it could be exploited in breeding genotypes for stress 

environments. 

The objectives of this study were: (1) to determine the effect of acclimation prior 

to high temperature episodes at pre-anthesis and post-anthesis stages of 

development on fruit-set in contrasting groundnut genotypes; and (2) to 

Investigate whether the acclimation during vegetative or floral bud development 

affects pollen germination at high temperature. 
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5.2 MATERIALS AND METHODS 

5.2.1 Cultivars 

TWO groundnut cultivars were used in this study, 55-437 (heat tolerant) and ICGV 

92116 (heat sensitive). The relative tolerance of these genotypes to high 

temperature based on membrane thermostability and pollen response to 

temperature was established in Chapter 4. Their responses to a short period of 

high temperature at flowering were also established in a screening experiment 

conducted at Plant Environment Laboratory, The University of Reading, Reading, 

UK in 1999 (Craufurd eta / . ,  unpublished). 

5.2.2 Plant Culture 

Seeds of groundnut were germinated in module trays with compost as growth 

medium at 28"/22OC (daylnight). Seedlings of similar physiological age were then 

transplanted to pots of 2 L volume (10 cm diameter x 15cm height). Pots were 

filled with a standard soilless mixture containing sand, gravel, vermiculite and 

loamless peat compost in proportions of 4:2:2:1 by volume, respectively. A 

commercial controlled release fertiliser (0.15 kg kg" N, 0.10 kg kg -' P, 0.12 kg 

kg-' K, 0.02 kg kg-' MgO plus trace elements, Osmocote Plus, (Scotts UK Ltd, 

UK) was incorporated into the mixture at the manufacture's recommended rate of 

5 9  L". 

Plants were grown in artificially lit (700 pmoles m-2 s") growth chambers at 

28"/22"~, with a 12h photo-and thermo-period. There were five replicate plants 

and these were moved around daily in the chamber to reduce locational effects. 
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plants were watered manually everyday to maintain the water content at field 

capacity. 

5.2.3 Temperature treatments 

Studies have shown that temperatures of around 35°C can be used as an 

acclimation temperature for groundnut genotypes (Srinivasan eta/., 1996; Talwar 

et a/., 1999). Any temperature above 35°C is known to cause reductions in pod 

number (Vara Prasad et al., 1999a) and hence a temperature of 40°C was 

selected to study the groundnut genotypic responses to high temperature. All 

temperature treatments imposed are depicted in Fig.1. In all the treatments, VPD 

was maintained close to 2 kPa throughout the experimental period. Plants 

exposed to high temperature were watered twice daily to ensure adequate soil 

moisture. 

5.2.3.1 Vegetative acclimation 

Plants were grown continuously at 28"122"C, except during the temperature 

treatment periods. Plants were exposed to an acclimating temperature of 

34"/22"C during the 6 d period (12 to 6 DBA) prior to initiation of 

microsporogenesis. Plants were then exposed to high temperature of 4O0122"C 

for a period of 6 d (6 to 0 DBA). During this treatment, only vegetative growth 

Was exposed to acclimation temperature and flower buds along with vegetative 

growth were exposed to high temperature. 
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Control 

Vegetative acclimation 
T2) 

Reproductive acclimation 
T5) 

T7) 

c 
(S = Sowing; V = Vegetative; A = Anthesis: R = Reproductive; H = Harvest) 
(0 =Control at 28/22 O C  (day/night); = Accl~matlon at 34/22 "C; = High temperature stress 
at 40122 OC) 

T1 -Overall control (Con) 
T2 -Acclimation of vegetative period (12 to 6 DBA) -Vegetative acclimation (VA) 
T3 - T2 + HT stress 6 to 0 DBA (VA+VHT) 
T4 -Control of HT stress in T3 (VHT) 
T5 - Acclimation of reproductive period (0 to 6 DM)  - Reproductive acclimation (RA) 
T6 - T5 + HT stress 7 to 12 D M  (RA+RHT) 
T7 - Control of HT stress in T6 (RHT) 

Fig. 5.1 Temperature treatments imposed at different stages of groundnut 
development. 



Acclimation study 

5.2.3.2 Reproductive acclimation 

Plants were grown continuously at 28°1220C, except during the temperature 

treatment periods. Reproductive acclimation was achieved by exposing plants to 

34"/22"C from 0 to 6 DAA. Plants were then exposed to high temperature of 

4O0/22"C for a period of 6 d. Both flower buds and flowers were therefore 

exposed to high temperature in this treatment. Flowers produced before or after 

high temperature treatment were manually removed early in the morning. 

Plants exposed to only high temperature treatment were moved directly from 

control to high temperature chambers on the night prior to their exposure to high 

temperature. S~milarly, all transfers were done after the day treatment was 

com~leted. 

5.2.4 Measurements 

Leaf and flower bud temperatures were measured on three plants of each 

genotype under control, acclimated and high temperature environments. Leaf 

temperatures were recorded by attaching a copper-constantan thermocouple to 

the abaxial surface of the leaf. Flower bud temperature was measured by 

inserting a micro copper-constantan thermocouple into the bud. Temperatures 

were logged at 10 s intervals and averaged for every 15 min using a Delta T 

logger. Temperature and radiation levels in the growth chamber were also logged 

with a similar device. 
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The temperature of the buds in both the genotypes were consistently and 

systematically lower than the air temperatures (Fig.5.2). Bud temperatures were 

lower than air temperature by 1°C under optimum (28"122"C) conditions, 1.3% 

under acclimation (34"/22"C) and 2.5% under high temperature (4O0/22"C) 

conditions. 

5.2.4. I Vegetative acclimation 

In the pre-microsporogenesis treatment, daily flower production was recorded 

from first flower appearance to until 6 DAA. Flowers were tagged daily, during the 

six day period of counting, with the date of flower emergence recorded on tags in 

all the treatments. Flowers arising at a node that was already tagged were 

removed to ensure that only one tagged flower remained at a node. 

5.2.4.2 Reproductive acclimation 

In the pre-anthesis treatment, flowers were counted during the 6 d per~od of the 

high temperature treatment. Flowers were tagged daily, during the six day period 

of counting, with the date of flower emergence recorded on tags in all the 

treatments. Flowers arising at an already tagged node were removed which 

ensured that only one flower was allowed at a node. All flowers borne after the 6 

d period of tagging were also removed. 
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0 4 8 12 16 20 24 
Time of day (h) 

Fig. 5.2 Diurnal cycle of air (red line) and floral bud temperature of ICGV 
92116 (blue line) and of 55-437 (pink line) over a 6 d period in growth 
cabinets under (a) 28122 OC (optimum temperature); (b) 34/22 "C 
(acclimation temperature) and (c) 40122 OC (high temperature). 
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5.2.5 Pollen viability 

During the 6 d period, when flowers were tagged both in vegetative and 

reproductive treatments, pollen was collected every day from flowers and 

assessed in vitro for pollen germination as described in Chapter 4, section 4.2.6. 

5.2.6 Harvest 

Plants were harvested 10 d after the high temperature treatment was withdrawn. 

This allowed time for peg formation in all the tagged flowers. Pegs formed from 

flowers at nodes that were tagged were recorded. Each plant was separated into 

leaf and stem, pegs, and roots. These were dried in oven at 80°C for 3-4 d and 

dry weights were recorded. 

5.2.7 Statistical analysis 

Shoot dry weight, root dry weight, flower number produced during the 6 d of 

tagging, pegs produced from these tagged flowers, and percent fruit-set were 

analysed by Two-way ANOVA in GENSTAT 5 (Genstat 5 Committee, 1997) 

using five replications (or f~ve plants). Fruit-set was calculated as ratio of the 

number of pegs produced after 10 days of tagging to total number of tagged 

flowers during 6 d period. Shoot and root dry weight were log transformed before 

analysis. Similarly, percent fruit-set was subjected to angular transformation to 

ensure homogene~ty of variances. 
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5.3 RESULTS 

5.3.1 Response to vegetative acclimation 

5.3.1.1 Shoot dry weight 

No significant interaction was observed between the temperature treatments and 

genotypes; only the main effects of temperature treatments and genotypes were 

significant. Shoot dry weight was reduced significantly when exposed to either 

VA, VHT or to VA+VHT treatments (Fig. 5.3), but with no significant difference 

among these three temperature treatments. 

Con VA VHT VA+VHT 

Temperature treatments 

Fig. 5.3 Effect of vegetative acclimation (VA-34/22 "C - 6 to 12 DBA), 
vegetative high temperature (VHT40122 O C  - 0 to 6 DBA) and VA+VHT 
compared to control (28122°C) on shoot and root dry weight. Data are mean 
of two genotypes. 
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Acclimation treatment (VA), VHT, VA+VHT treatments reduced shoot weight by 

37, 50 and 43%, respectively, compared to the control. Genotype ICGV 921 16 

had 42% more shoot dry weight than 55-437 (Fig. 5.4). 

55-437 ICGV 921 16 
Genotype 

Fig. 5.4 Genotypic differences in shoot dry weight, averaged over all the 
treatments, recorded at 10 d after end of tagging. Data are mean of 
temperature treatments. 

5.3.1.2 Root dry weight 

There was no difference between genotypes and the temperature x genotype 

interaction was not significant for root dry weight. However, temperature 

significantly (p<0.001) reduced root weight (Fig. 5.3). The effect of VHT or VA + 

HT did not differ significantly from VA, which reduced root weight by 32%. Root 

dry weight was around 20% of the total dry weight. 
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5.3.1.3 Flower number 

There were no significant effects of temperature or temperature x genotype 

interaction on flower production following the 6d period of high temperature 

(VHT). However, genotypes differed significantly for flower number, with 55-437 

producing 24% more flowers than ICGV 92116 (Fig. 5.5). 

55-437 lCGV 92116 

Genotypes 

Fig. 5.5 Genotypic differences for total flower number produced during the 
first 6 d after anthesis. Data are means of temperature treatments. 

5.3.1.4 Fruit-set 

There was a significant (p<0.001) interaction between temperature and 

genotypes on fruit set (Fig. 5.6). Both genotypes recorded about 70% fruit set at 

the control (28°1220C) temperature. Acclimation temperature during vegetative 
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period (VA) significantly increased fruit-set in both genotypes, though the 

increase was greater (22%) in 55-437 than in ICGV 921 16 (12%). 

The imposition of VHT treatment from 0 to 6 DBA significantly (p<0.001) reduced 

fruit-set in ICGV 92116 (by 22%), but not in 55-437. However, when VHT was 

preceded by VA, fruit-set in 55-437 was increased significantly (p<0.001) by 16% 

compared to control treatment. In contrast, in ICGV 92116 fruit-set was 

significantly reduced by 10% compared to control treatment. Thus, 55-437 

recorded 26% more fruit-set than ICGV 92116 when VA was followed by VHT. 

QI 55-437 
ICGV 921 16 

Con VA VHT VA+VHT 

Temperature treatments 

Fig. 5.6 Effect of vegetative acclimation (VA: 3422°C; 6 to 12 DBA), high 
temperature (VHT: 40122°C; 0 to 6 DBA) and VA+VHT compared to control 
on fruit-set (%angular transformed). Data are mean of genotypes studied. 
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5.3.2 Response to reproductive acclimation 

5.3.2.1 Shoot dry weight 

Temperature treatments, whether RA, RHT or RA+RHT did not significantly 

affect shoot dry weight. Neither the main effect of temperature nor the interaction 

between temperature and genotype were significant. However, genotypes 

differed significantly in their dry weights. ICGV 921 16 accumulated 25% more 

shoot dry weight when compared to 55-437 under similar conditions (Fig. 5.7) 

5 5 - 4 3 7  I C G V  9 2 1 1 6  

Genotype 
Fig. 5.7 Genotypic differences in shoot dry weight recorded at 10 d after 
end of tagging. Data are mean of temperature treatments. 

5.3.2.2 Root dry weight 

There was a significant (pc0.001) temperature x genotype interaction for root dry 

weight. Root dry weight was reduced by RA and RHT treatments in both 

genotypes, but the effect was much greater in ICGV 92116 than in 55-437. 

Genotype ICGV 921 16 had twice as much root dry weight as 55-437 in control, 

but RA, RHT and RA+RHT treatments reduced dry weight by 57, 32 and 63%, 
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respectively. In contrast, in 55-437 root dry weight was not significantly reduced 

by the RA or RHT treatments. 

Con RA RHT RA+RHT 
Temperature treatments 

Fig. 5.8 Root dry weight of groundnut genotypes, 55-437 and ICGV 92116, 
exposed to different temperature treatments during the post-anthesis 
period (0 to 12 D M ) .  

5.3.2.3 Flower number 

Genotypes ICGV 921 16 and 55-437 produced about 25 flowers per plant during 

the 6d period following anthesis. Temperature had a significant effect on flower 

production in ICGV 92116 and flower number was reduced to 12,16 and 8 in RA, 

RHT and RA+RHT treatments, respectively. In contrast, in 55-437, flower 

production was not significantly affected by temperature. 
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Con RA RHT RA+RHT 

Temperature treatments 

Fig. 5.9 Flower number produced in  groundnut genotypes, 55-437 and ICGV 
92116 during the 6 d period of tagging following exposure to different 
temperature treatments during the pre-anthesis period (0 to 12 DAA). 

5.3.2.4 Fruit-set 

There was a significant interaction (pc0.001) between temperature and genotype 

for fruit-set during the post-anthesis period. Acclimation treatment (RA), but not 

RHT or RA+RHT, caused a slight, but significant reduction in fruit set in 55-437 

(Fig. 5.10). In ICGV 92116, both RA and RHT treatments caused a significant 

reduction in fruit-set of about 16%. However, RA+RHT treatment resulted in a 

significant increase, not a decrease, in fruit-set. 
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Con RA RHT RA+RHT 

Temperature treatments 

Fig. 5.10 Effect of reproductive acclimation (RA: 34122OC; 0 to 6 DAA), high 
temperature (RHT: 40122OC; 6 to 12 DAA) and RA+RHT compared to control 
on fruit-set (%angular transformed). Data are mean of genotypes studied. 

5.3.3 Pollen viability 

Pollen viability is reported here in terms of percentage pollen germinated on 

exposure to a given temperature treatment. Pollen collected from plants exposed 

to different temperature treatments during vegetative (VA, VHT and VA+VHT) 

and reproductive (RA, RHT and RA+RHT) periods were used for testing pollen 

viability. The pollen collected from plants exposed to these various treatments 

and control was exposed to a series of temperature treatments from l o 0  - 45 "C, 

at 5°C interval and pollen germination was recorded (Fig. 5.1 1) 
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a ICGV 921 16 

7 10 ' "  Temperature (OC) 

Fig. 5.11 Daily percentage pollen germination on in-vitro germinating 
medium of temperatures ranging from 10 to 45°C at 5OC interval in 
genotypes ICGV 92116 (a) and 55-437 (b) for a period of 7 d starting from 7 
DAA exposed to control temperature (28122°C). 
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The pattern of pollen germination over the 6 d period at temperatures of 10" to 

45°C was similar in both genotypes (Fig. 5.1 1). However, the pollen germination 

in the heat susceptible ICGV 921 16 was lower than in heat tolerant 55-437 

throughout the study, even under control conditions (Fig. 5.12). In both 

genotypes optimum temperature for pollen germination was between 25" and 

30°C. Less than 10% of pollen germinated at 10 or 15°C. At high temperature, 

>35"C, significantly more pollen germinated in 55-437 than in ICGV 92116 (Fig. 

5.12d and h; Table 5.1). In both genotypes, the percentage of pollen germinated 

declined over the 6 d period of observation. Pollen collected from ICGV 92116 

plants exposed to high temperature, during post-anthesis stage, irrespective of 

the previous treatment, had a high proportion of the pollen grains that were 

deformed, shrunk or denatured (Plate 5.1). This would have resulted in low 

pollen germination in this genotype. 

The acclimation treatments VA and RA (Fig. 5.11 b and f), and high temperature 

VHT and RHT (F ig .5 .11~ and g) treatments, significantly reduced pollen 

germination in ICGV 921 16. In contrast, 55-437 was clearly much more tolerant 

for acclimating and high temperatures (Table 5.1). High temperature during pre- 

anthesis stage reduced pollen germination in both the genotypes, but more in 

ICGV 92116. On the other hand, high temperature during post-anthesis stage 

had a moderate effect on 55-437 but severely reduced the pollen germination in 

ICGV 921 16. 
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a Vegetative (1-6 D M )  
8) 

e Reproductive (7-12 D M )  

81 * * * * $ 6 0  
Con (26122°C) ~ 

* * * 
41 A 4 A A A 4 4 0 '  A A A 

* 

20 
Con (26122°C) 

0  
0 1 2 3 4 5 6  

Days after 

-- I 
on leaves -12 to 4 DBA 

anthesis (d) 

80 
f 

RA (34/2Z°C) on buds 0 to 6 D M  

7 6 5 4 3 2 1 7 6 5 4 3 2 1  

a 80 

V H T  140!2? C i  on buds 9 to i DBA R H T  40, '72 C I  on buds f!owers ibl7 UAA 
m 

20 

0 - h 0 -- 

7 6 5 4 3 2 1  0 1 2 3 4 5 6  
Number of days of temperature treatment 

Fig. 5.12 Daily in vitro percentage pollen germination at 30% in genotypes ICGV 
92116 - heat susceptible ( A )  and 55437 -heat tolerant (+)  during the period 0 - 6 
DAA (a, b, c and d) and in the period 7-12 DAA (e, f, g and h) exposed to different 
temperature treatments. (X-axis key: Black - number of days after anthesis; Blue 
- number of days of 34122°C; Red - number of days of 40122°C). 



w~ti? pollet? tube 

Plate 5.1 Pollen collected fmnl flowers of groundnut genotypes (a) li=6"/ 
92116 and (b) 55-43"?, exposed to a temperature of 40122OC during the 
reproductive period. 
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Table 5.1 Percentage pollen germination in genotypes ICGV 92116 and 55- 
437 during the 6 d period during 0-6 DAA and 7-12 DAA exposed to 
different temperature treatments. 

Pollen germination (%) 
Temperature 
treatment ICGV 921 16 55-437 

---------------0-6 D M  -----..--------- 

Con 0-6 (28122°C) 41 2 64 6 

VA (34122°C) 15 6 34 8 

VHT (40122°C) 18 9 38 6 

VA+VHT 1 7  29 5 

SED 0 42 
--------------- 7-12 DAA ---------------- 

Con 7-12 (28122°C) 29 3 45 7 

RA (34122°C) 6 3 47 2 

RHT (40122°C) 5 7 29 3 

RA+RHT 2 9 37 4 

-. 
0 47 

Vegetative exposure of ICGV 921 16 plants to acclimating temperature (Fig. 5.12 

b and d) appears to have induced some tolerance in pollen germmation when 

compared to similar treatments during the reproductive stage. This acclimation 

was visible for the pollen that was exposed for 5 or 6 d to pre-anthesis 

acclimation temperature. 
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5.4 DISCUSSION 

In this study, acclimation (34°C) and high (40°C) temperatures were imposed at 

pre- and post-anthesis, and had contrasting effects on root and shoot growth, 

flower production, fruit-set and pollen germination. There were also significant 

differences between genotypes, particularly for the post-anthesis treatments, and 

so the discussion will initially focus on ICGV 921 16. 

Vegetative acclimation (VA) and high temperature (VHT) reduced growth of root 

and shoot, of both genotypes. In contrast, RA and RHT treatments had no effect 

on shoot growth, but did significantly reduce root growth. This reduction in root, 

but not shoot growth may be explained based on the 'functional equilibrium' 

theory of Brouwer (1983). The theory states that plants shift their allocations 

towards shoot if carbon gain of the shoot is impaired by a low level of above 

ground resource, such as light or COz. In this study above ground temperature IS 

a limiting factor. More shoot assimilates are required to account for increased 

respiration and transpiration (to maintam leaf temperature) of the shoot 

(Bjorkman et a/., 1980) and hence assimilate supply to the root is limited. Shoot 

weights were 30-50% higher in the post-anthesis than pre-anthesis treatment, 

which is indicative of a larger shoot leaf area and heat load. 

In addition to 'functional equilibrium', groundnut membrane thermostability is 

more sensitive during the vegetative than during the reproductive stages to high 

temperature (Srinivasan et a/., 1996). This disrupts the membrane system, e.g. 

thylakoid membranes, of the photosynthetic apparatus (Raison eta/ . ,  1980), thus 
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limiting the available assimilates for plant growth. Hence, a greater reduction in 

assimilate production occurs during the vegetative phase than during the 

reproductive phase, which expla~ns the decrease of both root and shoot in 

vegetative phase and of only root growth during the reproductive phase. 

Other reasons for the reduct~on in root weight may be related to ontogenetic 

effects on root growth or sensitivity to high temperature. Root growth in 

groundnut declines during the reproductive period, and this decline occurs 

sooner at higher temperature because of the greater thermal time accumulated 

(Wheeler et a / ,  1997). Therefore high temperature during the reproductive 

period, when roots are growing less actively than during vegetative period, may 

hasten th~s  ontogenetic decline. 

Acclimating and high temperatures had no effect on flower production, and 

positive effects (VA) or negative effects (VHT) on fruit-set in both the genotypes. 

However, RA, and particularly RHT treatments, significantly reduced flower 

production and fruit-set in ICGV 921 16 These responses can be explained by 

the known responses of groundnut flower production, fruit-set to temperature, 

and corroborated by observed effects on pollen germination. 

Flower production in groundnuts is sensitive to high temperature during the post- 

anthesis phase and flower number is reduced by approximately 2 flowers per 

plant " ~ d . '  above 30°C (Vara Prasad et a/ . ,  1998). The reduction in flower 

number at 40°C to about 15 flowers per plant is similar to that observed for ICGV 
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86015 (Vara Prasad et al., 1998) at this temperature. High temperature during 

the pre-anthesis phase does not directly increase flower production in the post- 

anthesis phase, unless vegetative growth and hence node production is 

accelerated. 

Fruit set is also highly sensitive to temperature above the threshold value of 34°C 

and no fruit is set at about 42°C in ICGV 86015 (Vara Prasad eta / . ,  2000a). In 

this study, acclimation temperature was 34°C and high temperature 40°C. So 

acclimation should have had little or no affect on fruit-set. High temperature 

treatment, on the other hand, should have significantly reduced fruit-set. These 

responses are due both to effects during floral bud development (i.e, at 

microsporogenesis) and during pollinat~on (Vara Prasad et a/., 1999b). 

Acclimating temperatures during the pre-anthesis phase occurred before 

microsporogenesis, and hence had no effect on fruit set. However, high 

temperature during the pre-anthesis phase (0-6 DBA) and acclimating and high 

temperatures during the post-anthesis phase, all reduced fruit set in ICGV 921 16. 

This suggests that the critical temperature for ICGV 921 16 is <34"C, while the 

critical temperature for 55-437 is close to 40°C. 

The observed effects of high temperature on pollen germination explain the 

observed effects on fruit set in the genotypes. The decline in pollen germination 

with increase in plant age was attributed to decreased pollen number and 

differences in genotype percentage pollen germination was attributed to the 

relative concentrations of the amino acid proline in anthers by Talwar and 
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Yanagahira (1999) in groundnut genotypes. Studies in major crop plants have 

established the role of proline in pollen germination and tube growth under 

ambient and high temperature conditions (cowpea - Mutters etal., 1989; tomato 

- Kuo etal., 1981; lily - Qi and Croes, 1983; maize - Palfi etal., 1981). 

Vegetative acclimation, which was imposed before microsporogenesis, reduced 

pollen germ~nation or fruit-set. This decrease in pollen germination can be 

attributed to decrease in proline transfer from leaves to anthers and pollen as 

was observed in tomatoes (Kuo etal., 1981). Vegetative high temperature, which 

was imposed during microsporogenesis reduced germination dramatically in the 

sensitive genotype ICGV 921 16, confirming the acute sensitivity of pollen mother 

cell development to high temperature (Gross and Kigel, 1994). Similarly, RA and 

RHT also had significant effects on pollen germination, and hence fruit-set. The 

effect of RHT was not much different from VHT, which suggested that most 

effects on pollen germination were associated with microsporogenesis damage 

rather than anther dehiscence or impaired pollen germination due to stylar 

damage. 

One interesting observation that requires further investigation is the response of 

pollen germination to acclimating temperature over the 6d period. Both 

acclimating treatments (VA and RA) alone or in combination with high 

temperature (VHT and RHT) show some recovery of germination between 1-2 

and 7-8 DAA, compared with other days (3-6 d and 9-12 d), suggesting that 
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flower buds may have accl~mated. Similar observations were recently made by 

Nakano eta / .  (2000) in common bean. 

Temperature level, duration of exposure and genotypic sensitivity determine the 

extent of heat injury (Li et al., 1991). In the current study, temperature level and 

duration of exposure were same, so any genotypic differences are an indication 

of genotypic differences in sensitivity. As suggested by Levitt (1980), plants were 

exposed to acclimating temperature before subjecting them to high temperature; 

thus, comparisons in this study reflect true tolerance of the genotypes. Tolerance 

to high temperature is developmentally dependent (Wardlaw et a/., 1980; 

Abernethy et a/., 1989); hence, both vegetative and reproductive stages were 

evaluated for their tolerance. 

In this study, prior exposure to acclimation temperature, either during vegetative 

or pre-anthesis period, d ~ d  not improve the performance of the genotypes when 

exposed subsequently to high temperature. The genotypes neither acquired any 

heat acclimation potential as described by Li et a/. (1991) in common bean nor 

did they behave in a similar way to groundnut genotypes observed by Talwar et 

a/. (1999). In groundnut genotypes, ICG 1236, ICGS 44 and ICG 476, Talwar et 

a/. (1999) showed that exposure to an acclimation temperature of 35"13OoC prior 

to heat stress at 50°C, increased the time required to cause 50% damage to the 

plasmamembrane. Therefore, it was concluded that exposure to acclimating 

temperature prior to heat stress improves membrane thermostability. The lack of 
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acclimation in this study indicates that membrane thermostability of genotypes 

ICGV 921 16 and 55-437 was not altered by the imposed treatments. 

Instead, the groundnut genotypes in this study behaved in a similar manner to 

wheat (Triticum aestivum L.) genotypes as observed by Stone and Nicolas 

(1995). Stone and Nicolas (1995) studied acclimation and heat tolerance in two 

wheat genotypes, Oxley and Erget. They concluded that base or genotypic 

differences in heat tolerance, determined in the absence of acclimating 

temperatures, was more important in determining the response to high 

temperature than acclimating heat potential. 

Genotype 55-437 was clearly far more tolerant to high temperature than ICGV 

92116. This genotype produced more flowers and set more fruits at high 

temperature -vegetative or reproductive -than ICGV 921 16. The reasons for its 

greater tolerance In terms of flower production are not obvious from this 

experiment as only three temperature treatments were used. It is likely that 55- 

437 has either a higher (warmer) cr~tical temperature for flower production (about 

30°C in ICGV 86015) andlor is less sensitive to high temperature (sensitivity of 

1.7 flowers plant-' O C ~ "  in ICGV 86015). These might be associated with overall 

greater tolerance to high temperature, as given by RI (Chapter 4). 

The cause of the greater fruit-set in 55-437 compared to ICGV 92116 is, 

however, very clear. Pollen of 55-437 is far more tolerant to high temperature 

than ICGV 92116. The acclimating temperature of 34°C had almost no effect on 
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pollen germination, showing that this was close to critical value of 34°C estimated 

for lCGV 86015. The reasons for greater tolerance of 55-437 over ICGV 92116 

might be due to presence of heat tolerant amino acids (e.g, proline) or synthesis 

of heat shock Proteins on exposure to high temperature, which have been 

discussed in detail in Cha~ter  4. 

5.5 CONCLUSIONS 

The results from this study indicate that groundnut genotypes differ in their 

tolerance to above optimum temperatures. Difference in the genotypes was 

mainly due to the difference in their base heat tolerance rather than to heat 

acclimated potential. The temperature tolerance of the genotypes varied with 

stage of development (vegetative or reproductive) and increases as the crop 

advances to reproductive phase in the tolerant genotypes. This base heat 

tolerance can also be observed in specific reproductive processes like pollen 

germination and pollen tube growth, which are vital for groundnut pod production. 

Thus, this base heat tolerance of groundnuts can be exploited for breeding 

genotypes to hot environments. 



CHAPTER 6 

EFFECTS OF TEMPERATURE AND WATER STRESS ON GROUNDNUT IN A 
SEMI-ARID TROPIC FIELD 



Field Experiment 

6.1 INTRODUCTION 

In the semi-arid environments of the world, which contribute to 90% of global 

groundnut production, high temperature and water stress often occur together 

(Nix, 1975; Kramer, 1980). The effects of drought under field situations are well 

established in groundnut (e.g. Williams et a/., 1986; Nageswara Rao etal., 1988; 

Chapman et al., 1993a). Reports of the effects of increased temperature, both air 

and soil, in groundnut fields are available in the l~terature (e.g. Williams et a/ . ,  

1975b; Sivakumar et a/., 1993). However, high temperature studies on groundnut 

growth and development are confined to controlled environment conditions (e.g. 

Wheeler et a/., 1997; Vara Prasad eta / . ,  1999a, 1999b, 2000). 

High temperature studies conducted on groundnut by Vara Prasad et a/.  (1998, 

1999a, 1999b, 2000) and in Chapter 3 under controlled environments used a 

high temperature treatment for a per~od of 12 h, with temperature changing as a 

square wave. Such uniform temperature fluctuations do not occur in natural 

environments. Temperatures under field conditions follow a more sinusoidal 

pattern, reaching peak during the afternoons (Fig. 6.1). To confirm the findings of 

studies of high temperature effects on groundnuts conducted in controlled 

environment, field studies in natural, hot environments are essential. Studies 

evaluating the effects of both drought and high temperature in groundnut have 

not been conducted so far under field conditions. Such studies under controlled 

environment did not result in any definite conclus~ons (Craufurd etal., 1999). 
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Fig. 6.1 Diurnal temperature cycle under natural (-) hot environment (28- 
March-1999) at ICRISAT, India, and controlled (-) high temperature 
treatment (40122 "C - daylnight with 12 h photo-thermoperiod). 

An attempt was made in this study to support the conclusions, from the controlled 

environment study (Chapter 3) for high temperature stress on groundnut yield, 

and its interaction with drought, under field conditions. The objectives of this 

study were: (1) to investigate the effects of water stress and high temperature on 

growth, development and yield of groundnut grown in the semi-arid tropics; (2) to 

test the possible interaction between water stress and high temperature 

observed under control environment, on yield and yield components under field 

conditions. 
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6.2 MATERIALS AND METHODS 

6.2.1 Location 

An experiment to study the interaction between high temperature and water 

stress was conducted in the Indian summer of 1999, with two sowing dates, on 

an alfisol at the International Crops Research Institute for Semi-Arid Tropics, 

Patancheru, Hyderabad, India. The ICRISAT is located in semi-arid tropics at an 

altitude of 545 m ASL, 17"32' N latitude, 78"16' E longitude. 

6.2.2 Weather 

A mini weather station (Plate 6. la)  was set up to record daily values of 

temperature and incident solar radiation. Air and soil temperatures were 

measured using copper-constantan thermocouples. Air temperatures were 

measured at canopy level, and so11 temperatures at 0.10 m depth (i.e in the 

podding zone) (Plate 6.lb). Solar radiation received above the crop canopy was 

measured in each treatment using line quantum sensors (LI-ISISB, LI-COR Ltd). 

Measurements were logged at 10 s intervals and averaged every 15min 

throughout the crop growth period. Daily weather was also collected from a 

meteorological observatory located within 500 m of experimental site. 

6.2.3 Soil 

The soil at the experimental site was a reddish brown alfisol, a member of 

isohyperthermic family of Udic Rhodustalf. Soil pH was 6.5. Maximum potential 

rooting depth of soil at the site was 1.2 m. Soil moisture was 20% vlv at field 
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capacity and 8% vlv at permanent w~lting point. These soils are well drained with 

moderate permeability. Soil characters are described in Table 6.1. 

Table 6.1 Physico-chemical properties of the experimental soil (Lithic 
Rhodustalf) at ICRISAT, Hyderabad, India. (analysed by Rallis India Ltd. 
Hyderabad). 

Particulars Value Method of Analysis 

-Mechanical Analysis-. 

Fine sand (%) 

Coarse Sand 

Silt 

Clay 

2 International Pipette 

13 method (Piper, 1960) 

pH (1:2 soil water suspension) Glass Electrode method 
7'8 (Richards, 1954) 

EC (dS m-' at 25°C) 
0,07 Solubridge (Richards, 

1954) 

Organic Matter (%) 

Available Nitrogen (%) 

0,72 walkiey and Black's 
modified method (1934) 
Alkaline permanganate 

0.02 method (Subbiah and 
Asija, 1956) 

Available Phosphorous (mg kg-') 60 
Olsen's extractant 
(Olsen ef a/., 1954) 
Neutral normal ' 

Available Potassium (mg kg") 74 Ammonium Acetate 
(Jackson, 1967) 
Neutral normal 

Exchangeable Calcium (mg kg") 1680 Ammonium Acetate 
(Richards, 1954) 

----------------- Soil Moisture characteristics----------------- 

Field capacity (% vlv) 20 

Permanent wilting point (% vlv) 8 Gravimetric method 
Available water (% vlv) 12 (Gardner, 1956) 

Total soil water (mm) 144 



Plate 6.1 Photographs showing (a) broad bed and furrow system with mini . 
weather station; (b) Line quantum sensor and tkernoccuples (TC) for 
measuring air (inside the cup) and soil temperature (0.d rn below soil 
surface). 
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6.2.4 Field preparation 

The field site was ploughed to a depth of 0.3 m with mould board and disc 

ploughs 15 d before sowlng. The ploughed f~eld was then laid into broad beds 

(1.2 m wide) and furrows (0.3 m wide), in an East-West direction (Plate 6.la). 

The beds were then leveled and compacted Four furrows at 0.3 m spacing and 

0.05 m deep were then opened on the bed surface along the length of the bed. 

The whole area was then divided into two halves, one for each sowing. Each 

sowing composed 10 beds of 60 m length. The main irrigation treatments had a 

bulk bed in between to restrict water seepage between treatments. 

6.2.5 Experimental layout details 

The treatment and design deta~ls are in Table 6.2 

6.2.6 Sowing 

Sowing was done on two dates, 21 January and 26 February 1999, to ensure 

that the crop was exposed to high temperature during the sensitive period of 

flowering. Seeds were treated with fungicide mixture, Thiram + Captan (3:1), 

prior to sowing. Seeds of cultivars TMV 2 and ICGS 11 were sown manually, 

0.5 m deep and 0.1 m apart in furrows made at 0.3 m spacing on broad beds. An 

iron chain with tags at 0.1 m spacing was used to ensure that each plot received 

the required number of plants. Soon after emergence, gaps were filled for 

ungerminated seeds. 
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Table 6.2 Details o f  layout and experimental treatments. 

Design : Split-split plot 

Sowing dates : Two S1 - 21 January 1999 
52 - 26 February 1999 

Treatments : Six 

Main : Irrigation IR - Fully irrigated 
(replacing 100% ETc) 

WS - Irrigating wlth 40% of ETc from 
flowering to harvest, otherwise fully 
irrigated 

Sub : Temperature T I  -Ambient temperature (sowingl) 
T2 - High temperature (sowing 1) 
T3 -Ambient temperature (sowing 2) 
T4 - High temperature (sowing 2) 

Sub-sub: Genotypes G I  - TMV 2 
G2-ICGS 11 

Replications : Three 

Plot size : 9 m long x 1.2 m wide broad bed and furrow 

Spacing : 0.3 rn between rows x 0.1 m between plants 

Harvest : Sowing 1 - 30 April, 1999 (100 DAS) 
Sowing 2 - 25 May, 1999 (87 DAS) 
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6.2.7 Cultivar description 

TMV 2: Released in 1940. Spanish botanical type, a selection from 'Gudhiatham 

Bunch', a local variety Widely adapted, well suited for rainy and summer season 

cultivation in southern India. A leading Spanish variety in the past that still 

continues to be popular with farmers. Moderately tolerant to water stress and 

high temperature. 

ICGS 111ICGV 87213: Released in 1986. Spanlsh botanical type, selection from 

natural hybrid population of Robut 33-1. Above average tolerance to end of 

season drought. It is also photoperiod insensitive. Adapted to post-rainy season 

cultivation in India, performs well in West Africa. 

6.2.8 Irrigation treatments 

Immediately after sowing, all plots were irrigated using an overhead sprinkler 

system. A second sprinkler irrigation was given after 7 d to help seedlings to 

emerge. A drip irrigation system was then installed to provide adequate irrigation 

to the growlng seedlings. The drip irrigation system is shown in Plate 6.3 a and b. 

Each main plot had a water meter, which was used to monitor the amount of 

water supplied to plots. Drip pipes were laid in between rows 1 and 2, and 

between rows 3 and 4 of each plot. Emitters were spaced at 0.6 m on drip pipes; 

each emitter had water spread over a diameter 0.30 - 0.35 m. The water spread 

overlapped along and across the rows without leaving any unirrigated patches. 

The drip emitters were calibrated so that each supplied 10 L hr" of water to crop 
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plants. This ensured that all plants in the plot were supplied with equal amount of 

water. Plots were irrigated at 3 d intervals. 

The irrigation treatments were imposed as described here. The fully irrigated 

plots were replaced with water equal to that lost through crop evapo-transpiration 

(ETc). Water stressed plots were irrigated with 40% of that given to fully irrigated 

plots, from anthesis to harvest. The amount of water supplied to irrigated plot (L) 

was calculated using: 

L = Plot area x ETc [6.11 

ETc = Evaporation x Kc [6.2] 

where, Kc is the crop coefficient with an average value of 0.8 for groundnut 

(Doorenbos and Pruitt, 1992) during the reproductive period (KC during flowering 

and podding is 0.9 and during maturity is 0.7; Reddy and Reddy, 1985) . The 

daily ETc values are presented in Fig. 6.2. The evaporation data was obtained 

from the weather station at ICRISAT, which is given as: 

Evaporation = Open-pan evaporation x KPan P.31 

Open-pan evaporation was obtained from an USDA Class A type pan and K,,, 

with a value of 0.7 is the pan coefficient. Water use efficiency was calculated as 

the ratio of above ground biomass (including pod weight) to the amount of water 

supplied. 

6.2.9 Temperature treatments 

Plants were exposed to high temperatures by covering them with plastic tunnels 

supported by an iron frame, referred to from now on as 'bubbles' (Plate 6.3 a and 
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Fig. 6.2 Daily values of ETc in irrigated treatments between sowing and 
harvest of the two sowings (T1/T2 and T3TT4). The symbol (P)  indicates the 
start of the drip irrigation treatment. 



Plate 6.2 Photographs showing (a) components of water measuring 
devices; (b) drip pipes in the plot with emitters. 
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b). Plants in the high temperature treatment were covered with bubbles, from 

flowering to 20 DAF; the most sensitive period for temperature stress (Vara 

Prasad et a/., 1999a). Temperature inside the bubble was controlled so as not to 

exceed 42-43 "C by opening and closing the flaps of the bubble. This also 

ensured that humidity did not built up too much in the bubble. The polythene 

sheet (400 11 thick) used allowed 80% transmittance of light for plants in bubble 

and the surface was cleaned regularly for any settled dust to maintain 

transmittance levels 

6.3 OBSERVATIONS 

6.3.1 Crop development 

The time of the key reproductive stages (RI ,  R2, R3 and R8 of Boote, 1982) 

were recorded in each plot. Observations were made daily on 10 plants per plot. 

The crop was considered to have reached a particular reproductive stage when 

50% or more of the plants were at that stage of development. 

6.3.2 Growth analysis 

Sampling of plants was done once in the vegetative stage, before flowering, and 

at weekly intervals after imposition of water and temperature stress treatments. 

An area of 0.6 m2 (0.5 x 1.2 m) from each plot was sampled at each harvest. A 

sub-sample of 5 plants was tagged at flowering in each of the harvest areas. 

Daily flower production was recorded on these plants from flower appearance for 

a period of 30 d. These plants were also used to determine leaf area and 

partitioning of dry matter to leaves, stems, and pods. Observations were also 

192 



Plate 6.3 Photographs showing (a) layout of bubbles in the field (h) inside 
of the high temperature x irrigation treatment bubble. 
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made on plant height, node and leaf number, peg and pod number on plants of 

the sub-sample. To determine dry weights, plant components of the sub-sample 

and the remaining part of the large sample was oven dried at 80 "C for 3-4 d and 

weighed. Total dry matter and pod yields were recorded at harvest maturity in all 

replications of the experiment using an area of 4 x 1.2 m. 

6.3.3 Crop protection 

Weeding was done manually, at 30 and 70 DAS to coincide with flowering and 

pod development, respectively. All experimental plots were relatively free from 

pest incidence. Slight incidence of thrips (Megalurofhrips usitatus and Scirfothrips 

auranti~) and spodoptera (Spodoptera litura) was noticed in the plots. Thrips were 

controlled by spraying Dimethoate a 2 0 0  mL a.i. ha-', Incidence of spodoptera 

was controlled by spraying Monocrotophos @ 300 mL a.i. ha.' at 40, 60 and 80 

DAS. A mlnor incidence of bud necrosis was also noticed in water stressed plots. 

6.4 STATISTICAL ANALYSIS 

All the data were analysed using an analys~s of variance procedure (ANOVA) for 

split-split plot design in GENSTAT 5 (Genstat 5 Committee, 1997). All 

percentage values were angular transformed before analysis to ensure 

homogeneity of variances. Pod dry weight was multiplied by 1.65 to account for 

energy spent to synthesise oil content in the seed (Duncan et al., 1968). 

Statistical significance was tested by applying F-test at < 0.05, c0.01 and <0.001 

level of probability, represented by *, '* and ***, respectively 
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6.5 RESULTS 

6.5.1 Weather (Temperature and Relative humidity) 

A range of temperatures was imposed during flowering by using two sowing 

dates combined with bubbles. As photoperiod did not vary much at the 

experimental site (mean 12 h + 45 min), and the genotypes used were insensitive 

to photoperiod, results are described in terms of differences in mean temperature 

between treatments, rather than by sowing dates. Daily maximum and minimum 

temperatures recorded during the crop period in all the four treatments are 

presented in Fig 6 3. Temperatures to which different development phases were 

exposed to in each of the temperature treatments are given in Table 6.3. 

A combination of sowing dates and bubbles gave mean temperatures from 

sowing to maturity of 26.3" (Tl) ,  27.3" (T2), 29.O0(T3) and 29.7"C (T4). The 

bubbles were capable of raising day temperature by >1O0C compared to ambient 

(Fig. 6.2). During the 20 d high temperature treatment at flowering mean 

temperatures were 33.8" (TI), 41.6" (T2), 38.7" (T3) and 43.5"C (T4) Increase in 

soil temperature was also observed with increase in air temperature (Table 6.3). 

Temperature of soil was highest in the T4 treatment where air temperature was 

highest. 

Average daily relative humidity (RH) in the ambient treatments T I  (sowing 1) and 

T3 (sowing 2) was 48.4% (SE k 0.95) and 44.3 (SE i 0.98), respectively 

(Fig.6.2). The calculated VPD values were 1.82 and 2.26 kPa in T1 and T3, 

respectively. It was not possible to record RH in the T2 bubble due to lack of 

195 
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instruments and therefore VPD could not be estimated in T2. The RH level in T4 

during the 20 d period of high temperature averaged to 57% (SE i 1.12), slightly 

above that of the ambient T3 treatment. Vapour pressure deficit was therefore 

slightly lower in T4, 2.06 kPa, than in T3 (2.26 kPa) 
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Fig. 6.3 Daily maximum and minimum air temperatures recorded under 
ambient and high temperature conditions and relative humidity in (a) early 
and (b) late sown groundnut crop. 



Table 6.3 Average maximum (Max), minimum (Min) and mean air temperatures ("C), soil temperatures ("C) and 
relative humidity (%) recorded during different developmental stages of groundnut in  the four temperature 
treatments to which the crop was exposed in the field. 

- - --  - - 

Treatments 
- - 

...... Developmental .........---T1-- .......................... ............................. .---....---.T4------------ 

Stage Max Mln Mean Max Mln Mean Max Mln Mean Max Mln Mean 
--- - -- 

..................................... .......................................... temperature ("C) 
- 

Sow~ng - R1 302 148  225 307  152  230  352 181  267 353 181  267 

Sowing - R8 25.8 25.3 255 294  26.2 27.8 25.9 25.2 25.5 32.3 25.2 30.8 
............................................ Relative humidity (%) .................................... 

Sowing to R1 87.5 30.0 58.7 87.5 30.0 58.7 71.3 22.8 47.0 71.3 22.8 47.0 

R1 - ~ 3 "  73.3 22.2 47.7 NA NA NA 64.4 22.3 43.3 70.3 44.2 57.1 

(Developmental stages: Rl=Beginn~ng flower; R3=Beginning pod; R8=Ha~est maturity; " high 
temperature period; NA -not available) 
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Due to lower ambient temperature in T I  (sowing 1) bubbles for T2 were kept 

closed during the greater part of the day to achieve the target temperature of 

>40°C. This led to a build up of humidity in the bubble near to saturation, which 

must have reduced VPD. A better control of humidity was achieved in the T4 

bubble treatment (sowing 2), keeping the bubble open to reduce the maxrmum 

temperature which at times was >4a°C. These very high temperatures were 

achieved because ambient temperatures were much higher at the second sowing 

(>3a°C). 

6.5.2 ANOVA 

The ANOVA table (Table 6.4) for 2 x 3 x 2 (WS x Temp x Geno) split-split plot 

analysis with three replications at final harvest shows the maln effects and 

interactions between the treatments. No significant interact~on could be recorded 

at final harvest for temperature and water stress treatments. However, a 

significant interaction for water stress and temperature was recorded for only peg 

and pod number in the harvest made immediately after imposing high 

temperature treatments (i.e, at 54 DAS). Otherwise, only main effects of 

temperature and water stress, and their interaction with genotypes, could be 

observed in the various harvests made for growth analysis in the study. Hence, 

results recorded only at final harvest are presented. 
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6.5.3 Water use and water use efficiency 

The cumulative amount of water supplied to irrigated (100% of ETc) and water 

stressed (40% of ETc) treatments is presented in Table 6.5. No monitoring was 

possible of evaporation in the high temperature treatments T2 (sowingl) and T4 

(sowing 2).  Hence, similar amounts were supplied to ambient (TI and T3) and 

high temperature (T2 and T4) treatments irrespective of irrigation treatment. 

Amount of irrigation given was higher in T3 and T4 treatments due to greater ET 

demand associated with the increase in ambient temperature and VPD in the 

second sowing. 

Table 6.5 Cumulative amounts of irrigation (mm) supplied to irrigated (IR- 
100% of ETc) and water stressed (WS - 40% of ETc) plots during different 
stages of development. 

.-- . 

Development TI and T2 ~3 and T4 
stage IR WS_ IR WS 

Sowing - R1 121 121 204 204 

Water stress treatments did not influence WUE (above ground biomassltotal 

water added). Water use efficiency was significantly affected by main effects of 

temperature and cultivar. Genotype ICGS 11 recorded significantly (p<0.01) 

higher WUE of 0.74 g L-' compared to 0.65 g L-I in TMV 2. 
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Sowing date and temperature treatments significantly affected WUE (Table 6.6). 

At ambient temperature, WUE was higher in T I  (sowing 1) than T3 (sowing 2), 

and this was associated in part with a lower VPD at T I .  The highest WUE, 1.21 g 

m-' L-', was recorded in T2, and both high temperature treatments, T2 and T4, 

increased WUE compared to their respective ambient controls. 

Water use efficiency (WUE) is strongly affected by VPD, which was lower at 

sowlng 1 (T I )  than sowing 2 (T3). The normalised values of WUE for T I  and T3 

were 1.6 and 1.3 g kPa L-', respectively. The higher WUE at sowing 1 was 

probably due to cooler mean temperatures (Table 6.3). The higher WUE in T4 

compared to T3 is accounted for by the lower VPD in T4, which in turn is due to 

the high RH in the bubble. Although RH was not measured in T2, RH was very 

high in the bubble, and the high WUE in T2 is undoubtedly due to a lower VPD. 

Accordingly, T2 has been excluded from further analysis. 

Table. 6.6 Effect of temperature treatments on WUE (g L-') and VPD (kPa) 
and normalised WUE (WUE x VPD (g kPa L"). 

Temperature WUE VPD WUE normalised 
treatments For VPD 

T I  0.88 1.82 1.6 

SED 0.055"* 
-- 

(NA - not available) 
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6.5.4 Effects o f  temperature x water stress interaction 

Table 6.7 shows the interaction effects for temperature and water stress 

treatments. The effects of temperature and water stress interaction were 

apparent only in the harvests made immediately after ending the 20 d high 

temperature treatment; this interaction disappeared as the crop reached maturity. 

The interaction was significant (~0 .05 )  between T3 and T4 for both peg and pod 

number at 54 DAS. High temperature imposed in the irrigated treatment (IR) 

decreased the peg (50%) or pod (54%) number. Water stress treatment (WS) 

also reduced peg (68%) and pod (72%) number in ambient temperature 

conditions. However, a combination of high temperature (T4) and water stress 

(WS) increased peg, and in particular pod, number relative to WS or T4. In 

general water stress effects were more severe than high temperature effects 

Table 6.7 Effects of  temperature (mean of 20 d high temperature) and water 
stress treatments on peg and pod number (plant-') recorded in  the harvest 
made immediately after the withdrawal of  high temperature treatments. 

water stress Temperature treatments 
treatments -- - 

T3 (29°C) T4 (31 "C) 

Peg number 

lrri 15.81 7.96 

WS 6.60 8.09 

SED 2.35* 

Pod number 

lrri 3.72 1.74 

WS 1.03 2.84 

SED 0.76' 
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6.5.5 Effects of  water stress and its interaction with genotypes 

6.5.5.1 Specific leaf area 

Water Stress treatments altered the specific leaf area of plants exposed to water 

stress treatments. When both sowings were analysed together, there was no 

water stress x sowing interaction nor the main effects of water stress or sowing 

significant. However, when each sowing was analysed separately, then 

differences between water stress treatments were apparent ( ~ ~ 0 . 0 5 )  (Fig. 6.4). 

Water stress (40% ETc) increased SLA in sowing 1, while it decreased SLA in 

sowing 2. 

IR WS IR WS 

Sowing 1 Sowlng 2 

Water stress treatments 

Fig. 6.4 Specific leaf area (SLA) values recorded in water stress treatments 
(IR - 100% ETc and WS - 40% ETc) in the two sowings. (SED: Sowing 1 - 
1.14'; Sowing 2 - 1.28') 
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6.5.5.2 Biomass and pod yield 

Seasonal time course of biomass and pod weight in T I  is shown in Fig. 6.5. 

There was no immediate effect on biomass or pod weights of the 20 d high 

temperature period. However, water stress treatment decreased biomass and 

pod weight throughout the stress period. 

Main effects of water stress were recorded only for biomass due to significant 

( ~ ~ 0 . 0 5 )  reduction in vegetative and pod weight. Vegetative (283.9 g m") and 

pod weight (120.2 g m-*) in irrigated treatments (100% ETc) were reduced by 20 

and 37%, respectively, due to water stress treatment (40% ETc). 

Cultivars differed in the~r response to water stress treatments (Table 6.8) The 

interactions persisted until the final harvest. Cultivar ICGS 11 recorded 

significantly ( ~ ~ 0 . 0 5 )  higher values for flower number (40%), pod number (50%), 

pod yield (37%) and harvest index (31%) than TMV 2 under irrigated conditions 

(100% ETc). When the genotypes were supplied with 40% ETc, the d~fferences 

for tolerance to water stress were clear between the genotypes. Flower number, 

biomass, pod yield and harvest index decreased by 14, 31, 42 and 14% in ICGS 

I I and by 0, 23, 28 and 4% in TMV 2, respectively, compared to those obtained 

in the irrigated treatment. There was no effect of water stress treatments or its 

interaction with genotypes on peg and pod number and pod set. 
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Days after sowing (d) 

Fig. 6.5 Seasonal timecourse of biomass (diamond) and pod weight (circle) 
recorded in water stress treatments, lrri (100% EX - closed) and WS (40% 
ETc - open) in T I  treatment; Vindicates start and end of high temperature 
treatment, while r indicates start of water stress (WS - 40% EF) treatment. 
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Table 6.8 Interaction between genotype and water stress treatments for 
flower number (plant") at 30 DAA, pod number (plant.'), pod yield (g m") 
and harvest index as observed at final harvest. 

Water stress - 
TMV2 ICGS 11 

----------------- Flower number------------- 

lrri 32 53 

WS 34 44 

SED 2.1* 

---------------Pod number ---------------. 

lrri 12 24 

WS 11 17 

SED 1.5' 

lrri 91.9 148.5 

WS 66.1 88.4 

SED 6.4** 
------------------Harvest index ---------------- 

lrri 0.23 0.33 

WS 0.21 0.28 

SED 0.017* 
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6.5.6 Effects of temperature and its interaction with genotypes 

Main effects of temperature were significant for biomass (Fig. 6.6). High 

temperature decreased biomass in T3 and T4 by 21 and 12%, respectively, 

compared to TI .  The smaller decrease in biomass in T4 compared to T3 can be 

attributed to lower VPD in T4. Similar trend was also recorded for vegetative 

weight (data not presented). 

T I  (27°C) T3 (29°C) T4 (30°C) 

Temperature treatments 

Fig. 6.6 Effect of temperature treatments on final biomass averaged across 
different water stress treatments and genotypes. Vertical bar indicates 
SED. 

The interaction of temperature treatments with water stress disappeared with 

advance in crop age, but temperature interactions with cultivar persisted until 

final harvest. A temperature x cultivar interaction was recorded for flower 

number, pod number, pod yield and harvest index (Table 6.9). 
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Table 6.9 Interaction between genotype and temperature treatments for 
flower number (plant") at 30 DAA, pod number (plant.'), pod yield (g m.') 
and harvest index as obsewed at final harvest. 

Cultivar Mean temperature treatments ("C) SED 
Tl(27) T3 (2% T4 (30) - 

-----.---- Flower number------- 

TMV 2 35 35 28 

ICGS 11 42 55 50 4.2* 

---------- Pod number---------- 

TMV 2 16 10 10 

ICGS 11 15 24 22 
2.4** 

---------Pod yield ----.--..---- 

TMV 2 140.0 51 .O 42.8 

ICGS 11 142.2 103.8 109.4 
15.26*** 

TMV 2 0 36 0 18 0 14 

ICGS 11 0 34 0 29 0 28 
0 024*** 

- 

Of the two cult~vars, ICGS 11 was more tolerant to high temperature. In both 

cultivars, a decrease in pod yield and HI was recorded under high temperature 

treatments, but the decrease was significantly less in ICGS 11 compared to the 

decrease in TMV 2. Cultivar ICGS 11 maintained a high pod yield and high HI 

under high temperature treatments (13 and T4). On the other hand, a severe 

decrease in pod yield and HI were recorded in TMV 2. The higher pod yield and 

HI in ICGS 11 can be attributed to greater flower fruit-set (i.e. ratio of pod to 
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flower number) and pod number In contrast, in TMV 2, reduction in flower 

number and fruit set was recorded, and so pod number was decreased on 

exposure to h~gh temperature 

6.6 DISCUSSION 

Studies conducted so far to identify temperature x water stress interactions 

(Craufurd et a/., 1999) or to screen genotypes for heat tolerance, have been 

conducted mainly in controlled environments (Vara Prasad et a/., 1999a, 1999b; 

2000; Wheeler et a/., 1997). Under these conditions, the temperature increase 

follows a square wave pattern (Fig 6.1). Hence, an interaction between 

temperature and water stress occurs on plant growth during the entire 12 h of 

photo-thermo period, providing a longer period for the interaction to influence the 

growth and development of the crop plant under study. However, under field 

conditions, increase in day temperature follows a more or less sinusoidal pattern 

(Fig 6.1), and high air temperature effects on plant in field occur for a short 

duration of only 3-4 h. Furthermore, the temperature of plant canopy in SAT 

regions can be higher than that in controlled environment under similar air 

temperatures due to associated radiative heating (Guilioni et a/.. 2000). Hence, 

the interaction between the stress events that occur under controlled 

environment might be different from those occurring in the field. If true, this would 

have important implications for using controlled environment facilities for 

screening for water and temperature stress. 
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Total water added or used (ETc) was slightly higher in the second (639 mm) than 

first sowing (574 mm) and this was due to higher VPD associated with increasing 

mean temperatures. Water use efficiency (WUE), derived as the ratio of total 

above ground biomass to total water added and corrected for differences in VPD, 

was lower in the second than in the first sowing (1.3 cf 1.6 g kPa L"). However, 

water stress had no effects on WUE. The values of WUE (as opposed to 

transpiration use eff~ciency) are at the lower end of values found in other field or 

controlled environment studies (e.g. 2 to 5 g kPa L-'; Mathews et a/.,  1988; Ong. 

1987; Wright etal., 1996). Results in this study are from a groundnut crop grown 

in the harsh climate of the Indian SAT summer, when day (37"-39°C) and night 

(20"-24°C) temperatures are high; in contrast comparative studies are from kharif 

or rabi crop in lnd~a or controlled environments where mean temperatures are 

close to 25°C (Azam Ali et a1 , 1989; Craufurd ef a / ,  1999; Wr~ght etal., 1996). 

The lack of significant difference for WUE between IR (100% ETc) and WS (40% 

ETc) treatments shows that a decrease in biomass resulted from a reduced water 

supply. It is widely accepted that actively transpiring plants keep their stomata 

open through which C02  enters the plant that is converted into biomass by the 

photosynthetic apparatus (Hsiao, 1973). Any reduction in water supply to 

groundnut plants would force the plants to close their stomata to conserve water 

through reduction in T (Azam Ali, 1984; Patil and Patil, 1993). The closure of 

stomata would impede the passage of CO2 and result in a reduction of CO2 

assimilat~on rate, thus lowering the biomass. Hence, a reduction of T in WS 
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treatment if identified, would answer the cause for reduction in biomass due to 

WS in this study 

In order to account for decrease in biomass under water stress, specific leaf area 

and VPD (Table 6.10) were used with eqs. 3.2 to 3.6 (see Chapter 3) to estimate 

transpiration efficiency (TE) and then transpiration (T), and hence proportion of 

ETc used as T or lost as soil evaporation (Es). The above ground biomass 

including pod dry weight, was used in estimating TE and T. The estimated TE 

and T values are presented in Table 6.10 

Table 6.10 O b s e ~ e d  specific leaf area (SLA) and vapour pressure deficit 
(VPD) in water stress treatments, carbon isotope discrimination ( A  = 
0.03SLA + 14), normalised TE (k = - 0.53A + 14.4) transpiration efficiency 
(TE = kNPD),  transpiration from sowing to harvest (T)  derived from SLA 
values using the equations described by Wright et a/. (1996). 

Water 
stress SLA A K VPD TE T 
treatment (c;? '1 (ratlo! :g kPa L ' )  (kpa) (g L ' 1  (mm) 

---- .-- - - -- 
-----------------------....--......----Sing 1 ........................................ 

I R 192 19.76 3.92 1.82 2.16 209 

WS 201 20.04 3.78 1.82 2.08 116 

SED 1.1* 

SED -- 1 3' 
-.- - 

The crop simulation model for groundnut, PNUTGRO (see Chapter 7) was also 

used to approximately estimate the soil water balance and TIES ratio (Fig. 6.7). 

The weather, soil and irrigation data during the growth period, and genetic 
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coefficients measured in the field study were used to simulate the water balance. 

Model predictions indicate that the crop was actively transpiring until1 harvest in 

the IR treatment. In WS treatment transpiration started to fall below that of the IR 

treatment at around 60 DAS. This occurred as soil moisture started to drop below 

the critical level of 40% ASM for groundnut (Wright and Nageswara Rao, 1994) 

at this stage (Fig. 6.10). 

Time (DAS) 

Fig. 6.7 Simulated values (using PNUTGRO) of cumulative soil evaporation 
(Es) and transpiration (T) values in irrigated (IR, supplied with 100% ETc) 
and water stressed (WS, supplied with 40% of ETc from flowering) 
treatments in sowing 1 from sowing to harvest. 

The values of TE were similar in IR and WS treatments at each sowing, but were 

slightly lower at sowing 2 than in sowing 1. Data in Table 6.10 suggests that TE 

is conservative over a wide range of stress conditions once any differences in 

VPD are considered. The TE values estimated from SLA in the field experiment 

are low (1.9 to 2.2 g L") when compared to the values obtained in controlled 
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environment experiment in Chapter 3 (3.2 to 4.2 g L") and lower compared to 

those obtained for groundnut crop in kharif and rabi seasons of India and in 

Australia (- 3.0 g L") by Wright et a/., (1996). These values are, however, 

comparable to those obtained by Hubick et a1 (1986) when groundnut studies 

were conducted in glasshouse at a VPD of 2.2 kPa. Values similar to those 

reported here were also obtained by Azam All eta/. (1989) at VPD of 2.1 kPa in 

drying soil and Mathews et a/. (1988) at a VPD of 1.9 kPa in dry season with 

occasional irrigation. These differences in TE probably largely reflect differences 

in VPD since the values of k in the controlled environment and field were similar, 

3.5 to 4.0 g kPa L". 

Given that values of TE were similar in IR / WS and temperature treatments (no 

significant differences in SLA or normalised WUE (Table 6.6)), variation in 

biomass was therefore due mainly to variation in T. The estimated values of T 

are also given in Table 6.10, and confirm that both water stress and later sowing 

reduced T and therefore biomass. The model also shows that Es remains nearly 

constant in both IR and WS treatments, but T is reduced in WS treatment (Fig. 

6 7). When T is expressed as a proportion of ETc, T accounted for 36 and 33% 

of ETc in the IR and WS treatments, respectively, at sowing 1, and 25 and 25%, 

respectively, at sowing 2 (Fig. 6.8). Therefore, more water is lost through ES in 

sowing 2. 

Values of T were also estimated using the PNUTGRO model (T,,,) (Boote et a/., 

1999) and compared with ETc, and T values estimated from SLA (T,,,) in Fig. 

6.8. Values of T estimated by PNUTGRO are greater than those estimated from 
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SLA, but across sowing dates and treatments the trends were similar. The model 

predicted higher T of 45 and 35%, similar in both IR and WS treatments, in 

sowing 1 and sowing 2, respectively. The higher value of T from PNUTGRO is 

due to the higher biomass predicted by the model in environments with high 

temperature (details in Chapter 7). The current experiment was conducted in 

summer of 1999 when temperatures averaged around 37 OC. 

I R WS I R WS 
Sowing 1 Sow~ng 2 

Water stress treatments 

Fig.6.8 Amount of water supplied to the crop (ETc) and cumulative 
transpiration values derived from SLA (Tsu) and simulated by PNUTGRO 
(TSIM) in irrigated (IR - 100% ETc) and water stressed (WS - 40% ETc) 
treatments, from sowing to harvest, in sowing 1 and sowing 2. 

A decrease of 20% in total ET in water stress treatments compared to fully 

irrigated treatments due to a decrease in T was recorded by Pallas eta/.  (1979). 

At a similar plant density to the current study, Azam-Ali et a/. (1989), in a field 

study during kharif season (June sowing) at ICRISAT in India, recorded a 

transpiration of only 150 mm from sowing to 97 DAS. In the present study, T was 
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209 mm and 116 mm in IR and WS treatments, respectively, in sowing 1; and 

was 165 and 99 mm in IR and WS treatments, respectively, in sowing 2. This can 

be attributed to higher radiation and temperature recorded in the current study 

along with a lower VPD, causing greater water loss through evaporation. Studies 

by Azam-Ali et a/. (1989) and Mathews et a/. (1988) conclude that increase in 

radiation increases T as it is essential to maintain canopy temperature at or 

below ambient temperature. A decrease in transpiration as recorded under water 

stress in this study was also reported by Balasubramanian and Maheswari 

(1990) and Patil and Patil (1993) These studies thus confirm that water stress 

reduces the transpiration rate and ~nturn decreases total biomass accumulated. 

Temperature increase across the treatments, T I  to T4, (Table 6.3) was achieved 

by using plastic bubbles in the field. Humidity was controlled in these bubbles by 

opening the bubble doors for brief periods during the day; nonetheless, an 

increase of humidity in these bubbles did occur, particularly at sowing 1 (i.e T2). 

Lee et a/. (1972) recorded that an increase in humidity from 50 to 95% increased 

the flower and peg number, and vegetative weight. Similar observations were 

made In this study, notably in T2 where the RH was near saturation compared 

with 48% under ambient conditions. The use of bubbles resulted in clear 

temperature differences across treatments. These bubbles can thus be used in 

the field to screen groundnut genotypes for high temperature tolerance, as 

humidity control can be achieved with experience in using the bubbles (T2 vs. 

T4). The effects of temperature and water stress on components of groundnut 

recorded at final harvest are summarised in the flow diagram (Fig. 6.9). 
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Fig. 6.9 Summary of the results of high temperature and water stress 
effects on growth and development of groundnut in SAT. (Thick arrows = 
main routes for assimilate translocation; Thin black arrows = routes for 
minor use of assimilates; broken arrow = information flow; red arrow = 
temperature effects; blue arrow = water stress effects; red and green arrow 
= interaction of temperature and genotype; blue and green arrow = 
interaction of water stress and genotype; Labile = current and stored 
assimilate pool; WT 2 weight; PDNO =pod number; PGNO = peg number; 
FLNO = flower number). Direction of redlblue arrows opposite to assimilate 
route indicates negative effects. 
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The field study also confirms the observations made under controlled 

environment studies (Chapter 3) that the interaction for temperature and moisture 

stress is transient and disappears w~th  release of high temperature stress 

treatment. Thus, an interaction between temperature and water stress treatments 

was recorded In the harvests made immediately after the withdrawal of high 

temperature treatment (T4). The interaction between water and temperature 

stress was significant only for peg and pod number. This interaction is due to the 

sensitivity of the reproductive processes such as pollen germination and 

fertilisation to high temperature. In controlled environment with a maximum 

temperature of 37°C for 10 d, a decrease in pod number of 43% was recorded at 

50 DAS (Chapter 3). On the other hand, in the field experiment a temperature of 

43.5"C was imposed for 20 d, resulting in a reduction of only 46% in pod 

numbers. This lesser decrease in pod number can be attributed to the greater 

tolerance to high temperature of the genotypes used in the field (ICGS 11 and 

TMV 2 )  study compared to those in controlled environment (ICGV 86015 and 

ICG 796). Observations made on membrane thermostability and cardinal 

temperatures for pollen germination and tube growth (Chapter 4) show that 

genotypes tested in field were more tolerant than those tested in controlled 

environment. 

The reasons for the existence or disappearance of the interaction between water 

and temperature can be attributed to the moisture level at that particular stage of 

crop growth. In the controlled environment study the interaction with high 

temperature occurred at a soil moisture content in the water stress treatment of 
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60% ASM. The ASM at the end of the high temperature treatment in the field 

experiment, i.e. at 50 DAS was also estimated to be about 60% (Table 6.1 1 and 

Fig. 6.10). A simple water balance was used to estimate ASM - assuming that 

water loss was equal to ETc and this is detailed in Table 6.11. 

Table 6.11 Simple water balance for sowing 1 during the water stress and 
high temperature treatment. 

Soil depth - - 

FC - - 

PWP - - 

Percentage water available= 

Total soil water avatlable = 
(1 00% ASM) 

Water lost from soil - - 
dur~ng HT treatment (ETc) 

Water added to WS x HT = 
dur~ng HT treatment 

Total soil water lost - - 

So11 molsture percentage = 
when 55 mm IS lost 

1 2 m  

20% vlv 

8% vlv 

12% vlv 

(121100) x 1 2 x 1000 = 144 mm 

Similarly, the crop model PNUTGRO was used to estimate the ASM and the 

simulated value in irrigation treatments at sowing 1 are given in Fig. 6.10. The 

ASM averaged 70% from sowing to harvest in IR treatment, while in WS 

treatment ASM declined from 60 O/O at 30 DAS to about 20% at 100 DAS 

(averaged 30%). The model PNUTGRO thus predicts a lower ASM, averaged 

70%, in the irrigated treatment, eventhough 100% of ETc was replaced. This can 

be attributed to the drainage losses predicted by the model. PNUTGRO predicts 
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a 30% loss of water applied through drainage in both IR and WS treatments, 

although drip system was used to irrigate the crop. In drip system of irrigation 

deep percolation (drainage) and surface runoff loss is non-existent (Reddy and 

Reddy, 1985). Hence, the model fails to account for benefits of the drip system 

and thus predicts lower soil moisture 

0 20 4 0 60 80 100 

Time (DAS) 

Fig. 6.10 Simulated values (using PNUTGRO) of percentage soil moisture in 
irrigated (Y supplied with 100% ETc) and water stressed (0 supplied with 
40% of ETc from flowering) treatments in sowing I from sowing to harvest. 

If the loss in drainage is added to the ASM predicted by the crop model, the 

simulations also confirm the soil water balance calculations (Table 6.11) shown 

above that the soil was around 60% ASM at the end of high temperature 

treatment. The ASM would average 100% from sowing to harvest in irrigated 

plots. In case of water stressed plots, ASM would average 40% during the stress 
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period. Therefore at the end of the high temperature treatment, comparable soil 

water conditions resulted in controlled environment and field experiments, and 

comparable interaction between water stress and high temperature were found. 

Controlled environment and field studies also suggest that when soil moisture is 

around or less than 40% ASM, critical for groundnut (Wright and Nageswara 

Rao, 1994). At 40% ASM, water stress dominated the stress effects and no 

interaction between water stress and high temperature could be identified. As 

water is a reactant or substrate for many reactions in plant (Kramer and Boyer, 

1995) and the rate at which these reactions occur is affected by temperature 

(Johnson and Thornley, 1985). Thus when water stress goes below 40% ASM, 

available substrate is limited, and hence role of temperature on the reaction rates 

in plant is reduced. 

The results from this field study clearly show that both temperature and water 

stress decrease pod yields in groundnut, but the cultivars used in this study 

differed in their responses to temperature and water stress. Temperature 

moderately reduced total biomass or vegetat~ve weight (leaf+stem). In contrast, a 

severe decrease in pod yield was recorded due to high temperature. However, 

under water stress conditions, a greater decrease in biomass and vegetative 

yield occurred along with a decrease in pod yield. This provides evidence to 

suggest that crop plants react differently to environmental stresses and adopt 

different strategies to overcome the stress events occurring at a particular 

location. 
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Pod yield decrease under water stress conditions can be attributed to a 

decreased source (vegetative weight), and in one cultivar to a slight decrease in 

partitioning. Such decrease in vegetative weight has been recorded in many 

experiments (Wright et al., 1991; Sarma and Sivakumar, 1989, 1990). There 

exists evidence in literature for this decrease in pod yield under water stress 

conditions (Nageswara Rao et a/. ,  1988; Ravindra et a/., 1990; Williams et a/., 

1986). Thus, under water stress conditions pod yield is source limited. Decrease 

in partitioning was also recorded in earlier studies by Greenberg etal. (1992). 

Genotypes used in this study differed in their response and tolerance to 

temperature treatments imposed (Fig. 6.9). Genotypes did not differ in their 

vegetative weight, indicating that source was not limiting in them. Thus 

processes like photosynthesis or respiration, responsible for source, are not 

much altered in them. In contrast, pod yield was reduced in both the genotypes. 

A greater reduction in pod yield of >70% occurred in TMV 2, while it was only 

around 23% in ICGS 11. This indicates that ICGS 11 is more tolerant to high 

temperature than TMV 2 .  The greater tolerance of ICGS 11 to high temperature 

can be attributed to maintenance of a significantly higher partitioning under 

increasing temperature cond~tions. This higher partitioning is due to greater sink 

strength in ICGS 11 than in TMV 2. Such genotypic differences for reduction in 

pod yield when exposed to high temperature were recorded earlier by Talwar et 

al. (1999), Vara Prasad et a/. (1999, 2000) and Wheeler et a/. (1997). In a 

screening study conducted in 1991 in Sahelian region of Africa, Ntare et a/. 
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(2001) demonstrated that groundnut genotypes significantly differ in their pod 

yields in hot environments due to the effects on partitioning. 

Under water stress conditions, a greater reduction in vegetative weight and pod 

yield occurred in ICGS 11 than in TMV 2. Although the reductions were greater in 

ICGS 11 under water stress, this genotype had higher vegetative and pod yield 

under irrigated conditions. This is due to greater accumulation of ass~milates and 

higher partitioning of these assimilates to pod yield (Table 6.8). Under water 

stress only a slight decrease in flower number occurred in ICGS 11, which did 

not significantly influence the peg and pod number. No such decrease in flower 

number occurred in TMV 2. In addition, the genotype ICGS 11 had a higher WUE 

when compared to TMV 2. This allowed the genotype to accumulate greater 

biomass even under water stress conditions. Hence, genotype ICGS 11 was 

tolerant to both high temperature and water stress conditions over TMV 2. 

6.7 CONCLUSIONS 

It can be inferred from this study that genotypes that are tolerant to water stress 

are also tolerant to high temperature under field conditions. Mechanisms that a 

genotype adopts to overcome stresses differ. However, genotypes with ability to 

establish greater biomass and with a significantly greater partitioning of biomass 

to pod yield would be suitable for sustaining higher yields in SAT areas with high 

temperature and water stress. Genotypes with greater WUE are also more useful 

for the SAT. Thus screening of groundnut genotypes for both temperature and 

water stress tolerance in field conditions are essential before recommending 
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them for SAT and before using them for further breeding of new genotypes to 

these stresses. Controlled environments can be used for screening genotypes to 

high temperature for specific processes and exper~ments under field conditions 

needs to be adopted to identify the various mechanisms for tolerance involved. 



CHAPTER 7 
- -- 

MODELLING THE EFFECTS OF WATER STRESS AND HIGH 
TEMPERATURE IN GROUNDNUT USING PNUTGRO 
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7.1 INTRODUCTION 

A crop or genotype is adapted for maximum output (economic yield) at a given 

location. Introduction of this crop or genotype into a new environment requires 

selection of optimum management practices for that location or field. 

Environment plays a major role in determining the new optimum management 

practices as it alters the pattern and rate of development and growth in the new 

location. The more the environment deviates form the optimum conditions for a 

crop or genotype, the greater are the changes required in management practices 

(e.g. fertiliser, irrigat~on) to reap maximum output in a given location. 

The main weather constraints for crop production in the tropics and SAT are low 

(~700mm) and uneven distribution (long dry periods) of rainfall and occurrence of 

high temperatures (>34"C) during the crop growth period. For future climates, 

predictions for SAT regions indicate an increase in temperature with a warming 

of 1.5" to 5.8OC in the 21'' century (IPCC. 2000). This warming may increase the 

temperatures to >34OC during the sensitive stages of groundnut cultivation, i.e. 

flowering and pod development, In the SAT. Experimentation under field 

conditions to test these predicted temperatures poses problems that require a lot 

of specialist equipment and resources. To overcome the limitations, crop models 

can be used as surrogates for field experimentation. 

Crop models are developed in a laboratory or research station from a limited 

number of experimental data sets. Although crop models seek to quantify the 

effects of environment on crop processes, in reality they are often location 
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specific or site specific, and work effectively only in those locations for which they 

have been calibrated (de Wit and Van Kulen. 1987; Hunt and Boote, 1998). 

Calibration for a given location can correct for multiple and hidden sources of 

error (Rastetter et a/., 1992). Thus, crop models require a certain amount of 

calibration before they can be used for yield prediction or forecasting at a new 

location. Through calibration, the genetlc coefficients are modified to account for 

the genotype x environment interaction. Many current models lack the built in 

ability for genotype x environment interaction that might make calibration a 

simpler process (Tsujl et a/ . ,  1994) 

Of the various models developed for groundnut, CROPGRO-Peanut 

(PNUTGRO) is the most widely used and validated for various systems of 

groundnut cultivation (Singh et a/ . ,  1994a; 1994b; Boote eta / . ,  1998. 1999; Kaur 

and Hundall, 1999). The PNUTGRO model is process-oriented and considers 

crop development, crop carbon balance, crop and so11 - N balance, and so11 water 

balance. Temperature effects on growth and development are also simulated by 

this model. The main constraint in this crop model is its inability to account for 

pest and disease damage on crop growth and development, and on final crop 

yield (Boote et a/., 1986). All the variation unaccounted in PNUTGRO has been 

assigned to a single factor - SLPF (soil fertility factor), this factor considers that 

the site to site variations are mainly due to differences in fertility (Boote et a/., 

1998). 
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Crop models can also be used for precision forecasting of crop yields, identifying 

research gaps and making policy decisions (Boote et a/ . ,  1998). Predictions for 

larger areas (e.g, regional or national) compared to predictions of small 

homogenous plots need to consider greater variation in weather, soil and 

management practices. As the model cannot account for G x E, a factor or two in 

crop models which can be changed easily and are characteristic of a given 

region in order to give reliable yield prediction need to be identified. 

The following simulation exercise was designed to (i) calibrate the PNUTGRO 

model for five locations in India; and (ii) evaluate PNUTGRO for its ability to 

predict the effects of high temperature and water stress observed in the field 

study reported in Chapter 6. 
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7.2 MATERIALS AND METHODS 

7.2.1 PNUTGRO 

The PNUTGRO model has been described in several publications (Boote et a/.,  

1986, 1992; Boote and Jones, 1988) and widely evaluated for growth and 

development under conditions without biotic stress (Singh et a/., 1994a; 1994b; 

Kaur and Hundal, 1999). An overall description of the model and its ability to 

predict crop growth and development has also been presented in Chapter 2. 

Hence, only the temperature responses in the model are described here. 

7.2.2 Temperature responses in  PNUTGRO 

In PNUTGRO, vegetative processes that are sensitive to temperature include the 

rate of germination and emergence, rate of vegetative node formation, duration 

of vegetative growth, photosynthes~s, maintenance respiration, nodule growth 

rate, specific nodule activity, specif~c leaf area, and specific internode length. The 

temperature response equations (Fig 7.1) for these processes and cardinal 

temperatures are defined in the species file. Similar functions are also used to 

describe temperature sensitivity of reproductive processes, rate of pod addition, 

limits on partitioning to reproductive parts, and rate of single seed growth. 

At higher than optimum temperature, peanut exhibits poor fruit formation, 

extended vegetative growth, and poor partitioning and these effects are 

represented in the model. To account for speciflc causes like production of 

vegetative primordia and the expression of more vegetative sites, high 

temperature induced delay in onset of reproductive sites, and failure of 
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Fig. 7.1 Temperature response functions for relative rate of vegetative and 
reproductive processes described in PNUTGRO species file. (Source: 
Boote eta/., 1999). 
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successful fertilisation of reproductive sites, a 'partitioning limit' function has been 

included. When temperatures >33 "C occur during the pod growth period, there 

is a decrease in the maximum fraction partitioned to pods. 

7.2.3 Multilocation experiments 

Three field experiments (in 1993, 1994 and 1995) were conducted at five 

locations in the SAT of India (Table 7.1 and Fig. 7.2), under an ACIAR-ICAR- 

ICRISAT collaborative project to identify genotypes for water stress tolerance. 

These are the main locations where groundnut is cultivated extensively in India. 

Three irrigation treatments were imposed in each of the locations; irrigated 

(IRRI), rainfed (RF) and rain-out shelter (ROS), to evaluate the genotypes for 

water stress tolerance. Data from irrigated and rainfed treatments, was used in 

this study after obtaining permission from project coordinators (Wright and 

Nageswara Rao, 1994). The variability in climate (Table 7.1) and soil (Table 7.2 

and Table 7.3) is the main reason for choosing locations. 

7.2.4 Experimental site details 

7.2.4.1 Weather data 

Daily weather data, maximum and minimum temperature, solar radiation, rainfall 

and evaporation were obtained from a weather station located w~thin a distance 

of 0.5 - 1.5 km from experimental site. In locations where there was no facility to 

record solar radiation, sunshine hours were used to obtain the solar radiation 

values. The weather for these locations IS presented in Table 7.1. 
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Fig. 7.2 Map of India showing the locations at which drought screening 
trials were conducted between 1993-1995 under ACIAR-ICAR-ICRISAT 
collaborative project. (Map not to scale). 
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7.2.4.2 Soil data 

The physical and chemical properties of the top 30 cm of the soils are presented 

in Table 7.2 and 7.3, respectively. Soil profile data for all the locations were 

obtained from Soil Series of India (1984) published by National Bureau of Soil 

Survey and Land Use Plann~ng (NBSS&LUP). Nagpur, India. Soils varied from 

sandy loams to vertisols, with water holding capacities of between 72 and 276 

mm. The available total rooting depth was between 100 and 150 cm. Soils also 

varied in their organic matter and nutrient status (Table 7.3). 

7.2.4.3 Rainfall and lrrigation 

The amount of rainfall received in each of 1993, 1994 and 1995 during the crop 

growth period is provided in Table (7.1). The rainfall of these locations, which 

ranged from 232 to 704 mm, is typical of the SAT, lrrigation was provided by a 

drip irrigation system and the amount of water supplied to the crop was recorded 

(Table 7.4). Plants were irrigated at 7 d intervals. The amount of irrigation at each 

interval was calculated as 0.8 x total evaporation during the 7 d period, where 0.8 

is the crop coefficient (Kc) for ET from field during groundnut reproductive period 

(Doorenbos and Pruitt, 1992). 





Table 7.2 Physical properties and moisture characteristics of the top 30 cm of soil for five Indian locations used 
in the study. 

Phys~cal properties So11 rno~sture character~sttcs 
So11 ................................................. ................................................................... 

Locatlo" Taxonomy Coarse F~ne Slit Clay FC PWP AW RD TSW 
Sand sand 

(Yo) (Yo) (%) (%) (YO) (%) (cm) (mm) 
- - - -- 

(Yo) 

HY D 
L~thlc 50 13 34 20 8 12 120 276 Rhodustalf 

TPT N A 50 3 1 9 7 10 4 6 120 72 

VRC Udic 64 22 8 6 18 8 10 100 100 
Rhodustalf 

DRG N A 8 82 6 4 10 4 6 150 90 

JAL N A 12 40 19 29 36 13 23 120 72 
-- -- 

(Source: Wright and Nageswara Rao. 1996) 
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Table 7.4 Amount of irrigation supplied (mm) and rainfall (mm) received in 
the five Indian locations used in the study. 

Location Number of 
Irrigation Rainfall rainy days 
-----------mm-------------- (> 2.5_m!d3- 

HYD 
1993 182 539 47 
1994 215 428 41 
1995 159 704 52 

TPT 
1993 200 567 39 
1994 351 338 38 
1995 250 594 39 

VRC 
1994 230 458 2 3 
1995 220 495 22 

DRG 
1993 477 232 12 
1994 439 497 28 

JAL 
1993 264 547 40 
1994 354 530 34 
1995 458 338 - -- 30 - 
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7.2.4.4 Genotypes 

Fifty genotypes were evaluated for water stress tolerance in the ACIAR-ICAR- 

ICRISAT collaborative project. Cultivar ICG 476 (Chico) was selected to calibrate 

the model for these five locations. This genotype is traditionally cultivated at all 

the locations and the genetic coefficients for this genotype are available in the 

PNUTGRO model. The model has also been well calibrated for this genotype. 

However, there still exits the question of site-specific genetic coefficients due to 

lack of built-in ability to account for G x E interaction in PNUTGRO. Hence, site 

specific calibration was also carried out (see section 7.2.6). 

7.2.5 Measurements 

7.2.5.1 Crop phenology 

Dates of sowing, flowering (RI)  and physiological maturity (R7) were available 

from the data sets (Table 7.5). Other stages of reproductive development were 

obta~ned from available literature on cultivar ICG 476. 

7.2.5.2 Growth analysis 

Frequency of plant sampling and sample size was similar at all locations. 

Harvests were made in all the three replicate plots. Plants were sampled from an 

area of 0.6 m2 at 40 and 75 DAS, and at harvest maturity. At each harvest, the 

plant sample was divided into leaves, stem and pod, which were oven dr~ed at 60 

"C for 3-4 d to obtain dry weights. Leaf area and specific leaf area (SLA) were 
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Table 7.5 Sowing date, time to flowering and harvest maturity during 1993- 
1995 at five Indian locations used in  the study. 

Time (DAS) to 
Locat~on Sow~ng date 
and Year (Day of year) Flower~ng Harvest matur~ty 

. 

HYD 

RF 
TPT 
1993 1R 

RF 
1994 1R 

R F 
1995 IR 

RF 
VRC 
1994 1R 

R F 
1995 1R 

RF 
DRG 
1993 1R 

RF 
1994 IR 

RF 
J AL 
1993 1R 

RF 
1994 1R 

RF 
1995 1R 

RF 
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also calculated from each sample. Final pod yield and biomass were calculated 

from a harvested area of more than 2.0 m2, the precise area varied with location 

(Wright and Nageswara Rao, 1996). 

7.2.6 Model data entry 

The database management system of the Decision Support System for 

Agrotechnology Transfer (DSSAT v3) was used to enter crop, weather, irrigation 

and soil data into computer. 

7.2.7 Model calibration 

The model was calibrated for each of the locations following the systematic 

approach as descrtbed by Boote (1999). The calibration of the PNUTGRO to 

different locations is described in the steps below. 

STEP 7 Crop life cycle (flowering and harvest maturity) 

The crop development was adjusted using the actual weather data. The two main 

factors that were calibrated for setting the right flowering and maturity date are 

EM-FL (photothermal days between plant emergence and flower appearance) 

and SD-PM (photothermal days between first seed and physiological maturity). 

STEP 2 Dry matter accumulation 

The main factor in the model, which determines the slope of dry matter 

accumulation, is SLPF (soil fertility function in the soils file) This assumes that 

the site differences in fertility create the differences in biomass. This factor, 
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inadvertently, also accounts for diseases and pests effects on crop growth and 

yield. Incidence of spodoptera and thrips was recorded in experimental plots at 

all the locations but with varying intensity. Control measures were taken to 

contain the pest damage to avoid economic threshold damage. For ~rrigated 

experiment of each year at each location SLPF was determined so that the 

predicted final biomass was as close as possible to the observed biomass at 

harvest maturity. Then, SLPF was averaged over three years for the genotype to 

give location SLPF, and the value so obta~ned was used to simulate the biomass 

and pod yield. 

The slope of predicted dry matter accumulation was made similar to that of the 

observed by adjusting both SLA and LAI. The factor SLAVR was used to adjust 

SLA, and LA1 was adjusted using the factor FL-LF (time from flowering to 

maximum leaf area) 

STEP 3 Pod yield 

The timing from flowering to first pod (FL-SH), the timing from first flower to first 

seed (FL-SD) and duration of pod addition (PODUR) were adjusted to get the 

initial rise in pod dry weight and seed dry weight. Maximum fraction of daily 

growth that is partitioned to seed + shell is determined by this factor XFRT. This 

determines the partitioning of dry matter between leaf, stem and pod. This factor 

also takes into account the indeterminate habit of peanut plants, where 

vegetative growth occurs even during the pod filling periods. For each 

experiment, at a given location for a genotype in a year, XFRT was determined. 
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The XFRT was calculated for each year for the genotype at each location and the 

location average (over three years) value was used to simulate the pod yield. 

7.2.8 Water stress x high temperature simulations 

7.2.8.7 Experimental data 

The crop, soil, weather, and irrigation data from the field experiment, (Chapter 6) 

were used in this study. Groundnut cultivars, TMV 2 and ICGS 11, from field 

study were used for the simulations. 

7.2.8.2 Model data entry 

The database management system of the Decision Support System for 

Agrotechnology Transfer (DSSAT v3) was used to enter crop, weather, irrigation 

and soil data into computer. 

7.2.8.3 Model Calibration 

Calibration of the model is essential in order to validate the model response to 

high temperature. The calibration was essential as the crop was grown during the 

summer of 1999 at ICRISAT in India, the period in which the crop is not normally 

cultivated. The control treatment in Chapter 6, T ID I ,  was used to calibrate the 

model. 

The calibration of crop life cycle, biomass and pod yield for each of the cultivars, 

TMV 2 and ICGS 11, in this study was carried out separately as described in 

24 1 



Modelling study 

steps 1-3 of section 7.2.7. The cultivar specific coefficients, given in 

PNGR0980.CUL file, are used to define the development of cultivar under the 

given weather and management. TMV 2 is a widely grown cultivar in India and 

this genotype has been evaluated using PNUTGRO. Hence, the genetic 

coefficients for this genotype are available in the model and were adapted to the 

specific management conditions under study. There are no genetic coefficients 

available for ICGS 11 in the model. Hence, the coefficients of ICGS 11 were 

estimated by the procedure described by Boote et a/. (1989) and Singh et a/. 

(1994a). The 11 phenological coefficients for each of these cultivars were 

determined so that the growth and development of control treatment were close 

to those of the simulated values (Table 7.6). The values that gave the most 

realistic and closer predict~ons to results in Chapter 6 were used in this study. 

7.2.9 Data comparison (Observed vs Predicted) 

In many modelling studies, a scattered diagram is used to compare observed 

and predicted values. A linear regression is then used to fit a straight line 

between observed and predicted values (Smith and Rose, 1995). Fitted linear 

regression requires testing with parametric or non-parametric statistical tests to 

determine whether the intercept is equal to zero and the slope is equal to or not 

significantly different from unity. However, Harrison (1990) and Mitchell (1997) 

argued against using linear regression as a validation tool because of its 

inappropriateness and violation of assumptions associated with using regression 

as a tool, and difficulties experienced in accrediting a null hypothesis. Mitchell 

(1997), and Mitchell and Sheehy (1997) provided an alternate objective and 
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simple method, free of a priori assumptions. This method uses deviation 

(obsewed minus predicted) plotted against the observed values and specifies 

two criteria for adequacy of the model. They are the envelope of acceptable 

precision and proportion of points that must lie within the envelope. In this 

method, no statistical tests are involved and hence the problem of satisfying 

assumptions IS avoided. Therefore, the deviation method of Mitchell and Sheehy 

(1997) was used in this study to compare the predicted values with observed. 

The envelope of acceptable precision used in this study is i SD (standard 

deviation) of observed values. 
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7.3 RESULTS 

7.3.1 Multilocation weather 

The crop was not exposed to water stress, at any of the locations, in the irrigated 

treatment. Under rainfed conditions, the crop was subjected to long periods of 

dry spells at Vriddhachalam (VRC) and Durgapura (DRG) and to moderate dry 

spells at other locations (Table 7 4) 

Temperatures to which different crop growth stages were exposed are presented 

in Table 7.6. Except at Hyderabad, the crop in the other locations was exposed 

to high temperatures (>34"C) during both the observed vegetative (S-FF) and 

reproductive phases (FF-PM). Occurrence of high temperatures was more 

frequent during the reproductive phase of the crop growth. Number of days with 

high temperature during the reproductive phase ranged from 10 to 84 d. Year 

1995 was particularly hot in all the locations expect at Hyderabad 

7.3.2 Model calibration for five locations 

7.3.2.1 Time to flowering and physiological maturity 

Time to flowering and harvest maturity was calibrated only for one year at a 

location using the weather data and that resulted in reliable prediction in other 

years at a given location. The SD value indicating the acceptable limit for time 

from sowing to flowering was 2.07 d. The model predicted the time to flowering 

and hawest maturity within acceptable limits (Fig 7.3). Time from sowing to 

flowering in ICG 476 in the five locations ranged from 24 to 30 d However, there 

was a systematic deviation of the predictions that can be attributed to constant 
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prediction by the model for flowering and physiological maturity in multiple 

environments used in the study. 

Table. 7.6 Average temperature (daylnight) recorded during different stages 
of crop development and number of days with maximum temperatures 
exceeding > 34°C during the crop period at five multilocation experimental 
sites. (S = sowing; FF = first flower; FS = first seed; PM = physiological 
maturity). 

Temperature "C (daylnlght) Days with temperature 

Locat~on >34"C (d) 

-. S-FF FF-FS FS-PM S-PM S-PM FF-PM 

HYD 
1993 33/23 31122 29/22 30122 11 0 
1994 29/22 30123 30121 30122 0 0 
1995 29/22 30123 30122 30122 2 0 

TPT 
1993 35/25 34/25 32/23 33/24 30 18 
1994 34/26 33/24 33/24 33/24 42 31 
1995 33/25 34/25 33/24 33/24 35 2 3 

VRC 
1993 34/26 34/26 31/26 32/26 24 10 
1994 30125 30126 30126 30126 0 0 
1995 38/25 39/26 38/26 38/26 107 83 

DRG 
1993 33/25 36/24 34/21 34/22 64 48 
1994 31/24 31/24 33/20 32/22 26 20 

JAL 
1993 31/23 31/23 32/22 32/23 24 13 
1994 30123 30123 32/21 32/22 33 30 

33/24 32/23 34/23 34/23 66 56 - 1995 _- 
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2 2  2 4 26 2 8 30 32 3 4 

Time to flowering (d) 

Fig. 7.3 Deviations of observed values from predicted days from sowing to 
flowering grown under irrigated (IR - m)  and rainfed (RF - 3 )  conditions at 
five locations in India during 1993 to 1995. 

Observed t~me to flower~ng was s~m~lar under irrigated or rainfed conditions. 

Predicted time to flowering also did not vary with irrigated and rainfed treatments. 

Around 80% of the predicted values were In the acceptable range. The 

predictions for time to flowering deviated less in the observed values range of 26- 

29 DAS, an increase or decrease in this range of observed flowering deviated the 

predicted values from the acceptable envelope of SD. There was more variation 

in prediction of time to physiological maturity compared to flowering (Fig. 7.4). 

The SD for observed values was 7.02 d and was used as the acceptable 

envelope. The model delayed the time to physiological maturity when compared 

to the observed values. The delay was greater under ra~nfed conditions than 

when compared to irrigated crop. Of the predicted values 38% were outside the 

acceptable range. 
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9 0 100 110 120 130 

Time to physiological maturity (d) 

Fig. 7.4 Deviations of observed values from predicted days from sowing to 
physiological maturity under irrigated (IR - D) and rainfed (RF - c) 
conditions grown at five locations in India during 1993 to 1995. 

7.3.2.2 Soil fertility factor (SLPF) 

Once the crop cycle was adjusted in the model, changes in the SLPF factor were 

necessary to bring the predicted values of biomass closer to the observed. No 

changes in LA1 and SLA (genetic coefficients of ICG 476) were required to 

pred~ct the biomass. Soil fertility factors used for calibrating the model to predict 

the observed biomass and pod yields are presented in Table 7.7. The SLPF 

values varied from year to year at a given location and between locations 

indicating the site to site variability in the study. The values ranged from 0.58 

(Hyderabad) to 1.19 (Jalgaon). Using the yearly SLPF and location SLPF 

(average of three years), both biomass (Fig. 7.5a) and pod yield (Fig. 7.5b) were 

predicted 
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Table 7.7 Yearly and location average SLPF values obtained by calibrating 
the model for five locations used in the study. 

Location Soil fertility factor (SLPF) 

HYD 
1993 
1994 
1995 
Average 

TPT 
1993 
1994 
1995 
Average 

VRC 
1994 
1995 
Average 

DRG 
1993 
1994 
Average 

JAL 
1993 0 93 
1994 113  
1995 1 1 9  

1 08 A'E!%l- -- - 

Results indicate that the deviations were randomly scattered above and below 

the reference zero line. Deviation results either with yearly SLPF or with location 

SLPF were similar. The average SD value of 2528 kg ha.' and 1089 kg ha.' for 

observed biomass and pod yield, respectively, was used as the acceptable 

envelope. More than 95% of the points lie within the acceptable envelope. This 

indicates that a location average SLPF can be used in PNUTGRO to predict the 

crop growth, avoiding yearly calibration of the model. 
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Observed biomass (kg ha.') 

-3267 
0 1000 2000 3000 4000 5000 6000 

Observed pod yield (kg  ha^') 

Fig. 7.5 Deviations of observed values from predicted biomass (a) and pod 
yield (b) using yearly SFPL (0) and location SLPF (o) ,  irrespective of the 
irrigation treatment, at five locations in India during 1993 to 1995. 
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7.3.2.3 XFRT 

There was no need to change the built-in XFRT factor in the model. A value of 

0.8 estimated pod yields and crop biomass to an acceptable extent as described 

in section 7.3.3. 

7.3.3 Simulation of biomass, pod yield and HI in  IR and RF at five locations 

The dev~ations of observed from predicted values of biomass, pod yield and HI 

are presented in Fig. 7 6, Fig. 7.7 and Fig. 7.8, respectively. The deviations of 

pod yield against the number of days with high temperature at various locations 

are presented in Fig 7 9. The percentage of points with the acceptable envelope 

(+SD) varied with the component predicted. Results show that the deviations for 

pod y~eld and biomass were randomly scattered above and below the reference 

zero line and more than 90% of points lie within the envelope indicating the 

performance of the PNUTGRO model. The predicted values of biomass and pod 

yield under rainfed conditions lie more closely to the zero line, indicating greater 

confidence of model predictions under rainfed conditions. 

Predicted values for irrigated treatments are scattered all over the envelope. 

Biomass was predicted with more confidence than the pod yields. Predictions 

made using SLPF of each year or average SLPF for three years over a given 

location did not alter the deviations of the predicted from the observed. The 

model was less efficient in predicting the HI for the various locations for which the 

simulations were carried out. More than 35% of the deviations lie beyond the 

acceptable envelope. 
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0 2000 4000 6000 8000 I0000  12000 

Observed total b~omass (kg ha ') 

Fig. 7.6 Deviation of total observed values from predicted biomass durir 
1993-1995 in irrigated (+) and rainfed (0) treatments from five locations 
India. The envelope of acceptable precision is kSD. 

Observed pod yield (kg ha") 

Fig. 7.7 Deviation of total observed values from predicted pod yield during 
1993-1995 in  irrigated (4) and rainfed (0) treatments from five locations in 
India. The envelope of acceptable precision is +SD. 
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Observed harvest index 

Fig. 7.8 Deviation of observed values from predicted harvest index during 
1993-1995 in irrigated (*) and rainfed (0) treatments from five locations in 
India. The envelope of acceptable precision is iSD. 

Number of days with high temperature (>34"C) 

Fig. 7.9 Effect of number of days with high temperature on deviation of 
observed from predicted harvest index during 1993-1995 in irrigated (+) and 
rainfed (0) treatments from five locations in India. The envelope of 
acceptable precision is +SD. 

252 



Modelling study 

The number of days with high temperature could not account for the deviation in 

the predicted pod yields from observed. No particular pattern of distribution 

deviation, either increasing or decreasing could be observed in these locations. 

7.3.4 Water stress x high temperature 

Simulations were also carried out for the field experiment done in summer of 

1999 in Red loamy soils of ICRISAT, Hyderabad, India, described in Chapter 6. 

In this simulation study, the ability of PNUTGRO to account for the effects of high 

temperature and its interaction with water stress were tested. The T I D I  

treatment (control) was used to calibrate the model for each of the genotypes, 

TMV 2 and ICGS 11, used in the study. The deviations of the observed values 

from predicted are presented in Fig. 7.10 and 7.1 1 

The predictions indicate that the model was capable of predicting the pod yields 

and harvest index with a greater precision than the biomass. Biomass prediction 

for high temperature treatments T2D1, T2D2 and T4D2 in both the genotypes 

was lower compared to the observed values (Fig. 7.10a). The predicted values 

for biomass in other treatments were within the acceptable envelope. For pod 

yleld (Fig. 7.10b) and harvest index (Fig. 7.1 l a )  predictions, less than 20% of the 

deviations were outside the acceptable envelope and the spread of the 

observations was greater. 

Increase in temperature (TI  to T4) or combination of temperature with water 

stress treatment resulted in the deviations of observed from predicted to be 
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Observed biomass (kg ha.') 

-1 500 
0 500 1000 1500 2000 2500 

Observed pod yield (kg ha-') 

Fig. 7.10 Deviation of total o b s e ~ e d  from total predicted biomass (kg ha") 
(a) and pod yield (kg ha-') (b) during summer of 1999 at ICRISAT, 
Hyderabad, India (Chapter 6). The envelope of acceptable precision is the 
standard deviation (S.D.). (Black - TMV 2, Red - ICGS 11, closed - 100% 
ASM (Dl), open - 40% ASM (DZ), square - T1, circle - T2, triangle - T3, 
diamond - T4). 
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Observed pod number (m-') 

Fig. 7.11 Deviation of total observed from total predicted harvest index (HI) 
(a) and pod number (m") (b) during summer of 1999 at ICRISAT, 
Hyderabad, India (Chapter 6). The envelope of acceptable precision is the 
standard deviation (S.D.). (Black - TMV 2, Red - ICGS 11, closed - 100% 
ASM (Dl), open - 40% ASM (DZ), square - TI, circle - T2, triangle - T3, 
diamond - T4). 
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randomly distributed and moved the deviations farther away from the zero line. 

These deviations were much greater for biomass under water stress than 

irrigated treatments. Observed pod number (m-2) deviated significantly from the 

predicted number. Figure 7.10b shows that 50% of the deviations of pod number 

lie outside of the acceptable envelope. The model under-predicted the pod 

number in all the treatments. Of the outliers, 65% are from water stressed 

treatments. The model predicted the values for TMV 2 with greater confidence 

than for ICGS 11. The deviations recorded were greater in the high temperature 

treatments T3 and T4 of ICGS 11 maintained at 100% ASM. Although the 

deviation was less when T3 and T4 were subjected to 40% ASM, but remained 

outside the acceptable envelope. 

7.4 DISCUSSION 

The simulation predictions of multilocation experimental data indicated that the 

factor SLPF can be used to calibrate PNUTGRO in order to give a reliable 

estimate of groundnut yields in a given location. Crop yields for a given location 

can be predicted by altering the single factor SLPF, if soil characters of the area 

are known and the weather predictions made are a reliable estimate 

corresponding to the base climate for the location. Such simple, location specific, 

factors are essential if reliable yield forecasts and predictions are to be made for 

large cultivated areas (district or state) such as those in India. 

The SLPF factor accounts for the variation in the soil fertility from site to site and 

for the biotic stress factors (insect and disease damage) (Boote et a/. ,  1998; 
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Singh et a/., 1994a). The model has a well-built subroutme for predicting the 

nitrogen use by the crop supplied in either inorganic or organic form or through 

symbiotic nitrogen fixation (Boote et a/., 1998). Hence, the model can only 

account for the location to location variation in the soil nitrogen availability and 

supply. The model does not account for the use of other major nutrients like P 

and K and the role of other essential nutrients for groundnut growth and 

development. The inability of the model to account for pest and disease damage 

further weakens the model capability to pred~ct biomass and pod yield. The use 

of this SLPF factor weakens the dynamic simulation capability of the model when 

coupled with weather prediction models to predict groundnut yields (Hansen and 

Jones, 2000). Hence, improvement of the soil routines of PNUTGRO and 

incorporation pest routines is essential if the use of SLPF is to be avoided to 

couple the model with weather prediction models 

Climate change is inevitable (IPCC, 2000) resulting in a severity of water stress 

and extremes of high temperature in the SAT. Crop models can act as 

surrogates to estimate the crop yield shifts in future climates predicted by the 

climate models. The multilocation simulation study and the simulation of the 

results from Chapter 6, discussed below, indicate that PNUTGRO needs to be 

modified for yield predictions under future climates. 

Of the irrigated and rainfed treatments simulated by the model, greater precision 

in prediction is attached to those under rainfed conditions. The greater precision 

under rainfed conditions is required for yield predictions as > 80% of groundnut 
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crop area in India is under rainfed cultivation (Agricultural Situation in India). 

Such greater precision for prediction of biomass and pod yield under rainfed 

conditions compared to irrigated treatments was also observed by Singh et a/. 

(1994a) in the SAT of India. The reasons for this were attributed to the greater 

pest and disease damage, which the model cannot account for, in the irrigated 

treatment compared to rainfed treatment. Similar observations for higher 

incidence of pest and disease were also made at different locations In irrigated 

treatments. 

Simulations of the effects of water stress x high temperature indicated that the 

predicted values were mostly lower than the observed values. The deviations 

were greatest in the high temperature treatments. The predictions were close to 

the zero line for TMV 2, a moderately heat tolerant cultivar, but the observed 

values of ICGS 11, also a heat tolerant cultivar, were much higher than the 

predicted values. This difference between genotypes was due to higher biomass 

and pod yield observed in ICGS 11 than in TMV 2 under field conditions (Chapter 

6). The results from the field study show that under high temperature conditions a 

tolerant cultivar produces large biomass and in turn results in higher pod yield 

without a signifcant change in the harvest index. 

The model was unable to account for the excessive vegetative growth under high 

temperature conditions and faded to identify the genotypic differences in 

temperature response. The main reason for this is that there are no crop-specific 

subroutines for temperature response in the model. The PNUTGRO uses the 
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source code of CROPGRO, which is for a family of legumes - soyabean, 

groundnut, dry bean and chick pea. There is a common FORTRAN code, all 

species attributes are input from species files, as well as ecotype and cultivar 

files. Many of the subroutines such as photosynthesis, partitioning have been 

derived from soyabean and modified to suit groundnut (Boote etal., 1986). 

In the words of model developers (Boote et a/., 1999): "We have less information 

on differential phase sensitivity to temperature in the groundnut and dry bean 

model, but we believe that the basic concept is correct and the approach gives 

the needed flexibility". The results presented in the thesis (Chapters 3, 4, 5 and 

6) and by Craufurd et a/. (2000); Vara Prasad et a/. (1998, 1999b, 2000a) 

indicate that groundnut behaves differently from other legumes in terms of having 

greater optimum and ceiling temperatures for various growth and reproductive 

processes. These results also show significant genotypic differences for 

temperature response. Hence, temperature response functions in PNUTGRO 

need to be modified for physiolog~cal and growth processes In groundnut to 

simulate the ex~erimental results. 

Another reason for greater deviations in biomass and pod yield of ICGS 11 when 

compared to TMV 2 under high temperature can be attributed to the carbon- 

based nature of PNUTGRO model (Boote et a/., 1998, 1999). As vegetative 

growth is under-predicted by the model under high temperature, a decrease in 

vegetative growth reduces the amount of assimilates available for the addition of 

new classes or cohorts of pods that are added on a daily basis (Boote et a/., 
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1986). Thus, addition of pods is stopped in the model under high temperature 

conditions. Under field conditions, the addition of flowers and pegs, and in turn 

pods, is reduced only moderately in TMV 2 and not stopped in the tolerant 

cultivar ICGS 11. However, the partitioning of assimilates required for pod 

development is severely reduced in TMV 2 and not in ICGS 11 Deviations for 

pod number are much greater in ICGS 11 than in TMV 2 as the pod number 

produced under field conditions by ICGS 11 is significantly greater than TMV 2 

(Chapter 6). Therefore, the partitioning function in the PNUTGRO should be 

modified to account for these temperature and genotype effects 

The model detects that at higher than optimum temperature, peanut exhibits poor 

fruit formation and poor partitioning (Boote et a/ . ,  1998). However, the model 

failed to account for the pod number difference between the tolerant and 

susceptible genotype. This is because flower production and the rate of pod 

production in PNUTGRO is a set number, which is not genotype specific It can 

be observed from Chapters 3 and 6, and from Craufurd et a/. (2000) that 

flowering pattern and rate are genotype specific within a given ecotype. 

Incorporating certain genotype specific coefficients that can identify the rate and 

pattern of flowering of a given genotype would make the model more sensitive to 

high temperature environments. 

7.5 CONCLUSIONS 

The simulation study shows that SLPF (soil fertility factor) can be used as a 

location specific variable for forecasting or predicting the yield of irrigated and 
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rainfed groundnut in the SAT. The study suggests that there is a need to modify 

the temperature response functions in PNUTGRO to make them reliable 

predictor of groundnut growth and development in the SAT. Genotype specific 

coefficients for flowering are necessary In the model to clearly identify the 

genotype differences in pod yield for a given environment The modifications for 

temperature response are essential to predict groundnut yields under current and 

predicted hot climates. 



CHAPTER 8 

GENERAL DISCUSSION 



General discussion 

Crop productivity in the SAT is often limited by water stress (WS) and high 

temperature (HT). The occurrence of these two stresses is widespread in areas 

where groundnut is cultivated (Ong, 1984, Greenberg ef a/., 1992). Flowering 

and pod development stages are critical in groundnut growth and development 

susceptible to water (Williams et a/. ,  1986; Stirling eta/ .  1991; Reddy and Reddy, 

1993) and high temperature stress (Vara Prasad et a/. 1998, 1999a, 1999b, 

2000). The spread of groundnut cultivation to non-traditional areas in Rajasthan 

and Gujarat states in lndia (Fig. 8.la), due to increase in area under irrigation 

(Fig. 8.1 b), is increasing the risk of exposure to environmental extremes. 

The current environmental extremes are likely to increase in severity under the 

predicted climatic change scenarios (IPCC, 2000). In its assessment of climate 

change, IPCC (2000) stated that " although it is not clear which regions are to be 

most affected by climate change, the ones that most suffer will lie near or in the 

tropics". M~tchell and Hulrne, (2000) in their study on climate predictions indicate 

a 6°C increase in current mean temperature during this century of countries like 

India. Hence, it is necessary to sustain and increase productivity of nutrition rich 

crops like groundnut to feed the ever-growing population in these vulnerable 

regions. For example, the population of lndia crossed a billion In May 2000. 

Groundnuts are also a very valuable fodder both, as hay and cake, and animals 

will benefit from sustained productivity. 
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Fig. 8.1 Districts with groundnut cultivation in 1966 (A) and in 1990 (6). 
Arrows point spread of groundnut cultivation to areas with extreme 
climates (Source: Agricultural Situation in India). Not to scale. 



General discussion 

Year 

'ig. 8.2 Yearly area (- m ha), production (- m ton's), productivity (- kg ha.') 
md percentage area under irrigation (-) of groundnut in India from 1951 to 
1998. (Source: http I l w  nlc ~nlagr~cooplstat~st~cs/ground htm). 
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Studies conducted so far to improve productivity of groundnuts have 

concentrated on the individual effects of water stress (Nageswara Rao et a/., 

1988; Stirling ef a/., 1991; Wright et a/., 1991; Chapman et a/., 1993a) or 

temperature stress (Ketring, 1984. Ong, 1986; Craufurd eta/ . ,  1999; Wheeler et 

a/., 1997; Vara Prasad et a/., 1998), even though both stresses occur together in 

groundnut growing regions. Therefore, it is necessary to identify the role of each 

of these stresses. separate and combined, in reducing yields in SAT, and identify 

their effects on growth, development and the physiological processes responsible 

for yield reductions. 

Duncan et a/. (1978) gave the simple yield model (equation 8.1) to describe the 

yield of groundnut, 

Ypod = PCD~ k.11 

where, Ypod  is pod yield, p is partitioning or harvest index (HI), C is crop growth 

rate and D, is reproductive duration. The components of this equation are 

controlled by various physiological processes, identified in this study, as shown in 

the Fig. 8.3. The main factors that determine the yield of a crop are its genotype 

and the environment. In this study, we see how the genotype and the main 

environmental factors - temperature and water stress, control groundnut yield. 

We also discuss the measures required to sustain yield in SAT. 

Water stress x high temperature interaction studies were carried out under both 

controlled environment (Chapter 3) and field conditions (Chapter 6). Water stress 

under both controlled environment and field conditions reduced the vegetative 
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1 1 1 Ln i b i l i t y  1 1 
Photosynthesis Feedback inhibition Flower number 

Respiration Pod number Rate of flowering 

Fig. 8.3 Effect of temperature (r),  water stress (v)  and genotype (V) on 
the physiological processes identified in this study and their influence on 
the components of Duncan et a/. (1978) pod yield model. 
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growth due to a reduction in crop growth rate (C). High temperature (37OC) in the 

controlled e~vironment had no effect on vegetative growth, while under field 

conditions temperatures greater than >40°C slightly reduced the vegetative 

growth and C. The results from these experiments reveal that there exists an 

interaction between water stress and high temperature which IS negative for 

vegetative components (C). The severity of the interaction effects depends on 

the stage of crop and the severity of stress. No interaction was found for pod 

yields in these studies (Chapters 3 and 6), although both the stresses reduced 

pod yield. These studies conclude that different mechanisms operate in inducing 

tolerance to water and high temperature stress. 

Yield reduction due to water stress (Chapter 3 and Chapter 6) is a result of 

reduced assimilate accumulation (C) and decrease in flower number. The 

reproductive duration (Dr) modifies final pod yield if successful flower production 

and fruit-set occurs during this per~od. Water stress hampered flower production 

during the Dr, thus reducing the contribution of Dr to final pod yield. Both early 

water stress and late water stress during the reproductive duration were on par 

with each other in reducing pod yields. On the other hand, the effects of high 

temperature are instantaneous resulting in decrease of pod yield. Plants recover 

after withdrawal of the heat stress and yields of plants grown in optimum 

temperature or exposed to short periods of high temperatures are similar at 

maturity. There is no decrease in assimilate accumulation (C) or flower number 

(D,) during or immediately after the withdrawal of heat stress, but a decrease in 
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pod yield occurs. Hence, reduction in pod yield can be attributed to 

instantaneous failure in fertilisation of groundnut flowers by high temperature. 

Earlier studies of Vara Prasad et a/. (1998; 1999; 2000) have identified that 

pollen production and viability to be inhibited under high temperatures. The role 

of pollen is discussed later In the chapter. 

In controlled environment studies imposition of sudden high temperature 

treatment follow a square wave pattern (Vara Prasad et a/., 1998; 1999; 2000; 

Wheeler e ta / . ,  1997, Craufurd eta/. .  1999; Chapter 3 and 5). High temperature 

treatments imposed In controlled environment act on the plant processes from 

dawn to dusk, i.e. for 12 h period, and bring out the response in the genotype 

that may not have occurred under field conditions. The reason for this is that 

temperature follow a sinusoidal pattern under field conditions (Fig. 6.1) and the 

effect of high temperature extends to a maximum of 3-4 h. A rise in temperature 

under field conditions by 7-10°C over the ambient can be obtained by covering 

the plants with clear polythene sheet (Chapter 6). Hence, it is necessary to carry 

out such high temperature studies under field conditions by using bubbles, but 

extra care should be taken to control humidity in bubbles. 

The results from the field study (Chapter 6) confirm the results from controlled 

environment experiment (Chapter 3). The interaction between water stress and 

high temperature is instantaneous on fruit-set and pod number and disappears 

as high temperature is withdrawn. The slightly greater decrease of pod number 

under field conditions (46%) compared to controlled environment (46%) 
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conditions can be attributed to the slightly longer duration (20 d) and higher 

intensity of temperature (43°C). Even though the intensity and duration of 

temperature were higher in field, the comparatively lower reduction in yield can 

be attributed to the greater tolerance of the genotypes TMV 2 and ICGS 11 used 

in the field study, which was established in the pollen study. Similar decrease in 

pod number of 50% (Vara Prasad et a/., 1998, 2000a) and 33% (Ketring et a/., 

1984) on exposure to air temperature of 38"/22"C and 35"122OC (daylnight) 

respectively were recorded in earlier studies. 

Increase In temperature during the crop growth period under field conditions 

reduced the harvest index; i.e, partitioning (p) of assimilates to the developing 

sink. As can be seen from equation 8.1, any decrease in HI is bound to reduce 

pod yields In a recent publication, Ntare eta/. (2001) established that partitioning 

(HI) is an important factor governing pod yields under high temperature 

conditions of Sahelian environments of Africa. Yield improvement under non- 

stress conditions in groundnut has been achieved through increase in partitioning 

(HI) (Duncan et a/., 1978). This improvement in HI was made possible by 

manipulating phenology - early flowering, pegging and pod development (Harris, 

1988; Mathews et a/., 1988; Chapman, 1989) that are components of the 

reproductive duration (D,) 

The reasons for decrease in HI under high temperature have been established in 

other crops. Reduction in HI due to high temperature was recorded in cowpea 

(Nielsen and Hall, 1985; lsmail and Hall, 1998). High temperature accelerated 
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grain development and reduced the duration of cell division and dry matter 

accumulation in wheat (Nicolas et a/. ,  1984). Under high temperature conditions 

conversion of sucrose into starch and reducing sugars is either inhibited or 

slowed down in the sink. This feedback inhibition from sink reduces the amount 

of assimilates translocated to the developing grain (wheat - Nicolas e ta / . ,  1984; 

tomato - Dinar and Rudich, 1985). The enzymes involved in starch and sugar 

metabolism (e.g. AGPase, Sucrose synthase, Soluble starch synthase. 

Glucokinase) are reduced in their activity by high temperature. In addition to this, 

a greater demand from the already established sink results in decrease of 

ass~milates translocated to the newly formed sink resulting in their abortion (Dinar 

and Rudich, 1985). The role of these various processes in groundnut yield 

reduction due to high temperature is yet to be established. 

To bring out the true genotypic differences for heat tolerance, Lev~tt (1980) 

suggested that the plants should be exposed to acclimating temperatures prior to 

imposition of heat stress treatments. To account for this an acclimation study was 

carried out under controlled environment conditions (Chapter 5). In this study, 

acclimating temperatures (34°C) for 6 d prior to high temperature (40°C) 

treatments did not modify the reaction of groundnut genotypes to high 

temperature. Hence, the genotypic tolerance of 55-437 over ICGV 921 16 to high 

temperature was due to the base heat tolerance. Similar observations to this 

were made in wheat genotypes by Stone and Nicolas (1995). The acclimation 

study also revealed that later stages of development i.e. post-anthesis are more 

tolerant to high temperature than the pre-anthesis i.e. microsporogenesis. This is 
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supported by the observations made by Slafer and Rawson (1995) that cardinal 

temperatures for phenological stages rise steadily with plant development. They 

also suggested that later the phase or development or process in the crop cycle, 

the higher the base temperature. 

The genotypes used in the experiments reported here differed in their relative 

tolerance to water stress and high temperature. The reasons for differences in 

yield reduction in groundnut genotypes under water stress are well established, 

and specific characters have been identified to select genotypes for water stress 

tolerance, like SLA, HI and biomass (Mathews eta/ . ,  1988; Williams eta/., 1986; 

Nageswara Rao etal., 1988; Wright etal., 1991; Nigam et a/., 1991). Genotypes 

in controlled environment ~nteraction study differed in their tolerance to water 

stress. ICGV 86015 was more tolerant than ICG 796, due to relatively quicker 

and greater flower production and greater partitioning of biomass to pod yield in 

ICGV 86015 than in ICG 796, even though ICG 796 had higher biomass. No 

such genotypic differences in response to high temperature could be recorded in 

the controlled environment study. The acclimation experiment showed that 

genotype tolerance to high temperature is due to base tolerance, and that 

genotypes ICGV 86015 and ICG 796 had similar tolerance to high temperature. 

In the field study genotypes differed significantly for pod yield under both water 

stress and high temperature. Genotype ICGS 11 was tolerant to high 

temperature compared to TMV 2. The lesser decrease in pod yield of ICGS 11 

with increase in temperature during the crop growth was due to its maintenance 
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of higher HI (p) with increase in temperature. Flower number also slightly 

increased in ICGS 11. In contrast, flower number decreased, fruit-set and pod 

number, all contributing to Dr, decreased in TMV 2. In TMV 2 a drastic fall in HI 

(p )  with increase in high temperature was recorded resulting in significantly lower 

pod yields. Hence, decrease in pod yield under field conditions is mainly due to a 

decrease in HI or partitioning (p) of biomass to pod y~eld; the reasons for such a 

decrease have been explained earlier. These studies thus confirm that the role of 

reproductive duration (D,) in inducing tolerance to high temperature and water 

stress. The genotypes tested in this study are summarised in table 8.1 for their 

tolerance to high temperature and water stress. 

Table 8.1 Summary of the genotype contribution to components of 
Duncan's equation in inducing tolerance or susceptibility for high 
temperature and water stress. 

-. - - - - - - - - -- 
Components of Duncan's Tolerance to 

Genotype . - --- - 

HI c HIgh water stress Dr temperature --- 
ICGV 86015 *** t* *** MT T 

ICG 796 ** *** MT S 

TMV 2 I* ** ** S MT 

ICGS 11 *** **. **, T T 

55-437 ** *** T T 

ICGV 92116 - *** ** S S 

\ - -  ---- -- '  ' . 
genotype, increase in star number indicates increased contribution; .S = 
susceptible; MT = moderately tolerant; T= tolerant) 
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High temperature tolerance has been identified in groundnut genotypes in this 

study and by other researchers (Greenberg et a/., 1992; Wheeler et a/., 1997; 

Vara Prasad et a/., 1998; 1999; 2000; Craufurd et a/., 1999; 2000; Ntare et a/. 

2001). An effective breeding program is required to screen groundnut genotypes 

for high temperature tolerance. Before a breeding program is designed, Hall 

(1990) suggested that: (1) the target environment, (2) type of hot weather, (3) 

stage of growth and processes, and (4) inheritance of high temperature tolerance 

at critical stage need to be identifled. The characters that identify tolerance of the 

genotype should be easily transferable either by traditional breeding or by 

molecular biology techniques and strongly associated with high pod yield. Some 

simple characters, for example SLA for water stress (Nageswara Rao et a/., 

1988), need to be identified to screen the genotypes for high temperature 

tolerance 

Tolerance to high temperature exists in several other crops that was associated 

with specific genes. In cowpea genotypes, Prima and TVU 4552, tolerance to 

high temperature during pod set is due to a dominant gene (Marfo and Hall, 

1992) while recessive genes confer tolerance to high temperature during floral 

bud and seed coat development (Patel and Hall, 1988; Hall, 1992). This genetic 

tolerance to high temperature was l~nked to membrane thermal stability in 

cowpea (Ismail and Hall, 1999). The genotypes with high temperature tolerance 

at flowering and pod set had less electrolyte leakage than those susceptible to 

high temperature at flowering or at both the stages. 
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The genes for tolerance to high temperature are linked to genes controlling 

growth habits in common bean. Shonnard and Gepts (1994) recorded that gene 

controlling growth habit (determinate or indeterminate) either is linked to factor(s) 

affecting high temperature tolerance during flower bud formation or has 

pleiotropic effects. Genotypes also differ in the number and nature of gene action 

for high temperature tolerance. In snap bean cv. PI297079 a single dominant 

gene is responsible for tolerance, while in P1151062, two genes with epistatic 

action confer tolerance. These identified genes ~n the crops have been 

successfully used in develop~ng tolerant cultivars to high temperature. Genotypic 

differences for partitioning and crop growth rate in groundnut were identified by 

Ntare et a/. (2001). It thus necessary to establish the genetic basis for variability 

in heat tolerance based on reproductive traits in the groundnut germplasm, which 

can than be used in the breeding of heat and drought tolerant cultivars for the 

areas with climate extremes in SAT. 

Pod yield was reduced in genotypes described in Chapter 3, Chapter 5 and 

Chapter 6 relative to their tolerance to high temperature. Under high temperature, 

there was no decrease in source (C) or partitioning (p) or flower number (D,) 

during the treatment period to account for instantaneous pod yield reduction. To 

account for this variation, 21 groundnut genotypes were screened for high 

temperature tolerance. Genotypes were screened for their membrane 

thermostability (MTS) at 54°C measured as percentage relative injury and for 

pollen germination and pollen tube growth in temperatures ranging between 10" 

and 45°C. 
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The selection of genotypes for the screening study was based on their known 

tolerance to water stress and high temperature. The genotypes that were well 

established in the tropics and semi-arid tropics (55-437 grown in sub-Saharan 

Africa, TMV 2 grown in SAT of India) showed tolerance to high temperature. 

Genotypes 55-437, TS 32-1, ICGS 11, TMV 2 and ICGV 93277 were grouped 

(based on PCA analysis) as highly tolerant and genotypes Kadiri 3, ICGV 921 16, 

ICGV 921 18 were grouped as highly susceptible, while others were in between. 

There was no significant correlation between the genotypes for their tolerance to 

high temperature and water stress. The water stress tolerant genotypes were 

scattered depicting their varying high temperature tolerance (Fig. 8.4). This study 

indicates that eventhough water stress and high temperature occur together, the 

mechanisms operating to induce tolerance to each of these stresses are 

different 

A moderate correlation was recorded only between MTS and percentage pollen 

germinated, indicating that membrane disruption due to high temperature 

reduces pollen germination resulting in failure of fertilisation. Earlier studies have 

shown that plasmamembrane integrity is associated with pollen fertility (Heslop- 

Harrison, 1970; Heslop-Harrison et a/.. 1984) The optimum temperature for both 

pollen germination and pollen tube growth for genotypes examined in this study 

ranged from 24" to 37°C indicating the pollen ability of some genotypes to 

germinate and elongate pollen tubes normally even under high temperature 

(>34"C). 
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ICGV 93269 
- 

f c v c , ~ : < $  . .11 GL 912> 

TML " 1 ~ ~ ~ 8 2 7 7  1 ICGV92121 I I 

ICGV 93255 . 

First PCA score (40.6%) 

Fig. 8.4 First and second Principal Component Analysis (PCA) scores for 
the identification of genotype response to high temperature. Genotype with 
labels in blue are water stress tolerant and those in red are susceptible, 
tolerance of others is yet to be established. The latent vectors are indicated 
by red lines showing the direction (angle) and magnitude (length). (RGER- 
reduction in pollen germination at 40 "C compared to values at optimum 
temperature; RPTL- reduction in pollen tube length at 40 OC compared to 
values at optimum temperature; Tmin, Topt and T,, are cardinal 
temperatures for pollen germination (GER) and pollen tube length (PTL); 
1Rq,2PTL - reciprocal of time to establish 50% of pollen tube length). 
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It is clear from the research results presented in the thesis that water stress and 

high temperature decrease pod yields of groundnuts in the semi arid tropics. 

Hence, breeding for high temperature tolerance into the already existing water 

stress tolerant groundnut genotypes is essential to improve groundnut yields in 

the SAT. Before taking up the time consuming and resource intensive breeding 

programme, it is essential to predict the extent of yield reduct~ons in various 

groundnut growing regions in India. 

A test of PNUTGRO model (Boote et a/., 1986; 1988; 1989) to predict water 

stress effects was carried out using multilocational data from five locations in 

lndia (Chapter 7). Simultaneously, the model was also evaluated for its ability to 

predict the results (biomass, pod yield and pod number) obtained in field study 

(Chapter 6), i e. for high temperature and its interaction with water stress. The 

predictive ability of the model was good under rainfed conditions of SAT, but poor 

for the irrigated crop performance. Good model performance under water stress 

conditions is essential as 80% of groundnut cultivated is under rainfed conditions 

in India. The failure of the model to predict biomass and pod yield under irrigated 

conditions was mainly due to the SLPF factor (soil fertility factor) that accounts 

for all the unaccounted variation (soil fertility and biotic stress) in the model. Thus 

it is essential to improve the nutrient sub-routines and incorporate pest sub- 

routines to improve the predictive ability of the model under irrigated conditions, 

as area of cultivated groundnut under irrigation is increasing in lndia (Fig. 8.lb). 
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Improvements in the nutrient and pest sub-routines would reduce the need for so 

much calibration. It would also avoid the aggregation of errors imposed using 

SLPF. The simplified calibration process will then allow easy coupling of the 

model to weather generators to predict groundnut yields under current and future 

climate scenarios with greater accuracy. The model now used for homogeneous 

plot predictions can be scaled up for regional and national yield predictions 

(Hansen and Jones, 2000). 

The temperature response functions in PNUTGRO for vegetative growth peaks 

at 28°C and any increase in temperature reduces the vegetative growth (Boote et 

a/., 1998) However, under field conditions vegetative growth continued even at 

temperatures ~ 4 0 ° C .  The reasons for this could be due to the fact that sub- 

routines for photosynthesis and many other physiological processes were 

adapted from soybean (Boote et a/., 1986), a more sensitive crop to high 

temperature when compared w~th groundnut (Srinivasan ef a/. ,  1996). The model 

process rates, both chemical and biochemical, are less dynam~c than those 

under field conditions. Mean temperatures over a day are used to simulate the 

processes. However, the rate of mean temperature is different from mean of the 

rate over the different temperatures in a day (Allen, 1988). Thus the polynomial 

temperature sum equations used in models can be replaced by a rate sum, 

specific for each process to give a more reliable prediction of various growth 

processes (Tijskens and Verdenius, 2000). 
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The pod yields predicted by the PNUTGRO model were less than those recorded 

in the field study. The genotype differences for pod yield observed under field 

conditions were also not accounted for by the model. This was because the 

model did not accurately predict pod number at high temperature. The decrease 

in pod number in model is due to decrease in the carbon pool under high 

temperature. A decrease in photosynthesis and increase in respiration under 

high temperature would reduce assimilates available for pod addition. Thus, the 

addition of pods as new classes or cohorts on a daily basis is h~ndered. The 

failure of the model to account for genotype differences to high temperature is 

due to lack of coefficients, which determine the rate of flowering in the 

genotypes. Recently Craufurd et a/. (2000) have shown that the variation in 

genotype tolerance to high temperature is due to the timing and the initial rate of 

flowering The genotypes used in the study have confirmed that differences in 

pattern and rate of flower production are essential in providing tolerance to high 

temperature. 

The model also lacks the ability to account for the sterility induced under high 

temperature as pollen fail to fertilise ovary. Hence, the model cannot distinguish 

between a tolerant and susceptible genotype based on the pollen tolerance 

identified in this research. The modified bi-linear responses of the pollen to 

temperature can be incorporated into PNUTGRO to increase its sensitivity to 

high temperature. Genetic coefficients that account for this mechanism if 

incorporated will enable the G x E interaction apparent in the models. 
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The observed flowering patterns of genotypes and pollen response to high 

temperature need to be incorporated in the model to improve its predictive ability 

for high temperature effects and climate change scenarios. The rapidly 

developing understanding of groundnut physiology responses to high 

temperature should be used to improve the PNUTGRO model through efficient 

collaboration between physiologists and modellers. 

8.1 Future Research 

The thesis indicates that base tolerance governs the response of genotypes to 

high temperature and that there exist differences in tolerance of developmental 

stages. Hence, studies are required to identify the nature of tolerance and the 

genes involved in ~nducing this tolerance. The thesis also shows that different 

mechanisms operate to induce tolerance to high temperature and water stress in 

groundnuts. Further experiments are required to understand the interaction 

between water stress and high temperature, and their combined inheritance. 

Research presented in this thes~s identifies specific processes (e.g, pollen 

germination and tube growth) affected by high temperature. Studies are essential 

to identify the proteins or pathways in determining genotypic variation in 

tolerance. Studies should then be carried out to identify the genes involved in 

activating the tolerance proteins or pathways. 

Research on basic physiological processes like photosynthesis and respiration 

response to temperature should be undertaken to define cardinal temperatures 
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for these processes. The response functions can then be incorporated into the 

currently existing groundnut models to improve the prediction of growth under 

future climate scenarios. 

Further research is also required to incorporate genetic coefficients for the 

pattern and rate of flower production into the existing groundnut models identified 

in this study in order to give a realistic estimate of sink establishment. Process 

level sensitivity (pollen germination and tube growth) of reproductive components 

to temperature should also be incorporated into groundnut models, to account for 

short and extreme high temperature events, for use under predicted climate 

change scenarios. 

The thesis thus highlights the necessity for further research on physiology, 

growth and development in response to high temperature in groundnuts. This 

understanding of physiology should then be incorporated in crop models, for a 

reliable prediction of groundnut yields in areas with high temperatures under 

future hot dry climates of tropics. 
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