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ABSTRACT 
 The present research on the “Characterization of Cry IIa transgenic chickpea lines and 

their interaction with natural enemies of Helicoverpa armigera (Hubner)” was carried out 

under laboratory and field conditions at the International Crops Research Institute for the 

Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India, during 2011 – 14.  

The transgenic plants suffered significantly lower leaf damage as compared to the 

non-transgenic plants. The larval survival and weight gained by H. armigera larvae after 5 

days was significantly reduced on transgenic lines as compared to that on non-transgenic 

chickpeas during October and November plantings 2011-12 and 2012-13. The transgenic 

lines BS5A.2(T2) 19-1P2 and BS5A.2(T2) 19-2P1 exhibited significantly lower leaf damage 

rating, larval survival and mean larval weight under laboratory conditions.  

In glasshouse conditions, BS5A.1(T2) 18-1P1 suffered significantly lower leaf 

damage and mean larval weight was also reduced but the larval survival of H. armigera was 

significantly reduced on  BS5A.2(T2) 19-2P1. Significant differences in grain yield were 

observed between transgenic and non-transgenic plants infested with H. armigera. 

BS5A.2(T2) 19-2P1 had the highest dry matter weight, pod weight, seed weight and number 

of seeds formed as compared to the other transgenic and non-transgenic chickpea lines under 

infested and un-infested conditions.  

The neonate larvae fed on artificial diet with BS5A.2(T2) 19-2P1 leaf powder 

exhibited lowest larval survival, larval weights at 5 and 10 days after initiation (DAI) and 

pupal weights as compared to insects reared on diets with leaf powder of non-transgenic 

plants and showed maximum resistance to H. armigera. The survival and development of 

third-instar H. armigera during 2012-13 was significantly reduced in insects reared on diets 

with leaf powder of  transgenic chickpea BS5A.1(T2) 18-1P1 as against those reared on non-

transgenic chickpeas and showed high levels of resistance to third-instar larvae of H. 

armigera.  

Maximum amount of protein was recorded in ICC 506EB and among the transgenic 

lines, the protein content was highest in BS5A.1(T2) 18-2P1. The amounts of carbohydrates 

were significantly higher in the leaves of ICC 506EB as compared to that on transgenic lines. 



The highest amount of lipids were recorded in BS5A.2(T2) 19-3P1 than in BS5A.2(T2) 19-

3P2. There were no significant differences in phenol and tannin contents between the 

transgenic and non transgenic chickpea lines. 

Significantly higher amounts of oxalic acid were recorded in BS5A.2(T2) 19-1P2 and 

BS5A.2(T2) 19-3P1 than in BS5A.2(T2) 19-2P1. Highest malic acid content was recorded on 

BS5A.1(T2) 18-1P1 and lowest on BS5A.2(T2) 19-3P2. Among the non-transgenics, the 

maximum amount of oxalic acid was observed in ICC 506EB, followed by Semsen. Oxalic 

acid content was positively correlated with larval survival and larval weight. A significant 

and negative association was observed between the amounts of the malic acid and leaf 

feeding, larval survival and larval weight.  

Chlorogenic acid, gentisic acid, ferulic acid, naringin, naringenin and quercetin had a 

positive but non-significant correlation with resistance to H. armigera. There was a positive 

and significant association between 3,4 dihydroxy flavone, genistein, formononetin and 

biochanin A with leaf damage, larval survival and larval weight. 

            The amount of CryIIa protein was highest in the fresh leaf samples, followed by green 

pod wall, green seeds, dry pod wall, dry seeds and dry stems. In dry roots the protein 

concentration was quite low whereas in soil samples, it was below detectable levels. The 

CryIIa protein content was significantly higher in larvae fed on BS5A.2 (T2) 19-2P1 and 

BS5A.1 (T2) 18-1P1.  

           The CryIIa protein in Bt fed aphids, coccinellid grubs and Bt fed Campoletis 

chlorideae larvae was almost nil. Hence, the amount of CryIIa protein transferred from leaves 

to the non-target insects and natural enemies was negligible. The correlation co-efficient of 

CryIIa protein in fresh leaf, green pod wall, green seeds, dry pod wall, dry seeds, dry stems, 

dry roots and H. armigera larvae with leaf damage, larval survival and larval weight was 

negative and significant. 

During November 2011-12 planting, among the transgenic lines tested, the survival 

and development of C. chlorideae was significantly better when reared on H. armigera fed on 

leaves of BS5A.2(T2) 19-1P2 and BS5A.2(T2) 19-3P1. Among the transgenic lines tested, 

the survival and development of C. chlorideae was significantly better when reared on H. 

armigera fed on leaves of BS5A.1(T2) 18-1P1 and BS5A.2(T2) 19-2P1 as compared to that 

on other transgenic lines during November 2012-13 planting. 

Survival and development of C. chlorideae wasps obtained from H. armigera larvae 

fed on diets with transgenic BS5A.1(T2) 18-1P1, BS5A.1(T2) 18-2P1 and BS5A.2(T2) 19-

3P1 leaf powder was better as compared to that on BS5A.2(T2) 19-1P2 and BS5A.2(T2) 19-

3P2 lines during 2012-13. No CryIIa protein was detected in the C. chlorideae larvae, the 

negative effects of transgenic chickpeas on survival and development of C. chlorideae were 

due to the early mortality of H. armigera as a result the parasitoids failed to complete the 

development on such larvae. The survival and development of C. chlorideae was poorer 

when reared on H. armigera larvae fed on fresh leaf samples than the artificial diets 

intoxicated with transgenic chickpea leaf powders.  

The survival and development of coccinellids was reduced when fed on diets with 

0.1% of BS5A.2 (T2) 19-3P1 and BS5A.2 (T2) 19-3P2 leaf powder, but not on diets with 

BS5A.1(T2) 18-2P1 leaf powder. The direct effects of transgenic chickpeas on survival and 

development of lady bird beetles being 0.02% < 0.05% < 0.1%, respectively. 

There were no significant effects on survival and development of coccinellid grubs 

when fed on aphids reared on diets with 0.02% and 0.1% leaf powder of transgenic 

chickpeas. The survival and development was slightly affected on diets with BS5A.2(T2) 19-

3P2 leaf powder. The coccinellids fed on diets with 0.05% BS5A.2(T2) 19-3P1 leaf powder 

showed a marginal reduction in survival and development as compared to that on other 

transgenic lines during 2012-13. 



The survival and development of coccinellids was slightly affected when fed on diets 

with BS5A.2(T2) 19-3P2 leaf powder as compared to that on other transgenic lines. In diets 

with 0.1%, the survival and development was affected adversely when the coccinellid grubs 

were fed on diets with BS5A.2(T2) 19-3P1 leaf powder during 2013-14. Though there was no 

detection of CryIIa protein in Bt fed aphids and coccinellids, but there were adverse effects 

observed on survival and development. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter I 

INTRODUCTION 

Chickpea (Cicer arietinum L.) is the third most important pulse crop, grown in an area 

of 8.21 m ha, with a total production of 7.48 m tonnes globally (FAOSTAT, 2011). The crop 

is largely grown by subsistence farmers in rain-fed areas (>70 per cent), which are less fertile 

and poor in moisture retention capacity. Although, India produces about 75 per cent of the 

chickpea, the production is inadequate to meet the demand of the domestic market. India 

imports about 1,85,000 metric tons of chickpea valued at US$ 94 m (FAOSTAT, 2011) The 

demand for chickpea is projected to double from 7 to 14 m tonnes by 2020. In the next 10 

years the net import of chickpea will be close to 1.5 m tonnes to meet the domestic 

requirements. It is even more important for India, as the country’s production accounts for 67 

per cent of the global chickpea production, and chickpea constitutes about 40 per cent of 

India’s total pulse production. It is a source of high quality protein for the poor people in 

many developing countries, including India. Chickpea yields are quite low, and have 

remained almost stagnant for the past 2 to 3 decades. It is valued for its nutritive seeds with 

high protein content (25.3–28.9 per cent).  

Chickpea yields are low (400–600 kg/ha), because of several biotic and abiotic 

constraints, of which the pod borer, Helicoverpa armigera (Hubner) (Noctuidae: 

Lepidoptera) is the most important constraint in chickpea production (Manjunath et al., 

1989).  It is a major pest of chickpea in Asia, Africa, Australia and the Mediterranean region. 

Pod borers alone cause 25 to 40 per cent of the crop loss amounting US $ 325 million in 

chickpea (ICRISAT, 1992). Helicoverpa females lay eggs on leaves, flowers and young pods. 

The larvae feed on the young leaves of chickpea and the young seedlings may be destroyed 

completely, particularly under tropical climates in southern India. Larger larvae bore into the 

pods and consume the developing seeds inside the pod. The losses due to H. armigera 

magnify under drought conditions. In addition to chickpea, H. armigera also damages several 

other crops such as cereals, pulses, cotton, vegetables, fruit crops and forest trees. It causes an 

estimated loss of US $ 2 billion annually, despite the use of US $ 500 million worth of 

insecticides to control this pest worldwide (Sharma, 2005a). 

                In order to protect the crop from H. armigera damage, various pest management 

practices have been adopted by the Indian farmers. Efforts are being made to develop H. 

armigera resistant varieties by conventional breeding methods as well as modern 

biotechnological tools to develop transgenic chickpea varieties with resistance to this pest. 



The conventional control measures are largely based on insecticides. With the development 

of resistance to insecticides in H. armigera populations (Kranti et al., 2002), there has been a 

renewed interest in developing alternative methods of pest control, of which host plant 

resistance to H. armigera is an important component.  

Genetically modified plants expressing Bt δ-endotoxin genes have been developed for 

resistance to insect pests, and some of them have been deployed successfully on a 

commercial scale for pest management (Sharma et al., 2006). Transgenic cotton and maize 

with resistance to lepidopteran insects have been released for cultivation in several countries, 

and were grown on more than 100 m ha worldwide in 2012. India ranks first in the world 

having 11.1 m ha area under Bt-cotton in 2011 (>90% of total cotton area in India), followed 

by China and USA (James, 2011). 

Genetic transformation as a means to enhance crop resistance or tolerance to biotic 

constraints has shown considerable potential to achieve a more effective control of target 

insect pests for sustainable food production (Sharma et al., 2001). The δ-endotoxin genes 

from the bacterium Bacillus thuringiensis Berliner (Bt) have been deployed in several crops 

for pest management (James, 2007). Efforts are underway to develop chickpea plants with Bt 

δ-endotoxin genes for resistance to H. armigera (Ramakrishna et al., 2005; Acharjee et al., 

2010). However, concerns have been expressed that the trichome exudates in chickpea leaves 

and pods, which are highly acidic in nature (pH 2.0 – 3.5), may have a negative influence on 

the biological activity of Bt sprayed on chickpea (Bhagwat et al., 1995) or toxin proteins 

expressed in transgenic chickpea (Devi et al., 2011 and 2013). 

Cotton is the first transgenic crop commercialized in India is hybrids carrying cry1Ac 

gene of Bt for resistance to H. armigera. The cotton industry in India has highly benefited 

immensely with the introduction of Bt cotton in 2002. Cotton production in India before 

2002-2003 was about 2.55 to 2.75 mt, but over the past five years, cotton yield has increased 

by 50 per cent. In 2006, five new events, Bollgard II, Event I, GFM Cry1A, BNLA 601 and 

Event 9124, of Bt cotton expressing cry1Ac, cry1Ab, cry2Ab and cry1Ac either alone or in 

combination were approved for release in India (GEAC, 2009). Therefore, applying genetic 

engineering technologies to develop Bt chickpeas using bacterial ‘cry’ genes could be 

appropriate to protect the crop from damage by H. armigera. 

Pyramiding two or more Bt genes such as cry1Ac and cry2A in chickpea could be a 

preferred option to delay the evolution of insects with resistance to Bt due to different modes 

of action for these two genes. However, reports suggest that baseline frequency of cry2Ab 

resistance gene within populations of H. armigera (Mahon et al., 2007) is substantially higher 



than expected. Expressing cry1Ac gene in combination with cry1F gene may be effective to 

delay insect resistance because of their additive effect against H. armigera (Ibargutxi et al., 

2008). Moreover, use of hybrid Cry proteins such as Cry1Ab - Cry1Ac also conferred 

resistance to lepidopteran pest, Spodoptera exigua (de Maagd et al., 2000). Hybrid Bt protein 

containing domain I and II from Cry1Ba and domain II for Cry1IA was found to be effective 

against potato tuber moth, Phthorimaea operculella (Zeller) and Colorado beetle, 

Leptinotarsa decemlineata (Say) (Naimov et al., 2003). Development of transgenic plants 

expressing vegetative insecticidal proteins has also been found to be more effective against 

many lepidopteran pests, including H. armigera. In case of maize, it was found that Vip3A in 

combination with cry1Ab provided complete resistance to Helicoverpa zea (Boddie) under 

field condition (Burkness et al., 2010). Transgenic chickpea stacked with Bt genes such as 

cry1A along with Vip3A or hybrid Bt protein in combination with Vip3A, could be a suitable 

combination for pest management. 

The first successful genetic transformation of nuclear genome of chickpea was 

reported in 1997 using the cry1Ac gene (Kar et al., 1997). Subsequently, various research 

groups within India initiated genetic transformation of chickpea using cry1Ac gene and 

reported the generation of transgenic chickpeas (Sanyal et al., 2005 and Mehrotra et al., 

2011). A second gene, cry2Aa, was also introduced in chickpea to facilitate gene pyramiding 

with the existing cry1Ac lines (Acharjee et al., 2010). Mehrotra et al. (2011) generated 

pyramided cry1Ac and cry1Ab chickpea. 

The impact of genetically engineered insect-resistant crops on non-target organisms 

including biological control agents is one of the most widely discussed ecological effects. 

Natural enemies are of major concern as they often play an important role in regulation of 

pest populations, and are therefore of economic value. There is a concern that the insecticidal 

proteins expressed in transgenic plants may either effect the natural enemies directly (toxic 

effect) or indirectly (change in the prey or host-quality or abundance) (Romeis et al., 2006). 

The parasitoid, Campoletis chlorideae (Uchida) and the coccinellid predator, Cheilomenes 

sexmaculatus (L.) are important natural enemies of pod borer, H. armigera in grain legumes. 

It is therefore important to assess the non-target effects of Bt toxins to natural enemies of 

insect pests in different crops. 

Several studies have reported the direct and indirect effects of transgene products and 

the transgenic plants on the beneficial insects (Dutton et al., 2003; Lovei and Arpia 2005; 

Sharma et al., 2007, 2008 and Dhillon et al., 2008). The Bt toxins are not transported to the 

phloem in some crops, and therefore, insect pests such as corn leaf aphid, Rhopalosiphum 



maidis (Fitch.) and the natural enemies feeding on it are not directly affected by the Bt toxins 

(Head et al., 2001 and Dutton et al., 2002). The cotton aphid, Aphis gossypii Glover, is 

insensitive to Bt toxins, but trace amounts of Bt toxins were detected in the aphids when fed 

on Bt cotton (Zhang et al., 2006a). Presence of Cry IAc toxin in phloem sap from Bt-oilseed 

rape and in Myzus persicae Sulzer has indicated the importance of having an estimate of the 

effects of expected amounts of Bt toxins in the diets of non-target organisms predating on 

aphids fed on the transgenic crops (Burgio et al., 2007). Moreover, some Bt isolates such as 

INS 2.13, HFZ 24.8 and GU 9.1 exhibit different levels of toxicity (LC50 values of 62, 328 

and 114 ng/ml, respectively to the cotton aphid, A. gossypii (Malik and Sheikh, 2006).   

The parasitic wasp, Campoletis chlorideae Uchida (Ichneumonidae: Hymenoptera), 

parasitizes several insect species. (Yan et al., 2006; Dhillon and Sharma, 2007). The 

information on its parasitism potential, development and survival on different insect and crop 

hosts is scanty. However, under natural conditions, H. armigera is the most preferred host of 

C. chlorideae on a number of crops, viz., cotton, groundnut, chickpea, pigeonpea, sorghum 

and pearl millet (Patel and Patel 1972; Bhatnagar et al., 1982 and Kumar et al., 1994). The 

introduction of transgenic crops has raised concerns regarding their impact on natural 

enemies (Sharma and Ortiz, 2000).   

There is little information on the possible effects of transgenic crops on the generalist 

predators and host specific parasitoids in the tropics (Sharma et al., 2007). The cropping 

systems in tropics are quite diverse, and consist of several crops that serve as alternate and 

collateral hosts of the major pest, H. armigera, and other non-target insect pests, because of 

the multiplicity of crops and cropping systems, the performance and interactions of 

transgenic crops in different agro-ecosystems are likely to be quite complex. Also the issue of 

insecticide abuse and their adverse effects on insect diversity, pest resurgence and natural 

enemies is a major concern. Therefore, it is important to generate such information to take 

decisions about the impact of insecticide applications, Bt-transgenic crops and the crop 

genotypes on the relative abundance of target and non-target insect pests and their natural 

enemies. The present studies were undertaken to evaluate the effectiveness of transgenic 

chickpea lines to control, H. armigera and their interactions with natural enemies of H. 

armigera with the following objectives: 

1) Phenotyping of cry IIa transgenic chickpea lines for resistance to pod borer, H. 

armigera. 



2) Molecular and biochemical characterization of cry IIa transgenic chickpea lines for 

transgene expression. 

3) Effect of cry IIa transgenic chickpea lines on the natural enemies of H.  armigera. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter II 

REVIEW OF LITERATURE 

The legume pod borer Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera) is 

one of the most important constraints to crop production globally.It is a polyphagous pest and 

attacks more than 200 plant species including cotton, chickpea, pigeonpea, tomato, maize, 

sorghum, sunflower and a range of vegetables, fruit crops and tree species (Manjunath et al., 

1989 and Fitt, 1991).  

Host plant resistance is one of the most effective methods of pest control. However, 

the levels of resistance to pod borer in the cultivated germplasm is low to moderate (Sharma 

et al., 2005a). Therefore transgenic plants with genes from Bacillus thuringiensis have been 

developed as an effective weapon for pest management (James, 2011). However, large scale 

development of transgenic plants may have some direct and indirect effects against the 

beneficial natural enemies of the crop pests (Sharma et al., 2011). There is a need to asses the 

biosafety of transgenic plants to the nontarget natural enemies in the ecosystem.  

2.1 Transgenic chickpea for insect resistance 

Senthil et al. (2004) reported 5.1 per cent transformation frequency in chickpea. 

Southern blot analysis and histochemical and leaf painting demonstrated integration and 

expression of the transgenes I, the initial transformants, and two generations of progeny. 

Sarmah et al. (2004) developed transgenic plants using a crylAc gene. The progeny 

did not confer resistance to pod borer. They reconstructed the Bt toxin genes (crylAc and 

cry2Aa) for expression in green tissues (using Arabidopsis SSU gene promoter and a tobacco 

SSU gene terminator) and inserted them into twin binary cassettes for transformation. 

Western blot analysis of six independent plants confirmed expression of cry2Aa gene in 5 out 

of 6 plants. These results suggested that genetic engineering of crops is an effective method 

for the production in pod borer-resistant chickpea plants.  

Sanyal et al., 2005 standardized a protocol for Agrobacterium-mediated gene transfer 

in chickpea from cotyledonary node explants with crylAc gene driven by CaMV 35s 

promoter and nptII gene for Kanamycin resistance. The regeneration and transformation 

frequency was recorded as 1.12 per cent.   

Shivani et al. (2007) developed transgenic chickpea by introducing crylAc gene 

through particle bombardment method using epicotyl explants. These transgenic plants 

showed moderate protection and mortality for Helicoverpa armigera and Spodoptera litura 

(F) larvae as compared to control plants with the transfomation frequency of 18 per cent.                       



2.1.1. Phenotyping of Cry toxins in transgenic chickpea for resistance to H.  

          armigera 

Kar et al. (1997) reported transgenic plant generation using two strains of chickpea 

ICCV- 1 and ICCV- 6. Insect feeding assay indicated that the expression level of cryIA(c) 

gene was inhibitory to the development of the feeding larvae of H. armigera. The larvae 

which fed on normal plants (7.23 and 0.064 mg) attained their body weight about four times 

higher than transgenic plants (1.98 and 0.045 mg) signifying higher rate of growth.  

Romeis et al. (2004) gave an overview on the available insecticidal genes that could 

be deployed to increase insect resistance in chickpea. Prior to commercialization, transgenic 

crops need to be assessed for their effects on the environment including the possible impact 

on non-target arthropods, many of which are important for biological pest control.  

Insect feeding bioassay on transformed chickpea plants (T0 and T1) with larvae of pod 

borer insect H. armigera showed high levels of toxicity to insects and protection of 

transgenic plants. Transformed chickpea plants expressing soluble Cry1Ac protein above 10 

ng mg
-1

 showed 80–85% protection and high mortality (>80%) of insects, while plants 

expressing between 5 and 10 ng mg
-1

 resulted in early pupation, significant loss in weight 

(45–55%) and moderate mortality of insects. Expression of truncated native Bt cry1Ac gene 

in chickpea has shown effective resistance in transgenic plants to the major pod borer insects 

(Sanyal et al., 2005). 

Lawo et al. (2008) experimentally proved that there was a high correlation between 

feeding damage caused by H. armigera larvae on the transgenic chickpea leaves and the 

weight of faeces they excreted. For the susceptible H. armigera strain, leaf damage was 

significantly higher for control leaves than for transgenic chickpea leaves after 24 h of 

feeding (P˂0.001). The difference in feeding activities on the two plant types was also 

evident in the faeces weight measurements (P˂0.001). No significant difference was observed 

in the number of leaflets damaged per leaf provided to the two strains on either plant type 

during 24 h (means for the susceptible strain, 8.1 to 9.3 leaflets damaged/leaf; Cry2A-

resistant strain, 8.7 to 9.1 leaflets damaged/leaf). 

Acharjee et al. (2010) tested transgenic chickpea, BS2A, BS5A and BS6H in insect 

bioassays using neonate H. armigera and compared to the non-transgenic ‘‘parents’’ cv 

ICCV 89314 and cv Semsen. There was significantly greater larval mortality among the 

larvae fed on transgenic leaves than those fed on controls and significant differences in 

mortality between all transgenic lines. Larval mortality was highest on the BS6H transgenic 

line whereas almost all larvae died during the assays.  



Mehrotra et al. (2011) studied the expression of Bt-toxin in T0 and T1 transgenic 

chickpea plants and toxicity to H. armigera larvae. Insect bioassay performed with transgenic 

plants showed relatively higher toxicity for plants expressing Cry1Ac protein as compared to 

Cry1Ab to H. armigera. Pyramided transgenic plants with moderate expression levels (15–20 

ng mg
-1

 of TSP) showed high-level of resistance and protection against H. armigera as 

compared to high level expression of a single toxin. These results have shown the 

significance of pyramiding and co-expression of two Cry toxins for efficient protection 

against lepidopteran pests of chickpea. 

2.1.2. Efficacy of transgenic crops against pod borer, H. armigera 

 Benedict et al. (1993) evaluated transgenic cotton plants (Btk lines) carrying Cry1Ab 

delta endotoxin genes from Bt for resistance to H. armigera. The mean per cent injury was 

observed to be 2.3 in flowers and 1.1 in capsules as compared to 23 and 12 per cent in Coker 

213, respectively. 

 Fitt et al. (1994) monitored the mortality of first instar H. armigera on experimental 

lines of transgenic cotton expressing Cry1Ab protein. No survival of larvae in young 

transgenic cotton was observed compared to survival in matured cotton. 

Continuous feeding of Bt cotton was reported to cause 80-85 per cent mortality of first 

instar (Wang and Xia, 1997), 76-81 per cent mortality of second instar and 100 per cent 

mortality of 1-4 instar of H. armigera larvae (Zhao et al., 1998a; Cui and Xia, 2000 and Zhao 

et al., 2000a). 

Interaction studies between H. armigera and transgenic cotton recorded low 

population population of H. armigera on Bt cotton compared to non- Bt transgenic cotton in 

China (Zhao et al., 1998b). 

Zhao et al. (1999) studied the temporal and spatial variation of insecticidal activity of 

Bt cotton and the response of the cotton bollworm, H. armigera to the selection by Bt cotton 

and found that insecticidal effect of flowers of Bt cotton was lowest compared to leaves, 

squares and bolls. 

Cui and Xia (1999) studied the effects of transgenic Bt cotton on development and 

reproduction of H. armigera and reported that the first to fourth-instar larvae fed with 

transgenic Bt cotton continuously were dead. The survival of fifth and sixth-instar larvae was 

37.9 to 85.6 and 63.4 to 96.5 per cent, respectively, as compared to the control. The rate of 



emergence of adult decreased by 66.7 to 100 per cent, number of eggs decreased by 50.1 to 

69.7 per cent and the rate of hatching by 80.6 to 87.8 per cent, respectively. 

It was reported that Bt cotton was highly resistant to H. armigera and the larval 

population was significantly lower in Bt cotton than in non Bt cottons in China. And all the 

larvae of H. armigera from first to fourth instar died when fed continuously with transgenic 

Bt cotton plant parts, but 37.9 - 85.6 per cent of fifth instar and 63.4 - 96.5 per cent of fifth 

and sixth instar larvae survived, respectively. The pupation of the fifth instar larvae decreased 

by 48.2-87.5 per cent when fed continuously on Bt plant parts (Cui and Xia, 2000). 

Olsen and Daly (2000) found that, transgenic cotton plants expressing the Cry 1Ac 

gene from Bt were less toxic to first instar H. armigera larvae after the plant started 

producing fruiting bodies. 

Zhao et al. (2000b) reported continuous feeding of first to fourth
 
instar of H. armigera 

larvae on Bt cotton leaves and squares caused no pupation, whereas on flowers, third and 

fourth instars were able to pupate and emerge partially. 

Chakrabarti et al. (2000) conducted insect bioassays on the leaves of transgenic potato 

which showed considerable protection against the larvae of H. armigera in terms of leaf area 

consumed and larval weight reduction. Double-antibody quantitative sandwich ELISA 

analysis demonstrated high levels of Cry1Ab protein expression in transgenic plants. 

Wu et al. (2003) observed the larval development of H. armigera on various 

structures of Bt and Non-Bt cotton. They found that the percentage of larvae reaching second 

instar after four days were 84.44 per cent and 0.0 per cent (terminal leaves), 68.34 per cent 

and 0.0 per cent (squares) on DP5415 (non-Bt) and NuCOTN 33B (Bt), respectively, which, 

in the conventional cotton was significantly higher than in Bt cotton. In flower-boll-stage of 

cotton, there also was a significant difference in larval development between DP5415 and 

NuCOTN 33B. The percentage of larvae growing to second instar after four days on DP5415 

ranged from 21.33 per cent on young bolls to 82.67 per cent on terminal leaves. Percentage of 

larvae reaching second instar on flower-boll-stage NuCOTN 33B were 0,3.33, 8.33 and 46.66 

per cent for squres, bolls, flowers and terminals, respectively.  

Murugan et al. (2003) reported 92.8, 66.7 and 51.7 per cent mortality of H. armigera 

during first, second and third instar stages, respectively on Bt cultivars and observed that 

mortality of the larvae decreased as the larval instars advanced. The first instar H. armigera 



larvae did not survive on young Bt cotton compared to matured Bt cotton (40-60 %) (Wu et 

al., 2003; Fitt et al., 1994). 

Shudong et al. (2003) conducted bioassay which showed that the weights of sixth 

instar larvae and pupae from the colony reared on the Bt cotton were 25.6% and 18.2% less, 

respectively, compared to those raised on routine cotton. Cotton bollworms that fed on 

Bt cotton grew slower and their generation duration was at least 17 days longer than those 

that fed on non-Bt cotton. This resulted in reduced damage to transgenic Bt cotton plants. 

Bird and Akhurst (2004) reported that the larval survival till pupation of resistant H. 

armigera strain on Bt cotton was 54 per cent lower than that on non Bt cotton. The maximum 

mortality of neonate larvae was 82.62 and 83.99 per cent on MECH 162 Bt and 184 Bt, 

respectively.  

Srinivasa Rao (2004) found that none of the first and second instar larvae of 

H. armigera survived when fed on Bt cotton flower buds. However, few of third and many 

fourth and fifth instar larvae successfully transformed into adults. 

Zhang et al. (2004) reported that significantly greater larval survival and higher 

consumption of H. armigera larvae were observed on non-transgenic cotton than on 

the transgenic Bt or CpTI-Bt cotton. In addition, significantly more neonates were found 

away from the leaf discs, lower consumption and higher mortality were achieved in the 

choice test with two transgenic cotton leaves than in the choice tests containing non-

transgenic cotton leaves. Leaves and buds were examined in choice tests of fourth instars, it 

appeared that fourth instars were found in equal numbers on transgenic and non-transgenic 

cotton.  

Vennila et al. (2006) studied the survival of H. armigera and S.  litura on commercial 

transgenic cotton cultivar MECH 162 Bt and its conventional counter part non-Bt MECH 162 

in laboratory using food material from field grown plants. Larval mortalities of 58.7 and 43.5 

per cent and 7.69 and 5.88 per cent in respect of Bt and non-Bt cotton were observed for 

H.armigera and S. litura, respectively. Slow growth rate induced by the action of Bt 

insecticidal protein led to more number of days to mortality in H.armigera over non Bt 

cotton. Larval development period between Bt and non Bt cultivars was insignificant for       

S. litura. Survival index for H.armigera and S. litura on Bt and non Bt cotton was 20 and 47.7 

per cent and 84.6 and 82.3 per cent, respectively.  

http://europepmc.org/search;jsessionid=GeJxCRDeB3RqkdUjJHWD.44?page=1&query=AUTH:%22Deng+Shudong%22
http://europepmc.org/abstract/CBA/362793/?whatizit_url_Species=http://www.ncbi.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=3635&lvl=0
http://europepmc.org/abstract/CBA/362793/?whatizit_url_Species=http://www.ncbi.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=3635&lvl=0
http://europepmc.org/abstract/CBA/362793/?whatizit_url_Species=http://www.ncbi.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=29058&lvl=0
http://europepmc.org/abstract/CBA/362793/?whatizit_url_Species=http://www.ncbi.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=3635&lvl=0
http://europepmc.org/abstract/CBA/362793/?whatizit_url_Species=http://www.ncbi.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=3635&lvl=0
http://europepmc.org/abstract/CBA/362793/?whatizit_url_Species=http://www.ncbi.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=3635&lvl=0
http://europepmc.org/abstract/CBA/362793/?whatizit_url_Species=http://www.ncbi.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=3193&lvl=0


Sharma and Pamapathy (2006) reported there were no significant differences in 

oviposition between the transgenic and the non transgenic cultivars under protected and 

unprotected conditions. The larval numbers were significantly lower on the transgenic 

hybrids during the 2004 rainy season under high infestation, but the differences in larval 

density between the transgenic and non-transgenic hybrids during 2002 and 2003 seasons 

under low levels of infestation were quite small.  

The mean mortality of H. armigera neonates to top leaves of MECH 162, MECH 184 

and RCH 2 were 90.0, 91.7 and 90.0%, respectively. The order of susceptibility of different 

larval instars to Bt cotton hybrids were neonates > second instar> third instar. The efficacy of 

different plant parts was in the order of top leaves > middle leaves > squares > bolls. Among 

the Bt hybrids, MECH 184 was highly effective, followed by MECH 184, MECH 162 and 

RCH 2 (Shanmugam et al. 2006). 

Swamy et al. (2007) evaluated the usefulness of detached leaf assay to assess the 

efficacy of transgenic pigeonpea (ICPL 88039 and ICPL 87) plants carrying 

cry1Ab and SBTI genes for resistance to H. armigera. The levels of cry1Ab or SBTI proteins 

in the transgenic pigeonpea plants were not sufficient to cause significant deterrent effects on 

leaf feeding, larval survival, and larval weight of H. armigera. However, detached leaf assay 

was found to be quite useful for evaluation of transgenic pigeonpea plants for resistance 

to H. armigera. 

Basavaraja et al. (2008) studied the effect of Bt cotton top leaves on consumption-

utilization indices of H. armigera and S. litura larvae. There was a significant reduction in 

consumption index (CI), growth rate (GR), efficiency of conversion of ingested food (ECI), 

approximate digestibility or assimilation efficiency (AD/AE) and efficiency of conversion of 

digested food (ECD) in Bt genotypes at 70 and 100 days of crop age. At 130 days 

of crop age, no significant effect of Bt was observed on H. armigera larvae. The fourth instar 

larvae of S. litura were used to study the various consumption-utilization indices on leaves at 

an interval of 75, 105 and 135 days of crop age. There was no significant reduction in CI, 

GR, ECI, AD/AE and ECD in Bt genotypes at 75, 105 and 135 days of crop age. 

In the transgenic cotton plant, larval populations of cotton bollworm, H. armigera was 

significantly reduced as compared to untreated varieties. Plant damage analyses upon 

maturity revealed significantly higher levels of sound bolls in transgenic cotton plants. Seed 

cotton yields and lint quality were also higher for the transgenic cotton than for untreated 



convention varieties. The transgenic variety was always statistically equivalent or superior to 

the treated conventional one (Hema et al, 2009). 

Arshad et al. (2009) studied that significant effects of Bt cotton on the per cent 

cumulative mortalities of all instars compared with non Bt cotton. However, a significant 

higher mortality (100%) was observed in neonates fed on Bt cotton leaves than those fed on 

Bt flower-bolls (93%). There was a marked difference in larval development period between 

Bt cotton (27.75 days) and on non Bt cotton (16.68 days) flower-bolls. Pupal weight was 

significantly higher for larvae fed on non Bt cotton compared with Bt cotton plant parts 

(leaves & flowers-bolls). 

Hallad et al. (2011) carried out quantitative bioassays at 80 and 110 days after sowing 

(DAS) by leaf disc feeding method for H. armigera and S. litura using five different Bt cotton 

event genotypes for characterization of resistance to early and late instars. The highest second
 

instar mortality (93.1 and 79.2 %) was found at 80 and 110 DAS in Tulasi 4BG-II (MON-

15985). The mortality of third and fourth instar was 91.1 and 87.1 per cent at 80 DAS, 

respectively, for H. armigera. The highest mortality (80.3 and 71.3 %) for second instar 

larvae of S. litura at 80 and 110 in Tulasi 4BG-II and the mortality of third and fourth instar 

was 72.6 and 64.2 in Tulasi 4BG-II. Whereas Tulasi 4BG-I was recorded least mortality (7.9 

and 5.8 %) of second instar at 80 and 110 DAS. As the larvae gained growth advancement 

the bioactivity of toxins was found to be reduced. 

Arshad et al. (2011) reported that there was no significant difference in egg laid by 

the cotton bollworm, H. armigera between Bt (IRFH-901) and non Bt cotton. However, larval 

densities were significantly reduced in Bt cotton as compared to conventional non Bt cotton. 

No insecticide application was needed to control this pest in Bt cotton. The results indicated 

that transgenic Bt cotton played a significant role in reducing the pesticide application for the 

control of H. armigera.  

Significant adverse effect of Bt on H. armigera was observed at 60, 90 and 100 days 

of crop age in top leaves, middle leaves, squares and bolls. The minimum per cent survival of 

larvae in transgenic Bt hybrid was observed at 60 days of crop age in top leaves (16.67-

20.00%), middle leaves (13.33-20.00%), squares (26.67-36.67%) and bolls (30.00-36.67%). 

Similar trend was followed at 90 and 100 days of crop age. The effect of Bt at 120 and 140 

days of crop age was non-significant on larval survival in comparison to non Bt and local 

hybrid HHH 223 (Basavaraja et al, 2011). 



Basavaraja et al. (2012) studied the oppositional response 

of H. armigera to transgenic Bt and non Bt cotton hybrids. There was no significant variation 

found between Bt and non Bt genotypes. The total number of eggs laid on Bt and 

non Bt hybrids ranged from 344 to 361 eggs/2 twigs/4 females, respectively. 

Mogali et al. (2012) performed leaf assays on cotton bollworm, H.  armigera. 

Survival bioassay on detached leaf bits showed significant increase in larval mortality 

ranging from 72-76 per cent. There was significant increase in the final body weight of the 

larvae fed on negative control (111.55%), than the larvae fed on leaf bits of transgenic plants 

(56.36%).  

2.1.3. Effect of Cry proteins on the survival and development of pod borer, H. armigera  

Chandra et al. (1999) studied the effect of WT- and M-Cry1Ac proteins on neonate 

larvae of H. armigera. The M-Cry1Ac was eight times more effective than the WT-Cry1Ac 

in terms of larval mortality. The experiment was repeated with third instar larvae and 

essentially similar results were obtained. The mutant toxin was shown to be more toxic to the 

larvae of H. armigera than the wild type toxin. 

Olsen and Daly (2000) developed two bioassay methods (leaf mush, leaf disk) to test 

if the physiological state of the plants explained changes in toxicity and a third method (diet 

incorporation) was developed to quantify the toxicity of Bt leaves when mixed in chickpea 

diet. Cry1Ac protein was less toxic to H. armigera larvae when the protein was mixed with 

leaves from fruiting versus presquare conventional cotton. Differences in LC50 varied from 

2.4 to 726-fold, depending on the source of toxin and conventional plant material. These 

results suggest that plant-toxin interactions in fruiting cotton reduced the toxicity of the 

Cry1Ac protein. 

Chandrashekar and Gujar (2004) reported that H. armigera, evolved 31 fold 

resistances to selection pressure of Bt endotoxin CrylAc within six generations. The CrylAc 

selected larvae of H. armigera showed cross-resistance to CrylAa and CrylAb both in terms 

of mortality and growth reduction. 

The toxicity and larval growth inhibition of 11 insecticidal proteins of Bt against 

neonate larvae of H. armigera, by a whole-diet contamination method, the most active toxins 

were Cry1Ac4 and Cry2Aa1, with LC50 values of 3.5 and 6.3 g/ml, respectively, at the 

concentrations tested, Cry1Ac4, Cry2Aa1, Cry9Ca, Cry1Fa1, Cry1Ab3, Cry2Ab2, Cry1Da, 

and Cry1Ja1, produced a signifcant growth inhibition, whereas Cry1Aa3, Cry1Ca2, and 

Cry1Ea had no effect (Avilla et al., 2005). 



Kranthi et al. (2005) indicated that bioassay on H. armigera, utilizing Bt-cotton seed 

as a source of CrylAc toxin. The CrylAc content in seeds was found to be 1.77± 0.23 μg/g 

and the variability between individual seeds and seed lots was minimal. Bioassays on H. 

armigera using Bt seeds stored at room temperature for 2 years showed that there was no 

significant reduction in bio-activity of the toxin present in the seeds.  

The baseline susceptibility of the larvae of H. armigera to Cry1Ac and other toxins 

carried out in many countries provided a basis for monitoring resistance. They opined that 

there is no evidence of development of field-level resistance in H. armigera leading to the 

failure of Bt cotton crop anywhere in the world, despite the fact that Bt cotton was grown on 

the largest ever area of 12.1 million hectares in 2006 and its cumulative cultivation over the 

last 11 years has surpassed the annual cotton area in the world. Nevertheless, the Bt resistance 

management has become a necessity to sustain Bt cotton and other transgenic crops in view 

of potential of the target insects to evolve Cry toxin resistance (Gujar et al., 2007). 

Anilkumar et al. (2009) conducted bioassays to ascertain if Cry1Ac toxin-resistant H. 

zea population showed higher survival rates on field-cultivated Bt cotton squares (= flower 

buds) collected at prebloom-bloom than susceptible H. zea. The results showed that Cry1Ac 

toxin-resistant H. zea could not complete larval development on Cry1Ac-expressing Bt 

cotton, despite being more than 150-fold resistant to Cry1Ac toxin and were able to survive 

until pupation on Cry1Ac toxin concentrations greater than present in Bt cotton squares. 

Since mortality observed for Cry1Ac-resistant H. zea on Bt cotton was higher than expected, 

diet incorporation bioassays with Cry1Ac toxin alone, and with gossypol and 4 per cent 

cotton powder in the presence and absence of Cry1Ac showed Cry1Ac toxin was 

significantly more lethal to susceptible H. zea than to resistant H. zea, but no difference in 

susceptibility to gossypol was observed between strains. However, combinations of Cry1Ac 

with gossypol or cotton powder were synergistic against resistant, but not against susceptible 

H. zea. Gossypol concentrations in individual larvae showed no significant differences 

between insect strains or between larvae fed gossypol alone vs. those fed gossypol plus 

Cry1Ac.  

Devi et al. (2011) depicted that biological activity of Bt (Biolep ®) on four chickpea 

genotypes with different levels of resistance to H. armigera under field conditions, and by 

incorporating lyophilized leaf and pod tissue into the artificial diet with and without Bt, there 

was no survival of H. armigera larvae in chickpea plants sprayed with 0.1, 0.2 and 0.5% Bt, 

there was a significant reduction in larval survival, larval and pupal weights and fecundity, 



and prolongation of larval and pupal periods in chickpea plots sprayed with Bt (0.05%) as 

compared to the unsprayed plots. Biological activity of Bt was lower on artificial diets with 

leaf or pod powder of chickpea genotypes, larval survival, larval and pupal weights, pupation 

and adult emergence were significantly lower on diets with leaf or pod powder of the H. 

armigera resistant genotypes than on the susceptible check. Chickpea genotypes with 

resistance to H. armigera acted in concert with Bt to cause adverse effects on the survival and 

development of this insect.  

At the highest concentration, Cry1Ac and Cry1Ca shortened 48.1 and 48.9 % 

of H. armigera female lifespan, and 43.5 and 38.5 % of S. exigua female lifespan, and they 

reduced 37.8 and 40.3 %, and 50.5 and 47.4 % of H. armigera and S. exigua male lifespans 

respectively. Bt toxins negatively affected copulation, exposure to 500 mg/ml of Cry1Ac and 

Cry1Ca greatly reduced 50.0 and 46.8 %, and 58.7 and 57.3 % spermatophore acceptance 

by H. armigera and S. exigua females, respectively. In contrast, both Cry1Ac and Cry1Ca did 

not negatively influence the egg hatchability (Zhang et al, 2013).  

2.2. Molecular and biochemical characterization of transgenic crops  

2.2.1 Molecular characterization 

2.2.1.1. Detection of Cry protein in transgenic crops 

The mean Cry1Ac levels declined significantly from 57.1 to 6.7 μg g
-1

, in fruiting 

structures of cotton and from 163.4 to 34.5 μg g
-1

, in leaves at 53 and 116 DAP, respectively, 

and terminal foliar concentrations were always greater than those found in fruit (Greenplate, 

1999). The transgenic cotton plants expressing the Cry1Ac gene were less toxic to H. 

armigera after the fruiting stage compared to early stages of crop growth. Further, the 

interference of condensed tannins with Cry1Ac toxicity especially increased tannin content 

over the season and was also responsible for the decrease in toxicity (Olsen and Daly, 2000). 

Adamczyk et al. (2001) observed that there was difference in the amount of delta-

endotoxin present in various plant parts which were correlated with the larval survival of the 

bollworms throughout the growing season. Kranthi (2002) observed the expression tendency 

of Cry 1Ac in MECH-Bt cotton hybrids and stated that the earliest decline was in MECH-12 

with toxin levels falling from 23 μg at 75 DAS to 1-2 μg by 85 DAS, where as in MECH-162 

and MECH-184 the expression levels declined by 95
th

 day and 120
th

 day after sowing, 

respectively. The green tissue had the highest concentration of toxin followed by yellowish 

green and whitish yellow tissues. The expression levels of Cry 1Ac were high at 70 DAS 



which steadily declined at 100 and 130 DAS among the different plant parts of Bt cotton 

cultivars. The mean Cry 1Ac levels in the leaves were 26.03, 23.01 and 7.09 μg g
-1

 in 

MECH-12 Bt, MECH-162 and MECH-184 Bt, respectively at 70 DAS and declined thereafter 

(Abel and Adamczyk, 2004). 

Cry 1Ac concentrations in the squares were 17.04, 14.92 and 18.08 μg g
-1

 in MECH-

12 Bt, MECH-162 and MECH-184 Bt, respectively at 70 DAS and declined therafter. Cry 

1Ac levels were comparatively high in the seeds of green bolls with 41.62 and 16.67 and 

18.77 μg/g in MECH-12 Bt, MECH-162 and MECH-184 Bt, respectively, at 70 DAS and 

declined thereafter (Srinivasa Rao, 2004). Zhang et al. (2004) found that the amount of Bt in 

different plant parts was high in NuCoTN 33B (79.7-139.0 ng g
-1

 fresh wt) than in GK-12.  

2.2.1.2. Bio-safety of transgenic crops to natural enemies 

2.2.1.2. 1 Detection of Cry protein in insect pests and their natural enemies 

The corn leaf aphid, Rhopalosiphum maidis, feeding on diet solutions containing 

Cry1Ab protein, the level of the protein in the aphid was 250–500 times less than the original 

levels in the diet, whereas no Cry1Ab was detected by ELISA in aphids feeding on transgenic 

Bt-corn plants, for the lepidopteran insects, Ostrinia nubilalis, Helicoverpa zea, and Agrotis 

ipsilon, levels of Cry1Ab in larvae varied significantly with feeding treatment. When feeding 

for 24 h on artificial diets containing 20 and 100 ppm of Cry1Ab, the level of Cry1Ab in the 

larvae was about 57 and 142 times lower, respectively, than the original protein level in the 

diet for O. nubilalis, 20 and 34 times lower for H. zea, and 10 to 14 times lower for A. ipsilon 

(Head et al, 2001) 

Vojtech et al. (2005) showed an ELISA and confirmed that Spodoptera littoralis 

larvae ingested high amounts of Cry1Ab toxin while feeding on Bt maize, no toxin was found 

in S. littoralis and Cotesia marginiventris adults. Thus the toxin was not accumulating in the 

trophic levels and infact appeared to be excreted. The results suggested that the effects on C. 

marginiventris when developing in susceptible S. littoralis larvae are indirect (host 

mediated). Mon810 Bt maize plants contained a mean concentration of 1.597 μg Cry1Ab 

toxin per gram fresh weight of plant tissue. S. littoralis larvae feeding on such plants 

contained between 0.595 and 0.645 μg Cry1Ab toxin per gram of fresh bodyweight. In S. 

littoralis pupae and C. marginiventris cocoon silk only traces of Cry1Ab were detected. 



Adult S. littoralis, C. marginiventris cocoons (including pupae) and adult parasitoids, 

contained no detectable amount of Cry1Ab toxin. 

Pont and Nentwig (2005) reported that Porcellio scaber feeding on N4640 Bt corn 

leaves digests a mean of 61.19/16.8 per cent of the Bt-protein they ingested, while P. scaber 

feeding on Max88 Bt corn leaves digested 80.59/14.4 per cent, which was significantly more 

(PB/0.05). The bioassays indicated that the Bt-protein excreted in the faeces was still 

insecticidally active. The study suggested that a part of the Bt protein taken up by primary 

decomposers is not digested and is released in its active form into the soils.  

Zhang et al. (2006a) reported the trace amounts of Bt toxins (6.0 ng g
-1

 fresh mass 

[FM] in GK-12, 4.0 ng g
-1

 FM in NuCOTN 33B) detected in A. gossypii feeding on Bt cotton 

cultivars. Bt toxin was detected in ladybirds preying on Bt-fed aphids, and its quantity 

increased as the predatory period extended (5d-20d), small amounts of Bt toxin was also 

found in newly hatched, unfed coccinellid larvae when their parents fed on NuCOTN 33B-

reared aphids (15.0 ng g
-1

 FM), but not when the parents were fed on GK-12D reared prey. 

These results indicate that Bt toxin expressed in transgenic cotton cultivars can be transmitted 

to a higher trophic level through a non-target pest insect and may alter the biology and 

behavior of a predatory ladybird.  

Obrist et al. (2006) evaluated the uptake of Cry1Ab toxin by larvae of the green 

lacewing, Chrysoperla carnea after consuming two Bt maize-fed herbivores (Tetranychus 

urticae and S. littoralis by means of an immunological test (ELISA) and the activity of the 

Cry1Ab toxin following ingestion by the herbivores. ELISA confirmed the ingestion of Bt 

toxin by C. carnea larvae when fed with either of the two prey species. Feeding bioassays 

using the target pest showed that the biological activity of the Cry1Ab toxin is maintained 

after ingestion by both herbivore species. The purified Cry1Ab protein was more toxic to O. 

nubilalis compared to the plant-derived Cry1Ab toxin when applied at equal concentrations 

according to ELISA measurements. 

Burgio et al. (2007) indicated that Cry toxin was detected in aphid samples, with a 

mean concentration in the positive samples of 2.0 ± 0.8 ppb. The majority (87.3%) of corn 

flea beetles, Chaetocnema pulicaria, screened positive for Cry1Ab proteins. The average 

recorded concentration of Bt endotoxin within C. pulicaria was 2.43 ± 0.13 μg Cry1Ab per g 

fresh weight (n=71). The screening of predators from the field indicated that natural enemies 

from three orders (Araneae, Coleoptera and Heteroptera) contained Cry1Ab endotoxins 

above the threshold of 0.5 μg Cry1Ab per g fresh weight.  



Harwood et al. (2007) studied the detection of Bt endotoxins using a post-mortem 

enzyme-linked immunosorbent assay and examined the uptake of Cry1Ab-endotoxins by 

predatory coccinellids and the importance of anthesis to this trophic pathway. This was most 

evident in Coleomegilla maculata, with 12.8 per cent of 775 individuals testing positive for 

Cry1Ab-endotoxins. Presence of endotoxins in gut samples was not confined to periods 

around anthesis, but coccinellid adults tested positive two weeks before and upto ten weeks 

after pollen was shed, suggesting tri-trophic linkages in their food chain facilitates the 

transfer of endotoxins into higher-order predators. This contrasts with adult C. maculata 

entering overwintering sites where Bt-endotoxins were not detected in gut samples, indicating 

low levels of persistence of Cry1Ab-endotoxins within coccinellid predators.  

Torres and Ruberson (2008) quantified Cry1Ac toxin in the cotton plants, the pests 

and predators, and the effects of continuous feeding on S. exigua larvae fed either Bt or non-

Bt cotton on life history traits of Podisus maculiventris. All three herbivores were able to 

convey Cry1Ac toxin to their respective predators. Among the herbivores, T. 

urticae exhibited 16.8 times more toxin in their bodies than that expressed in Bt-cotton plant, 

followed by S. exigua (1.05 times), and  Frankliniella occidentalis immatures and adults 

(0.63 and 0.73 times, respectively). 

 Chen et al. (2008a) conducted experiments to detect Cry1C toxin using ELISA 

in Pieris rapae pupae after older larvae fed on cry1C broccoli. However, no Cry1C toxin was 

detected in newly emerged Pteromalus puparum adults developing in Bt-fed hosts. Only a 

trace amount of toxin was detected from entire P.  puparum pupae dissected from the Bt 

plant-fed host. Moreover, no negative effect was found on the progeny of P. 

puparum developing from the Bt plant-fed host when subsequently supplied with a healthy 

host, P. rapae pupae.  

Chen et al. (2009) reported the bioaccumulation of Bt insecticidal toxins expressed in 

Bt plants using ELISA and evaluated the transfer of Cry1Ab toxin in a food chain of Bt rice 

(KMD1 and KMD2), the target insect, Cnaphalocrocis medinalis, and its predator, Pirata 

subpiraticus. Cry1Ab was detected in C. medinalis and P. subpiraticus. However, the 

concentration of Cry1Ab detected from C. medinalis and P. subpiraticus did not increase as 

feeding or preying time increased.  

Dhillon and Sharma (2010) studied tritrophic interactions between Bt (administered as 

spray), chickpea genotypes, and the parasitoid, Campoletis chlorideae. The ELISA test 

detected >5 ppb of Bt toxins in Bt-sprayed chickpea genotypes, and the H. armigera larvae 

fed on them. However, no Bt toxins were detected in the larvae, cocoons and adults of C. 

http://www.cabdirect.org/search.html?q=au%3A%22Torres%2C+J.+B.%22
http://www.cabdirect.org/search.html?q=au%3A%22Ruberson%2C+J.+R.%22
http://www.cabdirect.org/search.html?q=au%3A%22Chen%2C+M.%22


chlorideae reared on Bt-intoxicated H. armigera larvae, or in adult parasitoids fed on Bt-

contaminated honey. 

Stephensa et al. (2012) reported that of Bt proteins passed from the plant to the 

predator via the aphid using ELISA. This is the first report of negative impact of Cry3Bb Bt-

maize on carabid activity-densities in the field and one of the first mechanistic examples of a 

negative indirect tritrophic level impact of a Cry3Bb Bt-maize on a coccinellid. 

Murenga et al. (2012) reported the mean concentration of Bt δ-endotoxins as 4.93 and 

4.63 μg/g in Events 216 and 223 (two public lines of Bt maize), respectively. As expected, F1 

generations of all the crosses had similar concentrations whereas the F2 generations showed a 

spread of concentrations. These findings implied that genotypes with a higher mean 

concentration of Bt δ-endotoxins also have a lower level of plant damage traits expression. 

Zhang et al. (2012) explained the effects of transgenic Bt cotton on Aphis gossypii. 

The Bt protein was detected by ELISA in the Bt cotton leaves, and the content varied 

significantly at different growth stages and trace amounts were detected in some of the Bt-fed 

aphids, and the honeydew of the Bt-fed aphids contained over 10 ng/g Bt protein. These 

results indicated that although trace amounts of the Bt protein were ingested, the Bt cotton 

had no significant negative impacts on A. gossypii in either short or long term. The Bt protein 

content in the leaves varied significantly at different growth stages. The leaves at the 4 true-

leaf stage contained the highest average concentration of Bt protein (86.03 ng/g), the 2-

cotyledon stage contained a moderate level (44.84 ng/g), and the lowest level was found at 

the boll stage (8.81 ng/g).  The Bt protein could only be detected in one-third of the aphid 

samples with body weights over 20 mg. 

2.2.2. Biochemical characterization  

Extracts of a number of trees foliage have been shown to inhibit the growth of B. 

thuringiensis on artificial media (Smirnoff and Hutchinsun, 1965) and sweet gum was one 

such tree (Maksymiuk, 1970). Tannins have been shown to inactivate insecticidal crystal 

proteins of B. thuringiensis (Luthy et al., 1985ab) and tannin chemistry has been implicated 

in variation in the susceptible host. 

Tannin is an important constituent of many plants, reacted strongly with the 

proteinaceous insecticidal metabolite of B. thuringiensis, solutions of a commercial tannin 

preparation stopped the activity of dissolved crystal protein and activated δ-endotoxin, Intact 

crystals lost their activity only partially in the presence of tannin. Interaction between host 

plant tannins and δ-endotoxin might be a major factor where the field efficacy of B. 



thuringiensis preparations is unexpectedly low (Luthy et al., 1985b). The effectiveness of B. 

thuringiensis is greater on insect pests adapted to high tannin content (with a gut pH of 8.0 to 

9.5). Thus, insect pathogens can be more effective in a pest management program if 

antibiosis factors of host resistance are compatible with the insect pests. 

The susceptibility of gypsy moth, Lymantria dispar to the gypsy moth nuclear 

polyhedrosis virus was significantly altered when larvae were fed with virus in conjunction 

with diets containing different nutrients and plant allelochemicals. Larvae consuming virus 

on diets with additional sucrose, surfactants, or gallic acid showed no significant changes in 

mortality rates. Larvae consuming virus on diets with additional casein or salts, in diets made 

more acidic with HCl, or on diets containing hydrolysable or condensed tannins showed up to 

four fold significant decreases in susceptibility to gypsy moth virus (Keating et al., 1989). 

Chhabra et al. (1990) studied sources of resistance in cultivars of H.  armigera in field 

trials in India during 1976-80. The results were examined in relation to the biochemistry of 

the cultivars of chickpea tested. A high percentage of crude fibre, non-reducing sugars and 

low percentage of starch appeared to be related to the low incidence of the pest in cultivar 

GL645, while a high percentage of cellulose, hemicellulose and lignin in the pod wall are 

thought to inhibit pod damage. 

Sivamani et al. (1992) conducted bioassays with B. thuringiensis var. galleriae 

Berliner δ-endotoxin and plant phenolics on H.  armigera and reported the presence of plant 

phenolics with Bt var. galleriae endotoxin not only reduced feeding potential and weight gain 

by the larvae, but also enhanced the LC50 value of the toxin, indicating the effect of 

phytochemicals from resistant crop plants on the biocidal activity of B. thuringiensis strains 

in laboratory conditions. 

Bhagwat et al. (1995) screened forty desi (local) early maturity chickpea genotypes 

for resistance to gram pod borer, H. armigera, under natural field conditions. ICC 506 

exhibited 8 per cent pod damage and harboured 10 larvae on 10 plants and was designated as 

least susceptible. Whereas, ICC 14665 showed 41.8% pod damage and 26 larvae on 10 plants 

and categorized as most susceptible. A low amount of acidity in the leaf exudates (21.1 and 

41.9 meq./100 g) of genotype (ICC 14665) was found to be associated with susceptibility 

to H. armigera, 60 and 75 days afer sowing. However, such a trend was not evident 90 days 

after sowing. 

Yoshida et al. (1995) noted that mechanisms of resistance to H. armigera in chickpea. 

Inhibition of larval growth occurred in a feeding test using the leaves of chickpea genotypes, 

http://www.cabdirect.org/search.html?q=au%3A%22Chhabra%2C+K.+S.%22


which had previously been identified as having resistance to H. armigera. A feeding test 

using unwashed and washed leaves revealed that the substance responsible for the growth 

inhibition was water soluble and present on the surface of the leaves. Acid components of the 

leaf exudate were analyzed by high-performance liquid chromatography (HPLC). Oxalic acid 

and malic acid were detected as major components in all four genotypes that were analyzed. 

Genotypes resistant to H. armigera accumulated more oxalic acid on the leaves than 

susceptible genotypes. Oxalic acid showed significant growth inhibition on H. armigera 

larvae when included in a semi-artificial diet. The accumulation of oxalic acid is considered 

to be one of the mechanisms of H. armigera resistance in chickpea. Inhibition of larval 

growth by oxalic acid was not caused by antifeedant effects but was more likely attributable 

to antibiosis. Malic acid had no effect on larval growth. 

The role of tannic acid in increasing effectiveness of B. thuringiensis var. kurstaki 

(HD-1) against H. armigera was examined in bioassays on semi synthetic diet. B. 

thuringiensis at different concentrations (0, 0.005, 0.01, 0.015, 0.02, and 0.025 % wet weight) 

were incorporated into the diet containing 0.025 per cent tannic acid and tannic acid-free diet. 

LD50 of B. thuringiensis with tannic acid were 0.006 per cent but that without tannic acid was 

0.011 per cent. Both B. thuringiensis and tannic acid retarded growth of H. armigera 

significantly, but there was no synergetic effect between them. Choice tests showed that B. 

thuringiensis deterred feeding of the fifth-instar larvae of H. armigera but tannic acid had no 

such effect. Experiments on colony growth of B. thuringiensis on NBA media containing 

tannic acid (0, 1, 3, 6, 9, 12, 15, 18 and 21 mg/100 ml) demonstrated that tannic acid reduced 

colony growth of B. thuringiensis, and inhibited sporulation above 15 mg/100 ml (Wang and 

Xia, 1997). 

Yoshida et al. (1997) studied the effects of malic acid and oxalic acid on oviposition 

of H. armigera.  Malic acid stimulated oviposition at a concentration of 0.6 μmol cm
-1

 but 

inhibited it at 3.4 μmol cm
-1

. Oxalic acid showed neither stimulation nor inhibition of 

oviposition at 0.25-1.7 μmol cm
-1

. However, there was a significant negative correlation 

between pod damage and oxalic acid levels. Oxalic acid, which had been reported to have an 

antibiotic effect on H. armigera larvae, had an important role in resistance to this pest in 

chickpea.  

Studies have been conducted to assess the level of tannins in the host plants (Tectona 

grandis and Mellingtonia hortensis) of teak defoliator, Hyblaea puera cram, and its influence 

on the neem seed kernel extract (NSKE) and bacterial pesticides, B. thuringiensis kurstaki 

(Btk). Higher morality of fourth-instar larvae was evident after the treatment of neem seed 



kernel extract and Btk on the Mellingtonia reared larvae than the teak leaves reared larvae. 

Higher tannin content was evident in the leaves of teak and teak leaves reared larvae. Tannin 

level was comparatively lower in the Mellingtonia and insects reared on it. This suggested 

that the higher tannin level in the teak leaves facilitate the larvae to sequester the tannin and 

accumulate it in the body. Hence, tannin here has a protective role in insects and helps them 

to resist against the biopesticides such as neem and Bt toxins. The higher mortality of larvae 

of H. puera fed on M. hortensis with neem and Bt toxins treatment further suggested the less 

availability of tannin in the host leaves and susceptible against the biopesticides (Murugan 

and Babu, 1998). 

Berbehenn and Martin (1994) and Berbehenn et al. (1996) have stated that tannins can 

enter the haemolymph of the insect through the peritrophic membrane of the gut. The 

peritrophic envelope of insects are capable of connecting tannins by attaching to the 

carbohydrates (e.g. chitin) of the envelopes, hydrolysable tannins of oak are well known as 

phenolics, which can negatively influence the growth of the gypsy moth (Rossitter et al., 

1988). Dunning et al. (2002) reported on the feeding behavior of the generalist migratory 

grasshopper, on two species of oak with different tannin levels. 

The interaction among white spruce, Picea glauca, purified acetone tannin extracts, B. 

thuringiensis subsp. kurstski Cry1A(c) δ-edotoxin strain HD-73 (Btk), and spruce budworm, 

Choristoneura fumiferana on larval survival, growth, and development were investigated 

over the whole larval feeding period by using artificial diet supplemented with Btk toxins and 

foliar tannin extracts. At high Btk concentration (1.72 μg/ml of diet), tannin antagonized Btk 

potency against spruce budworm by lowering Btk-related larval mortality from 83 to 43 per 

cent while at at moderate concentration tannin did not affect Btk potency. Host tree tannins 

antagonized not only the lethal effects of Btk toxin but also sublethal Btk-related impacts in 

terms of larval development, pupal weight, relative consumption rate, and growth rate (Bauce 

et al., 2006). 

Saini and Dhawan (2010) had estimated the content of tannins and total phenols and a 

correlation was established between these two biochemical factors with toxins (Cry1Ac and 

Cry2Ab) and mortality of H. armigera and S. litura. Per cent tannin in leaves, squares and 

bolls was maximum in MRC 7031 and minimum in MRC 7017. It was maximum at 180-day-

old and minimum at 60-day-old crop. Among plant parts, it was maximum in leaves followed 

by bolls and squares. Total phenols (mg/g dry weight) were maximum in Bollgard RCH 134 

and minimum four in Tulsi. However, among plant parts, it was maximum in leaves followed 



by squares and bolls. A positive correlation was observed between mortality 

of H. armigera and S. litura with Cry toxins and total phenols while negative with tannins. 

Similarly, Cry toxins showed negative correlation with tannins and positive with total 

phenols. 

 The biological activity of Bt towards H. armigera on chickpea genotypes with 

different amounts of organic acids, significantly lower leaf feeding, larval survival and larval 

weights were observed on ICC 506EB, followed by C 235, and ICCV 10 with an increase in 

Bt concentrations. Antifeedant effects of acid exudates reduced food consumption and hence 

might reduce the efficacy of Bt sprays on insect-resistant chickpea genotypes or Bt-transgenic 

chickpeas, although the combined effect of plant resistance based on organic acids, and Bt 

had a greater effect on survival and development of H. armigera than Bt alone. The influence 

of organic acids (oxalic acid and malic acid) present in the trichome exudates of chickpea on 

the biological activity and binding of Bt δ-endotoxin Cry1Ac to brush border membrane 

vesicles (BBMV) of the pod borer, H. armigera. Oxalic and malic acid in combination at 

concentrations present in chickpea leaves did not influence the biological activity of Bt toxin 

Cry1Ac towards H. armigera larvae, amounts of Cry1Ac protein in the midgut of insects 

reared on diets with organic acids were similar to those reared on artificial diet without the 

organic acids (Devi et al. 2011).  

Narayanamma et al. (2013) characterized a diverse array of chickpea genotypes for 

organic acid profiles in the leaf exudates that are associated with resistance to H. armigera. 

Chickpea leaf exudates contained five major organic acids, which were identified as malic 

acid, oxalic acid, acetic acid, citric acid, and fumaric acid. The high performance liquid 

chromatography (HPLC) profiles of the leaf exudates of nine chickpea genotypes showed that 

amounts of malic acid were negatively correlated with leaf feeding by H. armigera larvae at 

flowering and maturity, and with pod damage. Oxalic acid showed a negative association 

with leaf damage in detached leaf assay, while the amounts of acetic acid were negatively 

correlated with larval weight, and damage rating at flowering and maturity. Citric acid levels 

were negatively associated with damage rating at flowering.  

2.3. Effect of transgenic crops on natural enemies of Helicoverpa armigera 

2.3.1. Effect of transgenic crops on the natural enemies  

Schuler et al. (2001) studied the direct and indirect effects of Bt plants on a parasitoid 

of P. xylostella using Cry1Ac expressing transgenic oilseed rape (Canola), although Cotesia 



plutellae larvae were forced to develop in Bt-treated susceptible hosts inevitably died with 

their hosts, behavioural factors are likely to limit the impact of this effect on field 

populations. C. plutellae mortality in susceptible hosts was not due to the direct toxic effect 

of Cry1Ac, but due to premature host mortality since C. plutellae larvae developed normally 

in Bt-resistant hosts on Bt plants. Adult C. plutellae females were highly attracted to Bt plants 

damaged by Bt-resistant hosts.  

The parasitoid laid on an average 13.40 ± 3.02 and 42.00 ± 2.21 eggs after single 

mating and throughout its life span, respectively. The egg-larval and pupal period was 13.5 ± 

0.45 and 7.0 ± 0.44 days, respectively. The emergence rate varied from 78.3 to 85.2 per cent. 

The sex ratio of male: female in mated progeny was 1: 3. Adult longevity increased when 

provided with food source, field release of 1-2 day old parasitoid with 15000 adults/ha (sex 

ratio 1:3) in chickpea showed encouraging results, wherein significant reduction in pest 

population and pod damage and increase in yield was obtained (Gupta et al, 2004).    

Yang et al. (2005) reported the transgenic cotton suppressed the growth and 

development of the larvae parasitized or unparasitized by the wasps. The cocoon formation 

and cocoon weight of the two wasps parasitizing the larvae reared on transgenic cotton 

declined greatly. For M. mediator, the cocoon formation and cocoon weight decreased by 

26.1 per cent and 1.0 mg, respectively; for C. chlorideae, the reductions were 17.9 per cent 

and 5.1 mg, respectively. The larvae of the two wasps developing in the haemocoel 

of H. armigera larvae reared on transgenic cotton exhibited delayed development and, in 

some cases, abnormal development. The total haemolymph protein content of the larvae fed 

on transgenic cotton was lower than that of the control.  

The larval duration of the parasitoid was delayed, and the pupal weight, body weight 

of the newly emerged adult and adult longevity decreased significantly when the host’s larvae 

fed on diet containing protoxin Cry1Ac at the concentrations of 0.5-8.0 μg/g in all time or 

from 12 h before parasitism till pupation of the parasitoid. Compared with the control, the 

larval weight, pupal weight and pupation rate of H. armigera decreased significantly when 

the larvae fed on diet containing cry1Ac (at 4.0 mg/g). It is concluded that feeding on diet 

containing Bt insecticidal protein, both strains of the cotton bollworm will have significantly 

negative effects on development of the parasitoid, M. mediator (Liu et al, 2004). 

Liu et al. (2005) reported that the H. armigera larvae, in first, second and third instar 

could not survive when fed on transgenic cotton leaves. Consequently, C. chlorideae larvae 



could not complete their development if parasitizing on such hosts, after H. armigera larvae 

were reared on transgenic cotton leaves for 12-48 hours, they were parasitized by C. 

chlorideae females. The results showed that the body weights of larvae of the parasitoids 

were significantly reduced when parasitized hosts fed on transgenic cotton leaves compared 

to those fed on traditional cotton. Duration of egg and larvae stage were significantly 

prolonged, pupal and adult weight of C. chloridae was decreased when the host larvae fed on 

transgenic cotton leaves longer than 48 h. The development duration of C. chlorideae pupae 

on the hosts fed on transgenic cotton leaves in each treatment was not significantly different 

from those of control. The longevity of parasitoid females and males fed with a solution 

containing Cry1Ac toxin was not significantly different with that of the control. 

Zhang et al. (2006a) reported the life history parameters in two generations of 

endoparasitoid C. chlorideae using Bt resistant H. armigera larvae feeding on Bt toxin 

Cry1Ac. C. chlorideae pupae developed faster in Bt treatment than non-Bt treatment. The 

shortened pupal stage, body length of adult male decreased. However, survival, pupal 

mortality and adult longevity of C. chlorideae were almost unaffected in Bt-resistant H. 

armigera larvae feeding on Bt-toxin and suggested that there is very limited effect on the life 

history parameters in two generations of C. chlorideae parasitizing Bt fed H. armigera larvae, 

but both generations of C. chlorideae are affected when Bt-resistant H. armigera larvae fed 

on Bt toxin for different durations. 

Zhang et al. (2006b) repoted that after ingesting Bt-treated resistant H. 

armigera larvae in the third and fourth instar, the body mass and body length of adult P. 

japonica decreased and larval survival and development in these two instars, pupal mortality, 

fecundity and adult longevity of P. japonica were not affected in both the generations. The 

results suggested that ingesting Bt-toxin Cry1Ac-treated pests in advanced larval stage might 

have no significant effect on the fitness of predator P. japonica. 

The H. armigera larvae fed on artificial diet impregnated with Cry1Ab and Cry1Ac at 

LC50 and ED50 levels before and after parasitisation resulted in a significant reduction in 

cocoon formation and adult emergence of C. chlorideae. Larval period of the parasitoid was 

prolonged by two days when fed on Bt-intoxicated larvae, no adverse effects were observed 

on female fecundity. The observed effects appeared to be indirect in nature, because no Bt 

proteins were detected in the C. chlorideae larvae, cocoons, or adults fed on Cry1Ab or 

Cry1Ac-treated H. armigera larvae. The effects of Bt toxin proteins on C. chlorideae were 



due to early mortality of H. armigera larvae, i.e., before completion of parasitoid larval 

development. The effects of transgenic cottons with CryIAc gene from Bt on the natural 

enemies of cotton boll worm, H. armigera and observed that there were no differences in 

coccinellid numbers between the transgenic and non transgenic. The number of chrysopid 

larvae was greater on the varieties Aravinda, L 604 and Mech 184 under both protected and 

unprotected conditions. However, the survival and development of C. chloridae was also 

poor when H. armigera larvae were fed on the leaves of Bt cotton hybrid Mech 184. The 

effects of transgenic cottons with cry1Ac gene from Bt on the natural enemies of cotton boll 

worm, H. armigera. There was no apparent effect of transgenic cotton on the relative 

abundance of predatory spiders (Clubiona sp. and Neoscona sp.), coccinellid (Cheilomenes 

sexmaculatus), and the chrysopid (Chrysoperla carnea). However, the abundance of spiders, 

coccinellids, and chrysopids was quite low in insecticide protected plots towards end of the 

cropping season. There was a significant reduction in cocoon formation and adult emergence 

of the ichneumonid parasitoid, C. chlorideae reared on H. armigera larvae fed on the leaves 

of transgenic cottons before and after parasitization. However, no Bt toxins were detected in 

H. armigera larvae and the parasitoid cocoons. Reduction in cocoon formation was because 

of early mortality of the H. armigera larvae due to Bt toxins in the leaves of transgenic 

cotton. There was a slight reduction in adult weight and fecundity, and prolongation of the 

larval period when the parasitoid was raised on H. armigera larvae fed on the leaves of 

transgenic cotton before and after parasitization. Survival and development of C. chlorideae 

was also poor when H. armigera larvae were fed on the leaves of cotton hybrid Mech 184. 

The adverse effects of transgenic cotton on survival and development of C. chlorideae were 

largely due to early mortality and possibly poor nutritional quality of H. armigera larvae due 

to toxic effects of the transgene (Sharma et al., 2007). 

Dhillon and Sharma (2007) observed the parasitism by C. chlorideae females was 

least with reduction in cocoon formation and adult emergence on H. armigera larvae released 

on chickpea. Host insects also had significant effect on the development and survival of C. 

chlorideae. The larval period of C. chlorideae was prolonged by 2 - 3 days on S. exigua, 

Mythimna separata and Achaea janata when compared with H. armigera, Helicoverpa 

assulta and S. litura. Maximum cocoon formation and adult emergence were recorded on H. 

armigera (82.4 and 70.5 %, respectively) than on other insect hosts. The study had important 

implications on development and survival of C. chlorideae on alternate insect hosts on non-

transgenic crop plants, when there is paucity of H. armigera larvae on transgenic crops 

expressing Bt-toxins. 



Sharma et al. (2008) reported that there was a significant reduction in cocoon 

formation and adult emergence of C. chlorideae when H. armigera larvae fed on artificial 

diet impregnated with CryIAb and CryIAc at LC50 and ED50 levels before and after 

parasitisation. Larval period of the parasitoid was prolonged by 2 days and no adverse effects 

were observed on female fecundity. The observed effects appeared to be indirect in nature, 

because no Bt protein were detected in C. chlorideae larvae, cocoons, or adults fed on Cry 

IAb or Cry IAc treated H. armigera larvae.  

The growth and survival of the parasitoid were normal when the host larvae were fed 

with sublethal doses or subjected to short time exposure to lethal doses of Btk HD-1. 

However, the parasitoid offsprings developed slowly and pupal as well as adult period, adult 

weight and adult emergence rate were reduced significantly if the parasitoid was developing 

inside a severely Bt intoxicated host larvae. There were no evident differences in longevity of 

parasitoid adults that were fed on honey solution containing different concentrations of Btk 

HD-1 as compared to adults fed only on honey solution. This indicates no direct adverse 

effect of Btk HD-1 on C. chlorideae. The gravid female parasitoid did not discriminate Btk 

HD-1 intoxicated and normal H. armigera larvae for oviposition (Mohan et al., 2008).   

Ding et al. (2009) reported that the developmental period of Microplitis 

mediator offspring's eggs and larvae were significantly delayed and pupal and adult weight 

were significantly less compared to the control when the female parasitoids parasitized H. 

armigera larvae that fed on diet containing 1, 2, 4 and 8 µg g
-1

 of Cry1Ac. Cry1Ac was 

detected in larvae and hemolymph of H. armigera, but not in the larvae of M. mediator and 

significant effects on several fitness parameters of the F1 M. mediator developed 

from H. armigera fed Cry1Ac intoxicated diet most likely were host-quality mediated rather 

than direct effects of Cry1Ac. 

Dhillon and Sharma (2009a) reported that there were no adverse effects of Bt toxins 

on Cheilomenes sexmaculatus when the larvae were reared on Aphis craccivora fed on 

different concentrations of CryIAb or CryIAc in the artificial diet, a significant and positive 

correlation was observed between the presence of Bt toxins in aphids and coccinellid larvae 

and adults (r = 0.53 to 0.86). The results suggested that a direct exposure to Bt toxins 

expressed in transgenic plants or predation on H. armigera on Bt transgenic plants have little 

effect on the activity and abundance of the ladybird, C. sexmaculatus.  

http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&searchType=journal&result=true&prevSearch=%2Bauthorsfield%3A(Ding%2C+J)


There was a significant influence of host size on development and survival of the 

parasitoid. Bt toxins were detected in H. armigera larvae fed on Bt–sprayed chickpea, but not 

in C. chlorideae reared on H. armigera larvae fed on Bt-treated chickpeas, and in the 

parasitoid adults fed on honey intoxicated with 0.05 per cent Bt. The adverse effects of Bt on 

the parasitoid were largely through early mortality of H. armigera larvae or poor quality of 

the host (Dhillon and Sharma, 2010). 

Lawo et al. (2010) experimentally proved Chrysoperla carnea is negatively affected 

when fed Bt-susceptible but not Cry1Ac resistant H. armigera larvae that had fed Bt-

transgenic cotton expressing Cry1Ac. In case of the Cry1Ac resistant H. armigera strain, 

feeding on Bt cotton resulted in a reduced glycogen content in the caterpillars. The predators, 

however, appeared to compensate for the reduced carbohydrate content of the prey by 

increasing biomass uptake which caused an excess intake of the other analyzed nutritional 

compounds. This study clearly proves that nutritional prey-quality factors other than Bt 

protein underlie the observed negative effects when C. carnea larvae are fed with Bt cotton-

fed prey, possible factors were an altered sugar composition or fitness costs associated with 

the excess intake of other nutrients. 

Dhillon and Sharma (2011) experimentally proved the influence of mating behaviour 

and abundance of the insect host on fecundity and sex-ratio of the parasitoid, C. chlorideae. 

There was no significant influence in number of matings and abundance of the insect host on 

cocoon formation, adult emergence and larval and puapal periods of C. chlorideae. However, 

fecundity and female longevity were significantly influenced by mating and abundance of the 

insect host. There was a significant and positive correlation (r =0.84) between longevity and 

fecundity of C. chlorideae females. The unmated C. chlorideae females produced only males, 

nearly 20 per cent of the females that had mated twice were male biased. 

Salama et al. (2013) assessed prey consumption and development parameters 

of Chrysoperla carnea and observed no obvious differences in the development of C. 

carnea that preyed on H. armigera fed on transgenic tomato plants as compared to the 

control. This shows that transgenic tomato plants can be safely used as an efficient tool for 

the biocontrol of H. armigera with no effect on its predator, C. carnea. 

Bahar et al. (2013) studied the effect of cotton aphids, Aphis gossypii as an alternative 

prey on the predation of H. armigera larvae by green lacewing larvae, Mallada signatus. The 

presence of H. armigera larvae alone, without the predator, caused a 24 per cent reduction in 



the numbers of aphids on conventional, but not on Bt cotton plants. The combination of Bt 

cotton and lacewing larvae caused a 96.6 per cent removal of early-stage H. armigera larvae, 

a statistically significant increase over the addition of the proportions (91.6%) removed by 

each factor measured separately, providing evidence of synergism. The study suggests that 

the presence of aphids as alternative prey would not necessarily disrupt the predation by 

green lacewing on larvae of H. armigera, especially on Bt cotton. 

2.3.2. Effect of Cry genes in transgenic crops on the natural enemies of  

          lepidopteran pests 

 

Chilcutt et al. (1997) tested the direct and indirect effects of the bacterium, Bacillus 

thuringiensis (Bt) on adult wasp longevity and oviposition behaviour, all parasitoids were 

observed to make oviposition attempts in both untreated and treated larvae. There was no 

effect of Bt treatment on parasitoid oviposition. The mean number of ovipositions in treated 

larvae (4.3±0.3) was not significantly different from untreated larvae (4.7±0.2).  

Hilbeck et al. (1999) studied the prey-mediated effects of artificial diet containing Bt 

proteins on immature Chrysoperla carnea. The highest mortality (78%) was reported in 

comparision to control (26%) and delayed development of immature C. carnea raised on 

Cry1Ab toxin 100 μg g
-1

 diet–fed prey may have been confounded with an increased 

intoxication of S. littoralis larvae, prey-mediated total mortality of Cry1Ab protoxin-exposed 

chrysopid larvae was intermediate (46–62%) to Cry1Ab toxin exposed (55–78%) and Cry2A 

protoxin (47%) exposed C. carnea. Total development time of C. carnea was not consistent 

and significantly affected by the Bt-treatments except at the highest Cry1Ab toxin 

concentration,  at all other B. thuringiensis protein concentrations S. littoralis was not lethally 

affected.  

Erb et al. (2001) explained parasitoid-pathogen interactions in gypsy moth, Lymantria 

dispar, Bt and Compsilura concinnata. Gypsy moths were minimally affected by sublethal 

doses of Bt development of fourth instar was delayed, and male pupal mass 

reduced. Compsilura concinnata preferentially attacked and had higher superparasitism on 

non-infected hosts than on Bt-treated larvae. Exposure of gypsy moth to both sublethal doses 

of Bt and parasitoids reduced percentage parasitism and host larval survivorship. Parasitoids 

in Bt-treated, superparasitized gypsy moths had shorter larval development times and smaller 

pupal masses than parasitoids in untreated larvae, while parasitoids in singly parasitized 

larvae had larger pupal masses than those in superparasitized larvae. Timing of Bt infection 



relative to parasitism is a factor in gypsy moth mortality, but not in parasitoid potential 

fecundity. 

Hilbeck (2001) reported prey mediated effects of transgenic Bt-corn causing 

significantly higher mortality of C. carnea larvae. In choice feeding trials where C. carnea 

could choose between Spodoptera littoralis fed transgenic Bt-corn and S. littoralis fed non-

transgenic corn, larger instars showed a significant preference for S. littoralis fed non-

transgenic corn while this was not the case when the choice was between Bt and isogenic 

corn fed aphids. 

Schuler et al. (2004) investigated the effects of Cry1Ac-expressing transgenic oilseed 

rape on the solitary braconid endoparasitoid Cotesia plutellae. Bt oilseed rape caused 100 per 

cent mortality in Bt-susceptible P. xylostella strain but no mortality in Bt-resistant P. 

xylostella strain NO QA. There was no statistically significant difference in the mean time 

from egg to emergence from hosts, the mean dry weight of females on Bt leaves compared to 

females on wild type leaves. Higher proportion of males emerged from hosts fed wildtype 

leaves than those fed Bt leaves. About 80 to 90 per cent of parasitoid adults successfully 

emerged from their pupal cocoons on Bt plants and the proportion of females amongst the 

parasitoid progeny was the same on Bt plants and wildtype plants or higher on Bt plants. 

Vojtech et al. (2005) showed that Spodoptera littoralis larvae are negatively affected 

by Bt maize (Mon810, Monsanto) in terms of developmental time and survival and observed 

the highest mortality in the first larval stage which is in confirmation with other studies.The 

cocoons of Cotesia marginiventris were smaller and developmental time is longer and C. 

marginiventris suffered greater mortality when parasitizing caterpillars feeding on Bt maize. 

Liu et al. (2011) reported the ecological implications on biological control of 

insecticidal transgenic plants. Parasitism rate and development of Diadegma insulare were 

not significantly different when different genotypes (Bt-resistant or susceptible) of insect host 

larvae fed on non-Bt broccoli plants. The parasitism rate, developmental period, pupal and 

adult weights of D. insulare that had developed on Bt broccoli-fed Cry1Ac-resistant P. 

xylostella larvae were not significantly different from those that developed on non-Bt 

broccoli-fed larvae. The life parameters of the subsequent generation of D. insulare from P. 

xylostella reared on Bt broccoli were not significantly different from those from non-Bt 

broccoli.  

http://link.springer.com/search?facet-author=%22Xiaoxia+Liu%22


Ebrahimi et al. (2012) studied the effects of Bt on immature stages of Diadegma 

insulare, Ichneumonidae within larvae of diamond back moth, Plutella xylostella, 

parasitoid’s adult mortality at field rate of Bt was not significantly different from that of 

control and the results showed that Bt kills D. insulare larvae indirectly by killing susceptible 

hosts.  

Marzban (2012) evaluated interactions among Chilo suppressalis, its larval parasitoid 

Trichogramma brassicae and insect-resistant transgenic rice lines. The results showed that all 

neonates and second larvae of stem borer were dead regardless of being fed rotationally or 

permanently on Bt rice, but 18 and 28 per cent of the third and fourth instar larvae could 

complete development and turned to adults, respectively, when fed rotationally.  

2.3.3. Effect of transgenic crops on the natural enemies of various crop pests 

Hilbeck et al. (1998) studied the effects of Cry1Ab toxin on developmental time and 

mortality of Chrysoperla carnea larvae, mortality was higher in C. carnea fed the CryIAb-

treated diet compared to the control and no or only small differences in developmental time 

were observed in C. carnea fed CryIAb-treated (100 μg/ml of diet) and untreated diets. 

The adverse tri-trophic interactions involving a lectin-expressing transgenic crop, a 

target pest aphid and a beneficial aphidophagous predator. The results demonstrate no acute 

toxicity due to the transgenic plants and expression of a lectin gene for insect resistance in a 

transgenic potato line can cause adverse effects to a predatory ladybird via aphids in its food 

chain Birch et al. (1999).  

Daly et al. (2005) investigated field populations of non-target arthropods in transgenic 

corn with the MON 810 event expressing the Cry1Ab endotoxin from Bacillus thuringiensis 

variety kurstaki (Bt), compared with those in conventional, near isogenic corn. The only 

insect whose numbers were strongly affected by the Bt corn was the corn earworm, 

Helicoverpa zea, a target insect. There were no consistent significant differences in nontarget 

phytophagous and predaceous arthropods in the visual counts and pitfall traps between Bt and 

non-Bt corn. The results indicate that transgenic Bt fed corn containing the MON 810 event 

did not have an adverse effect on populations of nontarget phytophagous or predaceous 

arthropods.  

http://link.springer.com/search?facet-author=%22Morteza+Ebrahimi%22
http://www.cabdirect.org/search.html?q=au%3A%22Marzban%2C+R.%22


Zhu et al. (2006) studied the effects of transgenic cotton containing Cry1Ac toxin on 

the survival, development and fecundity of a predatory lady beetle, Propylaea japonica, 

through a food chain using cotton aphid, Aphis gossypii as an herbivorous prey, no significant 

differences were observed in total survival from hatching to adult, or in larval and pupal 

durations of P. japonica supplied with aphids fed on either transgenic or non-transgenic 

cotton. Similarly, no significant differences in longevity, reproduction, weight, or fatty acid 

contents of adult beetles were detected.  

Mellet and Schoeman (2007) studied the effect of Bt-cotton on aphid, whitefly, 

chrysopid and coccinellid populations. The cultivation of Bt-cotton had no effect on aphid, 

whitefly, chrysopid or coccinellid abundance, positive density dependent interactions 

occurred between aphids and coccinellids which were not influenced by Bt-cotton, a 

significant relationship between whitefly and coccinellid abundance, i.e. predator-prey 

reaction, occurred in the control and sprayed non-Bt cotton fields but was absent from the Bt- 

cotton fields. 

Chen et al. (2007) reported the impacts of rice type Bt/non-Bt on the population 

density of three plant hoppers, Sogatella furcifera, Nilaparvata lugens and Laodelphax 

striatellus, and the natural enemy, Cyrtorhinus lividipennis. Both in Bt rice and non-Bt rice 

plots, S. furcifera was the predominant species of planthoppers and no consistent effects of Bt 

rice and Bt rice×sampling date interaction on population dynamics of the predominant 

planthopper species, S. furcifera, and the predator, C. lividipennis, were observed throughout 

the sampling period. This field study indicates that, in comparison with non-Bt rice, Bt rice 

did not lead to higher planthopper populations and did not negatively affect the predator C. 

lividipennis.  

Wang et al. (2007) studied the effects of transgenic Bt maize pollen expressing the 

Cry1Ab protein of Bt as a food source on Trichogramma ostriniae on longevity, progeny 

production and offspring sex ratio, females fed on suspension of pollen of Bt maize or non-Bt 

maize in water lived significantly longer than those fed on water alone, no significant 

differences in longevity, number of parasitized eggs, offspring emerged and the offspring sex 

ratio were observed between the females feeding on pollen of Bt maize and non-Bt maize. Bt 

maize pollen did not adversely affect T. ostriniae. 

Ying et al. (2008) studied tri-trophic impacts of transgenic Bt cotton GK12 and 

NuCOTN 99B using a predator, the great lacewing Chrysopa pallens, and its prey, the cotton 

aphid Aphis gossypii. When fed GK12-originated aphid prey, pupal body mass of C. 



pallens was significantly higher than that of the control, more females emerged, and these 

females laid significantly more eggs. These results indicate that C. pallens is sensitive to 

aphid prey from different cotton cultivars. Transgenic Bt cotton GK12-originated aphid prey 

has no adverse impact on survival, development, and fecundity of C. pallens.  

Dhillon and Sharma (2009b) studied the effects of Bt cotton on non-target insect 

pests, generalist predators, arthropod diversity and toxin flow through different trophic levels 

under insecticide protected and unprotected conditions. The populations of major non-target 

insect pests (leafhoppers, whiteflies, ash weevils, aphids, dusky and red cotton bug, and green 

bug) and the generalist predators (ladybirds, chrysopids, and spiders) did not differ 

significantly between the Bt and non-Bt cottons, while their numbers were lower in 

insecticide protected than under unprotected conditions, except for aphids and whiteflies. 

Although, Bt toxin was detected in some insect species, no significant differences were 

observed in their abundance on Bt and non-Bt cottons. 

Schmidt et al. (2009) reported there was significant higher mortality of Adalia 

bipunctata larvae fed with the lepidopteran-active Cry1Ab toxin even at the lowest 

concentration (5 μg/ml) than the control. At a concentration of 25 μg/ml, coleopteran-active 

Cry3Bb resulted in a marginally significant higher mortality compared to the control. This 

revealed slight decline in mortality at the highest concentration of 50 μg/ml and at 

concentrations between 10 and 100 μg/ml revealed no significant effects on development 

time and body mass of newly emerged adults.  

Dhillon and Sharma (2009a) studied development, survival, and fecundity of field and 

laboratory strains of the H. armigera larval endoparasitoid, Campoletis chlorideae at 

different temperatures and suggested, the C. chlorideae adults stored at 18 
0
C could be used 

for parasitism, while the immature stages should be reared at 27 
0
C for mass production of 

the parasitoid for biological control of H. armigera. 

 In the study conducted by Yu et al. (2011), the results indicated that transgenic rice 

expressing cry1Ab/cry1Ac, cry2A and cry1C had no significant adverse effects on the 

population dynamics of three planthoppers (Nilaparvata lugens, Sogatella furcifera and 

Laodelphax striatellus) and their predators Cyrtorhinus lividipennis, Pirata 

subpiraticus and Theridium octomaculatum).  

http://www.cabdirect.org/search.html?q=au%3A%22Han+Yu%22


Digilio et al. (2012) reported no significant differences between performance 

of Macrosiphum euphorbiae on genetically modified tomato plants (line UC82Bt) with 

respect to their near-isogenic control line (line UC82). Similarly, no significant differences 

were found on the longevity and prey consumption of M. caliginosus when fed aphids reared 

on UC82Bt or on UC82. The genetic modification did not affect the attractiveness of 

uninfested tomato plants toward A. ervi. It is therefore concluded that Cry3Bb-expressing 

tomato plants did not show any acute adverse effects on the biological parameters of the non-

target herbivore M. euphorbiae or its natural enemies, M. caliginosus and A. ervi.  

Dhillon et al. (2012) studied the efficacy of Bt cotton for the management of 

bollworms, their effects on non-target insects. H. armigera and Earias vittella damage was 

significantly lower in Bt-cotton than in non-Bt cotton, while no significant differences were 

observed in egg-laying by H. armigera. The populations of major nontarget sucking insect 

pests such as Amrasca biguttula biguttula, Bemisia tabaci, Aphis gossypii, Oxycarenus 

laetus, Dysdercus koenigii, and Nezara viridula; and the generalist predators, Cheilomenes 

sexmaculatus, Chrysopa spp., and spiders did not differ significantly between Bt and non-Bt 

cottons. Bollworm damage was lower and seed cotton yields higher in Bt than in non-Bt 

cottons and concluded that Bt cotton hybrids are effective for the management of bollworms 

and yield more, and do not have any adverse effects on the abundance of generalist predators. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter III 

MATERIAL AND METHODS 

Studies on the “Characterization of Cry IIa transgenic chickpea lines and their interaction 

with natural enemies of Helicoverpa armigera (Hubner)” were conducted at the International 

Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, 

India, during 2011-14. The materials utilized in conducting these experiments are elucidated 

below. 

3.1 Phenotyping of Cry IIa transgenic chickpea lines for resistance to pod borer,           

H. armigera 

3.1.1. Experimental material:  

Six transgenic and two non transgenic chickpea lines were evaluated for resistance to 

H. armigera (Table 3.1). The plants were grown under greenhouse conditions (27 ± 5
0
 C and 

65 - 90% RH). The seeds were sown in a sterilized mixture of black soil (Vertisols), sand and 

farmyard manure (2:1:1) filled in medium sized plastic pots (30 cm in diameter, 30 cm in 

depth). The seeds were sown 5 cm below the soil surface and watered immediately and 

thereafter as and when required. Three plants with uniform growth were retained in each pot 

at 10 days after seedling emergence. Diammonium phosphate granules (DAP) were applied at 

15 days after seedling emergence @ 20 g per pot. The experiment was laid out in a 

completely randomized design (CRD) with three replications. 

3.1.2. Insect Culture:  

Larvae of H. armigera used in the bioassays were obtained from a laboratory culture 

maintained at ICRISAT. The larvae were reared on chickpea based artificial diet (Armes et 

al., 1992) under laboratory conditions at 27
0
C. The laboratory culture was supplemented with 

field-collected population every six months to maintain the heterogeneity of the laboratory 

culture. Field collected larvae of H. armigera were reared in the laboratory on the natural 

host for one generation before being introduced into the laboratory culture to avoid 

contamination with the nuclear polyhedrosis virus, bacteria, or fungi. The neonates of H. 

armigera were reared in groups of 200 to 250 in 200 ml plastic cups (having 2 to 3 mm layer 

of artificial diet on the bottom and sides) for five days. After five days, the larvae were 

transferred individually to six cell well plates (each cell well is 3.5 cm in diameter, 2 cm in 

depth) to avoid cannibalism. Each cell well had sufficient quantity of diet (7 ml) to support 

larval development until pupation. The pupae were removed from cell wells, sterilized with 



2% sodium hypochlorite solution, and kept in groups of 50 in plastic jars containing 

vermiculite. Upon emergence, ten pairs of adults were released inside an oviposition cage (30 

x 30 x 30 cm), and provided with 10% sucrose or honey solution on a cotton swab as food 

(Plate 1). Diaper liners, which have a rough surface, were hung inside the cage as an 

oviposition substrate. The liners were removed daily and the eggs sterilized in 2% sodium 

hypochlorite solution. The liners were dried under fan and then placed inside the plastic cups 

with artificial diet. After egg hatching, the larvae were moved to the artificial diet, and the 

liners were removed after 4 days. Neonate larvae were used for bioassays using diet 

impregnation assay (Sharma et al., 2005a).  

3.1.3. Laboratory evaluation 

 The six transgenic chickpea lines, BS5A.1(T2) 18-1P1, BS5A.1(T2) 18-2P1, 

BS5A.2(T2) 19-1P2, BS5A.2(T2) 19-2P1, BS5A.2(T2) 19-3P1, BS5A.2(T2) 19-3P2 and two 

non transgenic chickpea lines,  ICC506 EB (Resistant check) and Semsen (Control) were 

sown in greenhouse during the post rainy seasons of 2011-12 and 2012-13 (Plate 2). The 

plants were used for the bioassays in the laboratory under uniform environmental conditions 

(27 ± 2
0 

C, 65-75 % RH, and a photoperiod of 12:12 h. (Light : Dark) and evaluated for 

resistance to H. armigera using detached leaf assay against the neonate and second-instar 

larvae of H. armigera. Bioassays were conducted at the vegetative [30 days after emergence  

(DAE)] and flowering stages (45 DAE).  

3.1.4. Detached leaf assay 

  The chickpea plants grown in the greenhouse were bioassayed under controlled 

conditions in the laboratory [27 ± 2
0 

C temperature; 65 - 75% RH, and photoperiod of 12:12 

h. (Light : Dark)]. Terminal branches of chickpea (three to four fully expanded leaves/bud) 

were placed into plastic cups (4.5 x 11.5 cm diameter) in solidified agar-agar (3%) (Sharma 

et al., 2005b). Agar-agar (3%) was boiled, and 10 ml solution was poured into a 250 ml 

plastic cup kept in a slanting manner (Plate 3). The solidified agar-agar served as a 

substratum for holding the chickpea branches and maintains the leaf turgid for 4-5 days. The 

terminal branches were cut with scissors and immediately placed in slanting manner in the 

agar-agar medium. Care was taken to see that the chickpea branches did not touch the inner 

walls of the cup. Ten neonates of H. armigera were released on the chickpea leaves in each 

cup, and then covered with a lid to keep the chickpea terminals in a turgid condition. 

3.1.5. Cage screening  

Each genotype was infested with neonate H. armigera at 30 DAE. Twenty neonates 

were released on the terminal branches of three plants in each pot using a camel hair brush. 



The plants were covered with a wire framed cylindrical cage (25 cm in diameter and 25 cm in 

height) (Plate 4). The lower margin of the cage was pushed to a depth of 3 cm in the soil and 

covered with nylon bag of similar dimensions to prevent any escape of the larvae. There were 

three replications for each genotype. The experiment was monitored daily, and terminated 

when >80% of the leaf area was consumed in the control plants. The larvae were removed 

from the plants, placed individually in small plastic cups, and weighed after 4 h. The plants 

were then rated visually for the extent of leaf damage on a 1 to 9 damage rating scale (1 = 

<10% leaf area damaged; 2, 11-20%; 3, 21-30%; 4, 31-40%; 5, 41-50%; 6, 51-60%; 7, 61-

70%; 8, 71-80%; and 9, >80% leaf area damaged). Data were recorded on leaf area damaged 

(visual damage rating), larval survival and larval weights. 

The detached leaf assay and cage screening experiments were conducted in a 

completely randomized design (CRD) with three replications for each genotype.  

3.1.6. Artificial diet for rearing H. armigera  

For preparing the chickpea based diet for insect culture, all the ingredients (Armes et 

al., 1992) (Table 2) were weighed separately. The ingredients of Fraction A and water (W1) 

were mixed thoroughly in a large bowl of 2 L capacity by using a hand mixer. The yeast was 

mixed with water (W2) in a saucepan on a hot plate and heated to boiling point, agar-agar 

was added and boiled and then again agar was mixed with other ingredients (Fraction A) in a 

plastic bowl and stirred until even consistency was obtained. This semi-cooled diet was 

poured into trays or 250 ml plastic cups (0.5 cm thin layer) placed on a level surface and 

allowed to cool under a laminar flow for one hour. Plastic cups were covered with a lids, 

whereas the, trays were wrapped with polythene sheet to avoid contamination. Nearly 300 ml 

diet was sufficient to rear 30-neonate larvae upto pupation. 

3.1.7. Survival and development of H. armigera on artificial diet with lyophilized leaf 

powder of different transgenic chickpea lines  

To study the effectiveness of transgenic chickpea against H. armigera, freeze-dried 

lyophilized powder of leaves and pods of chickpea genotypes were incorporated into the 

artificial diet. 

                Terminal branches with tender green leaves of six transgenic chickpea lines, 

BS5A.1(T2) 18-1 P1, BS5A.1(T2) 18-2 P1, BS5A.2(T2) 19-1 P2, BS5A.2(T2) 19-2 P1, 

BS5A.2(T2) 19-3 P1, BS5A.2(T2) 19-3 P2 and two non-transgenic chickpea lines,  ICC 506 

(Resistant check) and Semsen (Control) were collected from glasshouse. The leaves and pods 



were frozen at –20
0 

C and lyophilized (Plate 5). The lyophilized leaves and pods were 

powdered in a blender to obtain a fine powder (<80 m). To study the effects of transgenic 

and non-transgenic chickpea lines against H. armigera, lyophilized leaf and pod powder of 

six transgenic and two non-transgenic chickpea lines was incorporated into the artificial diet 

(Table 3.3). There were three replications for each genotype in a CRD, and 10 neonates were 

released on the artificial diet. The larvae were reared individually in six cell-well plates, and 

kept at 27 
0
C. Data were recorded on larval and pupal weights, larval and pupal periods, 

pupation and adult emergence, adult longevity, and fecundity.  

Data were subjected to analysis of variance by using GENSTAT version 14.1. The 

treatment means were compared by DMRT to know the significance of differences among 

the transgenic and non transgenic chickpea lines. 

3.2 Molecular and biochemical characterization of Cry IIa transgenic chickpea lines for 

nutritional equivalence  

3.2.1 Estimation of biochemical constituents  

3.2.1.1 Proteins  

 Sixty mg of the dried test sample was macerated in 10 ml of cold TCA (10%) for 30 

min, kept at 4ºC for 24 h, and then centrifuged (Osborne, 1962). The supernatant was 

discarded and the resultant pellet was re-suspended in 5 per cent TCA (10 ml) and heated on 

a water bath at 80ºC for 30 min. The sample was cooled and re-centrifugated, and each time 

the supernatant was discarded. Finally pellet was washed with distilled water, centrifuged and 

the residue dissolved in 1N NaOH (10 ml), and left overnight at room temperature. 

Total protein content was estimated in an aliquot of 1 ml sample extract, using the 

protocol of Lowry et al. (1951). A stock solution (1 mg/ml) of Bovine Serum Albumin 

(Sigma Chemicals Manufacturing Limited, St. Louis, Missouri, USA) was prepared in 1N 

NaOH, from which 0.1 to 0.9 ml of aliquots were dispensed in a series of test tubes. The 

volume was made up to 1 ml by adding distilled water. To each test sample, 5 ml freshly 

prepared alkaline solution (prepared by mixing 50 ml of 2% Na2CO3 in 0.1N NaOH and 1 ml 

of 0.5% CuSO4.5H2O in 1% sodium potassium tartrate) was added at room temperature and 

left undisturbed for a period of 10 min. 

Subsequently, 0.5 ml of Folin-Ciocalteau reagent (prepared by diluting the reagent 

with distilled water in 1:2 ratio just before use) was added to each sample. The optical density 

(OD) of each sample was measured at 750 nm after 30 min in a spectrophotometer (Hitachi, 



Tokyo, Japan, U 2900). Three replicates of each sample were taken and their mean values 

were used to prepare the standard curve. The total protein content in each sample was 

calculated from the standard curve for Bovine Serum Albumin (BSA). Three replicates were 

examined for each treatment. 

3.2.1.2. Carbohydrates 

The dried sample (50 mg each) was macerated in a grinder with 20 ml of ethanol and 

left for 12 h. The samples were then centrifuged at 1200 rpm for 15 min, the supernatants 

were removed and concentrated on a water-bath. The volume of aqueous concentrates was 

made up to 50 ml with distilled water (Extract A) and processed further by following the 

method of Loomis and Shull (1937) to estimate total soluble sugars.  

Residual pellet obtained by centrifugation was suspended in a mixture of 5 ml of 52 

per cent perchloric acid and 6.5 ml of distilled water, shaken vigorously (5 min) and 

centrifuged at 2500 rpm. This step was repeated three times and the supernatants were 

collected and pooled. The volume was made up to 100 ml with distilled water (Extract B). An 

aliquot of 1 ml was used to estimate starch content (McCready et al., 1950).  

One ml aliquot of the test sample from Extracts A and B were used for quantifying 

total carbohydrates using phenol-sulphuric acid method (Dubois, 1951). A standard curve 

was prepared using glucose. A stock solution of glucose (100 μg/ml) was prepared in distilled 

water, of which 0.1 to 0.9 ml aliquots were transferred to a series of test tubes and the volume 

made up to 1 ml with distilled water. To each of these, 1 ml of 5 per cent aqueous phenol was 

added quickly in an ice chest and shaken gently and then 5 ml of concentrated H2SO4 was 

added by agitating the test tube. The test tubes were kept in a water-bath (26º–30ºC) for 20 

min and the optical density (ODs) of the yellow orange color thus developed was recorded at 

490 nm in a spectrophotometer after setting the instrument for 100 per cent transmission 

against the blank. Four replicates of each sample were run and the mean values calculated. A 

regression was computed between known concentrations and their respective OD (based on 

Beer’s Lamberts Law). The concentration (mg/g dry weight) of total soluble sugars was 

estimated from the standard curve for glucose. Three replicates of each sample were taken 

and their mean values recorded. The carbohydrate content in terms of glucose equivalent and 

the conversion factor (0.9) were used to convert values of glucose to starch in each case. 



Standards with different concentrations (i.e., 25, 50, 75, 100 and 125 g of glucose) 

were prepared from the working standard, and their absorbance was read by taking 1 ml 

aliquots. 

Total soluble sugars were calculated by using the formula: 

Conc. of standard               1   3 ml 

--------------------------- x Absorbance of 1 ml extract x ------------ x --------- x 100 

Absorbance of standard        10,00,000   0.1g 

 

3.2.1.3. Lipids 

One g of each of the dried and milled test sample was macerated in 10 ml distilled 

water (Jayaraman, 1981). To this, 30 ml of chloroform : methanol (2:1 v/v) was added and 

mixed thoroughly. The mixture was left overnight at room temperature; 20 ml each of 

chloroform and distilled water was added to the sample and centrifuged. Of the three layers, a 

clear lower layer of chloroform containing lipids was collected in a pre-weighted beaker. The 

solvent was allowed to evaporate and the beaker was re-weighed and the amount of lipids 

were recorded and expressed as total lipids/g of the dried sample. 

3.2.1.4. Phenols 

Dried and milled test samples (200 mg) were homogenized in 80% ethanol (10 ml) for 

2 h and left over night at room temperature. The samples were centrifuged and the 

supernatants were collected individually and the volume of each was made up to 40 ml with 

80 per cent ethanol. 

Total phenol content was estimated by following the protocol described by Bray and 

Thorpe (1954). A standard curve of caffeic acid (phenol) was prepared. A stock solution (100 

μg/ml) of caffeic acid was prepared in 80 per cent ethanol, from which 0.1 to 0.9 ml aliquots 

were transferred into a series of test-tubes and the volume was made up to 1 ml with 80 per 

cent ethanol. To each of these tubes, 1 ml of Folin–Ciocalteau reagent (1: 2 ratio) with 2 ml 

of 20 per cent Na2CO3 solution was added and the contents mixed vigorously. The samples 

were incubated in boiling water bath for 1 min, cooled and diluted to 25 ml with distilled 

water. The optical density (OD) was recorded at 750 nm using a spectrophotometer against a 

blank.  



Three replicates were taken for each concentration, and the average OD was plotted 

against the respective concentrations to prepare the standard curve. Each test sample was 

processed in a similar manner. Total amount of phenols was estimated from (with reference 

to caffeic acid) the standard curve. 

The standard curve was prepared by plotting the average absorbance readings of the 

duplicate determinations of catechin concentrations and the catechin equivalents (CE) 

calculated by using the following formula. 

mg catechin/ml       Volume made up 

CE (%) = -----------------------  X ------------------------ x 100 

            Vol. of extract taken            Wt. of sample 

 

3.2.1.5. Tannins  

The amounts of condensed tannins present in the leaves of chickpea were estimated 

by Vanillin – hydrochloride assay (Price et al., 1978). The following reagents were used in 

the present study. 

3.2.1.5.1. Reagents 

1. Vanillin-hydrochloride reagent: 

 Mixture of equal volumes of 8% hydrochloric acid in methanol and 4% vanillin in methanol. 

2. 8% concentrated HCl in methanol (8 ml of HCl add to 92 ml of methanol). 

3. 4% Vanillin in methanol (4 g of Vanillin brought to 96 ml of methanol). 

4. Mixed 2 and 3 in equal volumes just before use.   

3.2.1.5.2. Standard solution 

A stock solution was prepared by dissolving 1 mg of catechin in 1 ml of methanol. 

The stock solution was diluted ten times (10 times dilution: 1 ml stock + 9 ml of methanol) 

and 10 ml to 100 ml (100 μg/ml). 

Chickpea leaves were collected from the field at 30 DAE and placed in paper bags. 

These were initially shade-dried and kept in an oven at 50
0
C for complete drying. These 

samples were ground to a fine powder in a blender from which 0.5 g of leaf powder was 

taken in 25 ml methanol. It was mixed by swirling occasionally and the sample kept at room 

temperature for 24 h, and centrifuged for 20 min at 4500 rpm. 

From the above extract, 1 ml aliquot was pipetted out into a test tube to which freshly 

prepared vanillin – hydrochloride reagent was added slowly. An individual blank was 



prepared for each extract by adding 5 ml of vanillin – hydrochloride to 1 ml aliquot. These 

tubes were incubated in the water bath for 20 min. The absorbance was recorded at 500 nm 

against the reagent blank in a Spectrophotometer. Standard curve was prepared by plotting 

the average absorbance readings of the duplicate determinations of catechin concentrations. 

The catechin equivalents were calculated by using the formula. 

     (mg catechin/ ml)               Volume made up 

Catechin Equivalents (%) =    ---------------------------     X  -----------------------   X 100 

     Volume of extract taken           Weight of sample 

3.2.1.6. Organic acids  

A standard protocol for collection and analysis of organic acids from chickpea leaf 

exudates was followed, with a slight modification of the method used by Yoshida et al. 

(1997) and Narayanamma et al. (2013). 

Standards: Oxalic acid, malic acid, fumaric acid, and citric acid. 

Reagents: Potassium phosphate (KH2PO4), phosphoric acid (H3PO4), and millipore water. 

3.2.1.6.1. Preparation of standards and sample collection 

Two replicates of each standard organic acid were prepared by mixing 2 to 10 mg of 

standard organic acid in 10 ml of water to get concentrations of 200 to 1000 ppm. The 

chickpea leaf samples were collected early in the morning (before 9 am) in 25 ml centrifuge 

tubes containing 5 ml double distilled water/millipore water. The tubes were labelled for each 

genotypes, and weight of the tube and water was recorded (initial weight). First fully 

expanded leaf from three plants was excised with scissors and placed in the respective tubes 

containing double distilled millipore water for 10 to 15 min. The weight of tube with water 

and the leaves was recorded (final weight). Based on the initial and final weights, the fresh 

weights of the leaves were recorded. After extraction of the exudates, the leaves were 

removed from the tubes and placed on a filter paper for 1 h to remove the excess water. Later, 

the leaf area was measured using a leaf area meter. The dry weight of the leaves was recorded 

by placing the leaf samples in an oven at 45
0
 C for three days. 

The leaf exudates extracted in water were filtered through 45 m hydrophilic PVDF 

millipore millex-HV filters using a 5 ml luer lock syringes. Approximately 3 ml sample 

solution was taken in 5 ml luer lock syringe from the centrifuge tubes. The needle was 

removed from the syringe and attached to millipore filter to dispense 1.5 ml of the filtrate into 

the HPLC vials. There were three replicates for each sample (Plate 6). 



3.2.1.6.2. Quantification of organic acids in leaf exudates of chickpea by high 

performance liquid chromatography (HPLC) 

For preparing 2 L of 25 mM KH2PO4 of pH 2.5 with H3PO4, 6.805 g of KH2PO4 was 

weighed and transferred in a 2 L conical flask and mixed with 1 L of millipore water until 

KH2PO4 was completely dissolved. Then added 4 ml of H3PO4 and the volume made up to 

1.8 L, adjusted the pH to 2.5 by adding drop-by-drop H3PO4, and finally made up the volume 

to 2 L. 

After priming, the mobile phase was run for 1 h. The vials containing leaf exudates of 

different chickpea genotypes were arranged in a carousel. Analysis was carried out by using 

Atlantis dC-18 column (4.6 x 250 mm, 5 m). The samples (20 μl) were chromatographed 

singly on a Waters Atlantis C18 column (4.6 × 250 mm) with 5-µm pore size (A Waters 

HPLC 2695 separations module (alliance) system consisting of a PCM 11 reciprocating 

piston pump and a 2996 photodiode array detector in the range of 210 to 400 nm was used in 

a isocratic solvent system (25 Mm KH2PO4)). Chromatographic separation was done using 

mobile phase with a flow rate 0.8 ml min
-1

, and the injected volume was 20 l with 20 min 

run time per sample. 

Based on the standards, retention time and peak areas of different organic acids 

present in the samples were identified and quantified. From the known concentrations of the 

standards, linear curve was plotted against concentration on the X-axis and absorbance on Y-

axis. From the linearity curve, unknown concentrations of different organic acids from the 

samples were plotted and the amounts estimated. Amounts of organic acids present in a 

sample were expressed in mg g
-1

 fresh or dry weight or μg cm
-2

 leaf area. 

3.2.1.7. Flavanoids  

 For estimation of flavanoids, 100 mg of leaf sample was weighed and homogenized in 10 ml 

of 80% MeOH with mortar and pestle. The homogenized samples were centrifuged at 4000 rpm for 

10 min and supernatant was collected. Later, 3 volumes of hexane were added to the supernatant 

volume for partition in separation funnel and methanol phase was collected. This process was 

repeated thrice and the methanol phase was collected, and concentrated to 2 ml in a roto-vapor and the 

concentrated sample was filtered through 0.22 μm membrane filter and injected into HPLC (Plate 6). 

 

 



3.2.2 Molecular characterization of Cry IIa transgenic chickpea lines for transgene      

expression using enzyme linked immunosorbent assay (ELISA) 

3.2.2.1. Materials  

Cry2A ELISA test kit (EnviroLogic Inc., Portland, ME, USA) was used for the 

quantitative detection of Cry2A toxin in different plant parts of transgenic chickpea. Antibody 

coated microtiter plates, peroxidase enzyme conjugate, TMB substrate, PBST wash buffer, and 

3 M sulfuric acid (stop solution) were required along with a blender, air tight container, paper 

towels, distilled water, micropipettes, and sterile micropipette tips. 

3.2.2.2. Sample preparation 

            Twenty mg of leaf sample was weighed and homogenized using pestle in 0.5 ml 

extraction buffer, mixed well and incubated for 30 - 60 minutes at room temperature, allowed 

the particle to settle, and used the supernatant for ELISA test. 

3.2.2.3. Procedure 

            One hundred l of negative control and calibrators were added to the wells, followed 

by 100 l of sample extract to each well. To the blank well, 100 l extraction buffer was 

added. The plate was covered and incubated for 15 min at room temperature, then 100 l 

enzyme conjugate was added in each well and the plate covered and incubated for 60 min at 

room temperature. The wells were aspirated and washed 4 times with 300 l of washing 

solution, followed by addition of 100 l substrate to each well. The plate was covered and 

incubated for 30 min at room temperature. Finally, the reaction was terminated by adding 100 

l stop solution, and measured the optical density of the test wells on a plate reader at 450 nm 

(Plate 7). 

3.3. Effect of cryIIa transgenic chickpea lines on the natural enemies of Helicoverpa  

        armigera 

3.3.1. Rearing of larval parasitoid, Campoletis chlorideae Uchida (Hymenoptera:    

           Ichneumonidae) 

The cocoons of Campoletis chlorideae were collected from chickpea fields and kept 

individually in glass tubes (2 cm in diameter × 10 cm in long) and plugged with cotton wool, 

until adult emergence. Adult female wasps were easily distinguishable from the males by the 

presence of a prominent ovipositor on the posterior end of the abdomen. Twenty pairs of 

adults were released in a cage (10 cm diameter x 20 cm in length, and closed with plastic cap 

lid having 60 wire mesh, and a cotton swab with 10% sucrose solution). Immediately after 

mating, the females along with the males were transferred to another cage. Single mated 5 -



10 days old female wasp was transferred to a transparent plastic vial (15 ml capacity) kept in 

an inverted position on a petri dish. Single H. armigera larva (3-day old / late second or early 

third instar, nearly 1 cm in length) was offered to a female wasp for oviposition. The females 

which showed efficient parasitisation were selected for further studies on non target effects of 

transgenic chickpea lines towards the parasitoid, C. chlorideae. In general, C. chlorideae 

females took 1–2 min for parasitizing a larva. Using this technique, 80-100 larvae were 

parasitized using 3 - 4 females. The parasitized H. armigera larvae were removed and placed 

on chickpea based artificial diet in a transparent glass tube (2 cm diameter, 10 cm long) 

plugged with cotton until adult emergence. Newly emerged adult wasps (≤ 24 h) were kept in 

cages with other virgin wasps. Most of the females mated immediately after release into the 

cages, and were kept separately for use in experiments. The culture was maintained at 27 ± 

2
0
C, 65 – 75% RH, 12 h photoperiod (Plate 8). 

3.3.1.1. Observations 

Parasitized H. armigera larvae were checked every day and observations were 

recorded on larval mortality, cocoon formation, days to cocoon formation (egg+larval 

period), pupal period, adult emergence, adult weight, sex ratio, and fecundity of the C. 

chlorideae females from different treatments. For the fecundity test, three randomly selected 

C. chlorideae adult pairs obtained from each treatment (including control) were released 

inside a cage (30 × 30 × 30 cm), and allowed to mate for 3 days. The adults were provided 

with 10% honey solution in a cotton swab as a food source. After 3 days, each female was 

provided with H. armigera larvae up to their daily parasitization capacity. Parasitization of H. 

armigera larvae with these females continued till they died. Total number of H. armigera 

larvae parasitized by a female in its lifetime was recorded as fecundity/female. 

3.3.1.2. Detection of Bt proteins in Helicoverpa armigera and Campoletis chlorideae  

After feeding the H. armigera larvae on Bt proteins transgenic plants, 5-6 specimens 

of each of the host larvae, parasitoid larvae, cocoons, or freshly emerged adults were 

collected and crushed together to detect the Bt proteins in the insect body using a double 

sandwich enzyme-linked immunosorbent assay (ELISA) kit (EnviroLogic Inc., Portland, ME, 

USA). The C. chlorideae larvae were collected from the live H. armigera larvae.  

The H. armigera larvae showing symptoms of parasitization were dissected, and the 

parasitoid larvae were collected in eppendorf tubes when they were ready to emerge from the 

host larvae for pupation. The host/ parasitoid samples (whole body) were crushed together as 

one sample in phosphate-buffered saline (PBS) in the ratio of 1:10 (insect sample : buffer) in 



Eppendorf tubes in a plastic pestle. The test samples were then centrifuged at 11, 269 g for 2–

3 min, and 100 μl of supernatant was loaded in the test wells of ELISA plate pre-loaded with 

100 μl peroxydase enzyme conjugate. The negative and positive controls, and 0.5, 2.5, and 

5.0 ppb Bt standards were run along with the test samples for the comparison of ELISA 

results. The ELISA plate was incubated for 2 h in a moist paper towel fitted in a plastic box. 

After 2 h of incubation, the test wells were thoroughly washed with PBS buffer giving 5–6 

flip washings, and kept the test wells filled with PBS buffer for 1 min at the end. After 

washing, the test wells were again loaded with 100 μl TMB substrate. The wells showing a 

deep blue color indicated the presence of the toxin. After 15 min of incubation, 50 μl of 2M 

sulphuric acid was added, and observations were recorded on an ELISA plate reader at 450 

nm.  

3.3.1.3. Statistical analysis 

Data were subjected to analysis of variance (ANOVA) using GenStat, version 14.1. 

The treatment means were compared by least significant differences (LSD) at P ≤ 0.05. The 

figures presented in the tables are means across replications with F-probability and LSD 

values. 

3.3.2. Rearing of generalist predator, Cheilomenes sexmaculatus (L.) (Coleoptera: 

Coccinellidae) 

3.3.2.1. Insect culture 

 Cultures of the aphid, Aphis craccivora (Koch); and the predatory coccinellid,                       

C. sexmaulatus were maintained on cowpea, Vigna unguiculata (L.) Walp. plants in a nylon 

net-house under ambient conditions (Plate 10). The aphids and coccinellids were obtained 

from Glaricidia maculata (Kunth.) Walp. growing at the ICRISAT farm. The C. sexmaulatus 

eggs were obtained from the net house-reared coccinellids as and when needed. The 

coccinellid eggs were removed from the oviposition substrate (to avoid fungus development 

and resultant larval mortality), and transferred on to a carbon paper in a plastic cup. The 

neonate C. sexmaulatus larvae from these plastic cups were used in the experiments (Plate 9). 

3.3.2.2. Feeding C. sexmaulatus larvae on sucrose solution 

The neonate C. sexmaulatus larvae were fed on one of the following food sources: (i) 

Pure 2M sucrose solution, (ii) 2M sucrose solution containing Cry1Ia transgenic leaf powder 

(0.02%, 0.05% and 0.1%), (iii) water, and (iv) no food. The survival of C. sexmaulatus larvae 

was recorded daily to assess whether the predator larvae had actually fed on sucrose solution 



or sucrose solution containing Cry1Ia transgenic leaf powder. The experiment was conducted 

twice with 15 replications each, thus forming a total of 30 replicates for each treatment in a 

CRD. Ingestion of Cry1Ia protein by the coccinellid grubs was confirmed by ELISA 

(EnviroLogic Inc., Portland, ME, USA). ELISA test was carried out to detect the Cry1Ia in 

2M sucrose mixed Cry1Ia transgenic leaf powder (0.02%, 0.05% and 0.1%) as described 

earlier. 

3.3.2.3. Direct effects of CryIIa transgenic chickpea lines on survival and                     

development of C. sexmaculatus 

 CryIIa transgenic leaf powder was dissolved in a 2M sucrose solution at the 

concentrations of 0.02%, 0.05% and 0.1% to assess the direct effects. Neonate C. 

sexmaculatus larvae were fed on: (i) pure 2M sucrose solution (sucrose and aphids), (ii) 2M 

sucrose solution containing CryIIa (CryIIa aphids) or CryIIa (CryIIa aphids) at 0.1% on 

alternate days. The C. sexmaculatus larvae were provided ad libitum A. craccivora (mixed 

stages) after every 24 h of feeding on one of the above foods till pupation. One set of C. 

sexmaculatus larvae were fed on A. craccivora only. The neonate C. sexmaculatus larvae 

were kept individually in bioassay cups (3.3 cm in diameter, 3.5 cm in depth), and fed on 

above mentioned foods in the insectary at 26 ± 8
0
C, 80-95% RH, and a 12-h photoperiod. 

The experiment was conducted twice with 15 replications each, thus, forming a total of 30 

replicates for each treatment in a CRD. Observations were recorded on larval and pupal 

periods, larval survival, weights of male and female larvae, adult emergence, and weights of 

male and female adults of C. sexmaculatus.  

3.3.2.4. Indirect effects of CryIIa transgenic chickpea lines on survival and development 

of C. sexmaculatus 

 Indirect effects of CryIIa transgenic chickpea lines on C. sexmaculatus were 

measured through A. craccivora fed on 0.02%, 0.05% and 0.1% concentrations of CryIIa 

transgenic chickpea leaf powder in the artificial diet (Febvey et al., 1999). The aphids were 

reared on artificial diets amended with different (0.02%, 0.05% and 0.1%) amounts of CryIIa 

transgenic leaf powders in aphid feeding apparatus (Plate 10). One set of aphids was also 

reared on control artificial diet. The C. sexmaculatus larvae were provided ad libitum A. 

craccivora (mixed stages) reared on different concentrations of transgenic leaf powders, until 

pupation. The experiment was conducted twice with 30 replicates each, thus forming a total 

of 60 replicates for each treatment in a CRD. Observations were recorded on larval and pupal 



periods, larval survival, weights of male and female larvae, adult emergence, and weights of 

male and female adults of C. sexmaculatus. 

3.3.2.5. Preparation of artificial diet for aphids 

Diet was prepared in 1,000 ml volumes by adding the correct amount of amino acids 

(Table 3.4), vitamins, and minerals to a flask filled to two thirds of the total desired volume 

with an 845 mM solution of sucrose. The pH of the solution was then adjusted to 7.5 with 

KOH, and the final volume made upto 1,000 ml. The diet was then filter-sterilized by passing 

it through a 0.45 m Millipore filter, divided into 20-ml aliquots, and stored at 20 
0
C for no 

longer than 3 months. Distilled de-ionized water was used in all solutions. 

3.3.2.6. Statistical analysis 

All the experiments were conducted twice. Longevities of C. sexmaculatus larvae on 

different foods were analysed using analysis of variance (ANOVA) in a completely 

randomised design (CRD). Larval, pupal periods, larval survival, weights of larvae and 

adults, and adult emergence of C. sexmaculatus on different concentrations CryIIa transgenic 

chickpea leaf powder were analysed using ANOVA in a CRD.  

 

Table 3.1: Transgenic Chickpea lines evaluated for resistance to H. armigera. 

 

Transgenic lines 

1 BS5A.1(T2) 18-1 P1 (Early) 

2 BS5A.1(T2) 18-2 P1 (Early) 

3 BS5A.2(T2) 19-1 P2 (Early) 

4 BS5A.2(T2) 19-2 P1 (Early) 

5 BS5A.2(T2) 19-3 P1 (Early) 

6 BS5A.2(T2) 19-3 P2 (Medium) 

Non transgenic lines 

7 ICC 506 (Resistant check) 

8 Semsen (Control) 

 

 

 

 

 



Table 3.2: Composition of artificial diet for rearing H. armigera larvae. 

 

 Ingredients Quantity 

Chickpea flour  75 g 

L-ascorbic acid  1.175 g 

Sorbic acid  0.75 g 

Methyl-4-hydroxy benzoate  1.25 g 

Aureomycin  2.875 g 

Yeast  12 g 

Formaldehyde (40%)  1.0 ml 

Vitamin stock solution  2.5 ml  

Water (W1)  112.5 ml 

Agar-agar solution  

Agar-agar  4.325 g 

Water (W2)  200 ml 

 

Table 3.3: Composition of artificial diet used for rearing H. armigera larvae 

with lyophilized leaf/pod powder. 

 

 Ingredients Quantity 

Chickpea flour  55 g 

Lyophilized leaf/ pod powder  20 g 

L-ascorbic acid  1.175 g 

Sorbic acid  0.75 g 

Methyl-para-hydroxy benzoate  1.25 g 

Aureomycin  2.875 g 

Yeast  12 g 

Formaldehyde (40%)  1.0 ml 

Vitamin stock solution  2.5 ml 

Water  112.5 ml 

Agar-agar solution  

Agar-agar  4.325 g 

Water  200 ml 



 

Table 4: Amino acid composition (in millimolar) in the artificial diet of aphids. 

 

S.no 

 

Amino acids 

 

mmol l
-1

 

1 Alanine 5.4 

2 Arginine 3.5 

3 Asparagine 179.0 

4 Aspartic acid 11.9 

5 Cysteine 1.6 

6 Glutamic acid 4.9 

7 Glutamine 5.9 

8 Glycine 1.7 

9 Histidine 1.7 

10 Isoleucine 4.0 

11 Leucine 3.8 

12 Lysine 3.8 

13 Methionine 0.8 

14 Phenylalanine 3.0 

15 Proline 4.3 

16 Serine 10.4 

17 Threonine 6.8 

18 Tryptophan 1.4 

19 Tyrosine 1.1 

20 Valine 5.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter IV 

RESULTS AND DISCUSSION 

The results of the present investigations on, “Characterization of Cry IIa transgenic 

chickpea lines and their interaction with natural enemies of Helicoverpa armigera 

(Hubner)” are presented hereunder. The experiments were conducted in the glasshouse and 

under laboratory conditions at the International Crops Research Institute for Semi-Arid 

Tropics (ICRISAT), Patancheru, Andhra Pradesh, India, during 2011-14.  

4.1 Phenotyping of Cry IIa transgenic chickpea lines for resistance to       

      pod borer, H. armigera 

4.1.1. Response of transgenic chickpea lines against H. armigera under laboratory  

           conditions 

          In the first planting during October 2011-12, the transgenic plants suffered significantly 

lower leaf damage rating (DR: 1.3 to 3.2) compared to the non-transgenics, Semsen (DR: 7.8) 

and ICC 506EB (DR: 5.3). Among the transgenic plants tested, BS5A.1(T2) 18-2P1 and 

BS5A.2(T2) 19-3P2 suffered greater leaf damage than the other lines (DR: 3.2 and 2.7, 

respectively) (Plate 11). The larval survival was significantly lower on transgenic plants (30.5 

- 46.1%) compared to that on Semsen (83.8%) and the resistant check, ICC 506EB (74.1%). 

The weight gained by H. armigera larvae after 5 days was lower on transgenic lines  

BS5A.1(T2) 18-1P1 (0.6 mg larva
-1

), BS5A.2(T2) 19-2P1 (0.8 mg larva
-1

),  BS5A.2(T2) 19-1 

P2 (0.8 mg larva
-1

), BS5A.2(T2) 19-3P1 (1.1 mg), BS5A.1(T2) 18-2P1 (1.2 mg larva
-1

) and 

BS5A.2(T2 larva
-1

) 19-3P2 (1.4 mg larva
-1

) than on non-transgenic lines, Semsen (5.4 mg 

larva
-1

) and ICC 506EB (3.8 mg larva
-1

) (Table 4.1, Fig 1). 

The leaf damage rating during October 2012-13 was greater on Semsen (DR: 4.6) and 

ICC 506EB (DR: 3.9) than on transgenic lines (DR: 1.0 to 1.6). The larval survival was 

significantly greater on non-transgenic lines, Semsen and ICC 506EB (73.8 and 77.7%, 

respectively) than on the transgenics. Significantly lower larval weight of H. armigera were 

recorded on BS5A2(T2) 19-2P1 (0.1 mg larva
-1

) as compared to that on non-transgenics, 

Semsen (3.0 mg larva
-1

) and the resistant check, ICC 506EB (2.4 mg larva
-1

). The larval 

weight on the transgenic lines ranged between 0.3 to 0.6 mg larva
-1

 (Table 4.1, Fig 2). 

Based on analysis of pooled data for 2011-12 and 2012-13 October sowings, 

significantly lower leaf damage was recorded on the transgenic lines (DR 1.3-2.3) as 

compared to that on the non-transgenic lines [Semsen (DR: 6.2) and ICC 506EB (DR: 4.6)]. 



The larval survival on Semsen and ICC 506EB was significantly greater (78.8% and 75.9%, 

respectively) as compared to that on the transgenic lines (25.2% - 38.0%) (Table 4.1).  

The transgenic line BS5A.2(T2) 19-2P1 exhibited high levels of resistance to H. armigera 

(DR: 1.0), larval survival (10.5%) and mean larval weight (0.1 mg larva
-1

) during the October 

planting 2012-13. Among the transgenic lines, BS5A.1(T2) 18-2P1,  BS5A.2(T2) 19-3P2 

recorded significantly greater leaf damage (DR: 3.2 and 2.7) and the H. armigera larvae 

gained significantly more larval weight (1.2 and 1.43 mg larva
-1

) during 2011-12 October 

planting (Table 4.1).  

Similar observations have earlier been made by Lawo et al. (2008), who reported that leaf 

damage by H. armigera was significantly higher on the non-transgenic controls than on the 

Bt chickpea leaves. Kar et al. (1997) reported that larvae fed on transgenic chickpea plants 

attained significantly lower body weight as compared to larvae fed on non-transgenic plants. 

Transformed chickpea plants have shown high mortality (> 80.0%) of H. armigera larvae 

(Sanyal et al. 2005). 

BS5A.2(T2) 19-1P2 and BS5A.2(T2) 19-2P1 recorded significantly lower leaf 

damage rating (DR: 1.0) as compared to non-transgenic chickpea plants, Semsen (DR: 7.2) 

and  ICC 506EB (DR: 3.3) during November 2011-12 planting. The leaf damage in the 

transgenic lines was significantly lower (DR: 1.2-1.6) than on the non-transgenics. The larval 

survival was significantly lower on BS5A.2(T2) 19-1P2 and BS5A.2(T2) 19-2P1 (21.6 and 

24.4%, respectively) as compared to that on Semsen and ICC 506EB (75.0 and 72.7%, 

respectively). The larval survival was 33.3% on BS5A.1(T2) 18-2P1, 38.8% on BS5A.1(T2) 

18-1P1, 39.3% on BS5A.2(T2) 19-3P2 and 48.3% on BS5A.2(T2) 19-3P1. The weight 

gained by the H. armigera larvae after feeding on transgenic plants BS5A.2(T2) 19-1P2 (0.3 

mg larva
-1

) and BS5A.2(T2) 19-2P1 (0.3 mg larva
-1

) was significantly lower than that on the 

non-transgenic plants ICC 506EB (4.4 mg larva
-1

) and Semsen (3.7 mg larva
-1

) (Table 4.2, 

Fig 3). 

Leaf damage rating during November 2012-13 planting, was higher on Semsen (DR: 

7.5), and ICC 506EB (DR: 4.3) than on the transgenic lines (DR: 1.2 to 2.3). The larval 

survival on non-transgenic lines ICC 506EB (62.2%) and Semsen (50.5%) was significantly 

higher than on the transgenic lines (10.0-30.0%). Significantly lower weight of H. armigera 

larve was recorded on BS5A2(T2) 19-1P2 (1.0 mg larva
-1

) and BS5A2(T2) 19-2P1 (1.0 mg 

larva
-1

) as compared to that on the resistant check, ICC 506EB (3.0 mg larva
-1

) and Semsen 

(2.8 mg larva
-1

). The weight gained by the H. armigera larvae on other transgenic lines 

ranged between 1.1 to 1.3 mg larva
-1

 (Table 4.2, Fig 4). 



Similar trend in leaf damage, larval survival and larval weight was observed with 

pooled analysis of data during November 2011-12 and 2012-13 plantings. Transgenic lines 

BS5A.2(T2) 19-1P2 (DR: 1.0) and BS5A.2(T2) 19-2P1 (DR: 1.0) recorded significantly 

lower leaf damage as compared to that on Semsen (DR: 5.0) and ICC 506EB (DR: 3.1). 

Larval survival was significantly higher on ICC 506EB (67.5%) and Semsen (62.7%) as 

compared to BS5A.2(T2) 19-1P2 (15.8%) and BS5A.2(T2) 19-2P1 (18.6%). The larval 

survival on other transgenic lines ranged between 26.3-39.1%. The weight gain by H. 

armigera larvae fed on ICC 506EB (3.5 mg larva
-1

) and Semsen (2.9 mg larva
-1

) was 

significantly greater than the larvae fed on transgenic line BS5A.2(T2) 19-2P1 (0.7 mg larva
-

1
). The mean larval weight on other transgenic lines ranged between 0.7-1.0 mg larva

-1
 (Table 

4.2). 

Across the seasons (2011-12 and 2012-13), the transgenic chickpea lines BS5A.2(T2) 

19-1P2 and BS5A.2(T2) 19-2P1 showed high levels of resistance to H. armigera. The weight 

gain by the H. armigera larvae was significantly greater on ICC 506EB (4.4 mg larva
-1

) than 

on the transgenic lines. During 2012-13 November planting, leaf damage rating was 

significantly greater on Semsen (DR: 7.5) with larval survival of 50.5%, and mean larval 

weight of 2.8 mg larva
-1

. ICC 506EB recorded low leaf damage (DR: 4.3), larval survival 

62.2% and larval weight 3.0 mg larva
-1

 (Table 4.2).  

The  present results confirmed the observations made by Acharjee et al. (2010), who 

reported significantly greater larval mortality of the H. armigera larvae fed on transgenic 

leaves (BS2A, BS5A and BS6H) than the larvae fed on control (Semsen and ICCV89314). 

Mogali et al. (2012) reported significantly lower leaf damage on Bt cotton leaves due to 

feeding by H. armigera as compared to the wild type. There was a significant increase in 

final body weight of the larvae fed on –ve control (111.5%) as compared to the larvae fed on 

transgenic plants (56.3%). 

4.1.2 Response of transgenic chickpea lines to damage by H. armigera under  

         glasshouse conditions 

         During 2011-2012 December sowing, leaf damage was significantly greater on ICC 506 

EB (DR: 8.0) and Semsen (DR: 7.8) as compared to that on BS5A.2(T2) 19-2P1 (DR: 1.6). 

Among the transgenic lines tested, BS5A.1(T2) 18-2P1, BS5A.2(T2) 19-1P2 and 

BS5A.2(T2) 19-3P2 suffered greater leaf damage (DR: 4.1, 4.4 and 4.3,  respectively) than 

other lines tested (Plate 12). Larval survival was significantly greater on Semsen (75.7%) and 

ICC 506EB (72.3%) as compared to that on the transgenic plants of BS5A.2(T2) 19-3P1 

(35.0%). Among the transgenic chickpea lines tested, significantly greater larval survival was 



recorded on BS5A.1(T2) 18-1P1 (52.3%) than on BS5A.2(T2) 19-3P1. The weight gain by 

the larvae (3.4 mg larva
-1

) on Bt transgenic plants was significantly lower as compared to that 

on Semsen (12.7 mg larva
-1

) and ICC 506EB (11.2 mg larva
-1

). The weight gain by H. 

armigera larvae on other transgenic lines ranged from 5.1 to 8.7 mg larva
-1

, with significantly 

greater weight gain on BS5A.2(T2) 19-3P2 (8.7 mg larva
-1

) (Table 4.3, Fig 5). 

The transgenic line BS5A.1(T2) 18-1P1 recorded significantly lower leaf damage 

rating (DR: 2.2), followed by BS5A.1(T2) 18-2P1 (DR: 2.5), BS5A.2(T2) 19-1P2 (DR: 3.2), 

BS5A.2(T2) 19-2P1 (DR: 3.7), BS5A.2(T2) 19-3P1 (DR: 3.7) and BS5A.2(T2) 19-3P2 (DR: 

4.3) as compared to Semsen (DR: 7.7) and ICC 506EB (DR: 5.5) during 2012-13. The Larval 

survival on BS5A.1(T2) 18-1P1 and BS5A.2(T2) 19-2P1 was significantly lower (37.6%) as 

compared to that on ICC 506EB (79.3%) and Semsen (70.2%). Larval survival on other 

transgenic lines ranged from 40.0 to 48.1%. Weight gain by the H. armigera larvae was 

significantly lower on BS5A.1(T2) 18-1P1 (2.9 mg larva
-1

) as compared to ICC 506EB (17.0 

mg larva
-1

) and Semsen (13.6 mg larva
-1

) (Table 4.3 and Fig 6). 

Pooled analysis indicated that the transgenic line BS5A.1(T2) 18-1P1 suffered 

significantly lower leaf damage (DR: 2.4) as compared to Semsen (DR: 7.8) and  ICC 506EB 

(DR: 6.7). The larval survival was significantly greater on ICC 506EB (75.8%) and Semsen 

(72.9%) than on the transgenic chickpea lines tested. The weight gain by the H. armigera 

larvae was significantly lower on BS5A.1(T2) 18-1P1 (3.4 mg larva
-1

) as compared to that on 

ICC 506EB (14.1 mg larva
-1

) and Semsen (13.1 mg larva
-1

) (Table 4.3). 

Similar observations on lower consumption of Bt cotton leaves by H. armigera larvae 

and higher mortality in choice tests has been reported by Zhang et al. (2004). Cotton 

bollworms fed on Bt cotton grew slower than those fed on non-Bt cotton, and also recorded 

less damage on transgenic Bt cotton plants (Shudong et al. 2003). The larval population was 

significantly lower on the transgenic hybrids as compared to the non-transgenic commercial 

cultivars of cotton (Sharma and Pampathy, 2006). 

4.1.3 Grain yield of transgenic chickpea lines to damage by H. armigera  

During December 2011-12 planting, there were significant differences in dry matter, 

pod weight, seed weight and the seed set between the transgenic and non-transgenic chickpea 

lines when infested with H. armigera larvae for 10 days. The weight of dry matter (5.0 to 6.5 

g/3 plants) was significantly greater in BS5A.2(T2) 19-1P2 (6.5 g/3 plants) than Semsen (3.3 

g/3 plants) and ICC 506EB (3.5 g/3 plants) The pod weight was also significantly greater in 

BS5A.2 (T2) 19-2P1 (2.6 g/3 plants), followed by BS5A.2 (T2) 19-3P1 (2.3 g/3 plants), 

BS5A.2 (T2) 19-3P2 (1.8 g/3 plants), BS5A.1 (T2) 18-1P1 (1.7 g/3 plants), BS5A.2 (T2) 19-



1P2 (1.6 g/3 plants) and ICC506  EB (1.3 g/3 plants) than Semsen (0.6 g/3 plants) (Table 4.4 

and Fig 7).  

Higher seed weight was recorded on BS5A.2(T2) 19-3P1 (2.1 g/3 plants) and 

BS5A.2(T2) 19-2P1 (2.0 g/3 plants) compared to Semsen (0.5 g/3 plants) and ICC 506EB 

(0.9 g/3 plants). The seed set in transgenic plants was higher than on non-transgenic plants. 

The number of seeds formed in BS5A.1(T2) 18-1P1(16) and BS5A.1(T2) 18-2P1 (14) were 

significantly more as compared to that on Semsen (2) and ICC 506EB (7) (Table 4.4). 

During December 2012-13 planting, significantly higher dry matter weight was 

recorded in BS5A.2(T2) 19-2P1 (6.8 g/3 plants), and BS5A.1(T2) 18-2P1 (6.7 g/3 plants), 

BS5A.2(T2) 19-3P1 (6.7 g/3 plants), BS5A.2(T2) 19-3P2 (6.5 g/3 plants), BS5A.1(T2) 18-

1P1 (6.2 g/3 plants) and BS5A.2(T2) 19-1P2 (5.2 g/3 plants) than in non-transgenic Semsen 

(3.6 g/3 plants) and ICC 506EB (4.0 g/3 plants). The pod weight was significantly higher in 

BS5A.2(T2) 19-2P1 (4.1 g/3 plants) as compared to that on ICC 506EB (1.2 g/3 plants) and 

Semsen (1.3 g/3 plants). The seed weight was significantly higher in BS5A.2(T2) 19-2P1 (3.5 

g/3 plants) as compared to Semsen (0.9 g/3 plants) and ICC 506EB (1.0 g/3 plants). 

Similarly, number of seeds formed in BS5A.2(T2) 19-2P1 (26) were more compared to 

Semsen (3) and ICC 506EB (6) (Table 4.4 and Fig 8).  

Significant differences in grain yield were observed between transgenic and non-

transgenic plants infested with H. armigera. Since leaf feeding damage was less in transgenic 

chickpea plants, the dry matter weight, pod weight, seed weight and number of seeds formed 

were significantly more than on non-transgenic chickpea plants. In both the seasons, non-

transgenic chickpeas yielded significantly lower compared to transgenic chickpeas. During 

2012-13 planting, BS5A.2(T2) 19-2P1 had the highest dry matter weight (6.8 g/3 plants), pod 

weight (4.1 g/3 plants), seed weight (3.5 g/3 plants) and number of seeds formed (26) as 

compared to the other transgenic and non-transgenic chickpea lines. 

Based on pooled data, the grain yield was significantly greater in transgenic chickpea 

lines as compared to non-transgenic lines. The dry matter weight was significantly higher in 

BS5A.2(T2) 19-3P1 (6.5 g/3 plants), BS5A.1(T2) 18-2P1 (6.4 g/3 plants), BS5A.1(T2) 18-

1P1 (6.0 g/3 plants), BS5A.2(T2) 19-1P2 (5.9 g/3 plants) and BS5A.2(T2) 19-1P2 (5.9 g/3 

plants) and BS5A.2(T2) 19-3P2 (5.8 g/3 plants) than in Semsen (3.4 g/3 plants) and ICC 

506EB (3.7 g/3 plants). The weight of the pods in transgenic chickpea lines ranged from 3.3 

to 1.6 g/3 plants as compared to 1.0 g/3 plants in Semsen and 1.3 g/3 plants ICC 506EB. Seed 

weight was significantly greater in BS5A.2(T2) 19-2P1 (2.7 g/3 plants) compared to Semsen 

(0.7 g/3 plants) and ICC 506EB (1.0 g/3 plants). Number of seeds formed was highest in 



BS5A.1(T2) 18-1P1 (18), followed by 17 in BS5A.2(T2) 19-2P1 and BS5A.2(T2) 19-1P2, 15 

IN BS5A.2(T2) 18-2P1, 14 BS5A.2(T2) 19-3P1 and 11 BS5A.2(T2) 19-3P2 (Table 4.4). 

4.1.4 Grain yield of transgenic and non-transgenic chickpea lines under un- 

          infested conditions 

 In un-infested plants of transgenic and non-transgenic chickpeas during December 

2011-12 planting, the dry matter weight was significantly higher in Semsen (9.3 g/3 plants) as 

compared to BS5A.1(T2) 18-2P1 (4.2 g/3 plants) and the dry matter weight in transgenic 

chickpeas ranged from 4.2 to 6.4 g/3 plants. The pod weight was significantly greater in 

BS5A.2(T2) 19-2P1 (3.3 g/3 plants), BS5A.2(T2) 19-1P2 (3.3 g/3 plants), BS5A.2(T2) 19-

3P1 (3.0 g/3 plants), BS5A.1(T2) 18-2P1 (2.7 g/3 plants), BS5A.1(T2) 18-1P1 (2.6 g/3 

plants), ICC 506EB (2.4 g/3 plants) and BS5A.2(T2) 19-3P2 (2.2 g/3 plants) as compared to 

Semsen (0.1 g/3) (Table 4.5 and Fig 9). 

The seed weight was highest in BS5A.2(T2) 19-2P1 (2.6 g/3 plants) and lowest in 

Semsen (0.9 g/3 plants). In other transgenic plants, the seed weight ranged between 2.2-2.4 

g/3 plants. The number of seeds formed (3 plants
-1

) in BS5A.2(T2) 19-2P1 was highest (43), 

while the lowest was in Semsen (2). In other transgenic and non-transgenic plants, the seeds 

formed ranged from 16 to 38 (Table 4.5).  

 During December 2012-13 planting, similar trend was observed in dry matter weight, 

which was significantly higher in Semsen (8.5 g/3 plants) than in BS5A.1(T2) 18-2P1 (4.2 

g/3 plants). In other transgenic plants, the dry matter weight ranged from 4.2 to 6.1 g/3 plants. 

Pod weight of the was significantly higher in BS5A.2(T2) 19-2P1 (5.2 g/3 plants) as 

compared to Semsen (3.5 g/3 plants) and ICC 506EB (3.7 g/3 plants), while in other 

transgenic plants, the pod weight ranged from 2.9 to 5.2 g/3 plants. Among transgenics 

plants, the seed weight was highest in BS5A.2(T2) 19-2P1 (5.3 g/3 plants) and lowest in 

BS5A.1(T2) 18-1P1 (2.3 g/3 plants). Whereas in non-transgenics, the seed weight was 6.0 g/3 

plants in Semsen and 3.6 g/3 plants in ICC 506EB. Maximum number of seeds were formed 

in BS5A.2(T2) 19-2P1 (64), followed by BS5A.2(T2) 19-1P2 (53), BS5A.2(T2) 19-3P2 (53), 

BS5A.1(T2) 18-2P1 (47), ICC 506EB (44), and BS5A.1(T2) 18-1P1 (38). Minimum of 6 

seeds were formed in Semsen (Table 4.5 and Fig 10). 

 Based on pooled data analysis, the dry matter weight was highest in Semsen (8.9 g/3 

plants), but the pod weight (0.2 g/3 plants), seed weight (0.3 g/3 plants) and number of seeds 

formed (4) were significantly lower as compared to the other transgenic and non-transgenic 

chickpea lines tested. Among all the transgenic plants tested, BS5A.2(T2) 19-2 P1 had the 



highest pod weight (4.2 g/3 plants), seed weight (3.9 g/3 plants) and the number of seeds 

formed (53) (Table 4.5). 

4.1.5 Survival and development of the neonate larvae of H. armigera on artificial  

         diet with lyophilized leaf powder of transgenic chickpea lines 

Significant differences were observed in survival and development of the pod borer, 

H. armigera larvae reared on artificial diets with lyophilized leaf powders of transgenic and 

non-transgenic chickpea lines during 2011-2012. There were significant differences in larval 

survival between the H. armigera larvae reared on diets with leaf powders of transgenic and 

non-transgenic chickpeas. The larval survival was 10.0% on BS5A.2(T2) 19-3P2 and 12.0% 

on BS5A.2(T2) 19-2P1, which was significantly lower than that on Semsen (74.0%)  and ICC 

506EB (61.0%) (Table 4.6). 

There were significant differences in larval and pupal weights between the larvae 

reared on diets with leaf powders of transgenic and non-transgenic lines. Larval weight at 5 

DAI (days after initiation of the experiment) was lower on BS5A.2(T2) 19-2P1 (0.8 mg larva
-

1
), BS5A.2(T2) 19-3P2 (0.8 mg larva

-1
), BS5A.1(T2) 18-2P1 (1.3 mg larva

-1
), BS5A.1(T2) 

18-1P1 (2.1 mg larva
-1

), BS5A.2(T2) 19-3P1 (2.7 mg larva
-1

) and  BS5A.2(T2) 19-1P2 (4.5 

mg larva
-1

) as compared to that on non-transgenic Semsen (31.9 mg larva
-1

) and ICC 506EB 

(28.8 mg larva
-1

) (Table 4.6). 

At 10 DAI, the weight of H. armigera larvae reared on diet with transgenic chickpea 

leaf powder ranged from 3.3 to 101.4 mg larva
-1 

as compared to 438.0 mg larva
-1

 on Semsen 

and 347.9 mg larva
-1

 ICC 506EB. Lower pupal weight was recorded in larvae reared on diets 

with leaf powder of transgenic line, BS5A.2(T2) 19-3P2 (20.5 mg pupa
-1

), BS5A.1(T2) 18-

2P1 (45.0 mg pupa
-1

), BS5A.2(T2) 19-3P1 (45.2 mg pupa
-1

), BS5A.2(T2) 19-2P1 (47.8 mg 

pupa
-1

), BS5A.2(T2) 19-1P2 (63.8 mg pupa
-1

) and BS5A.1(T2) 18-1P1 (65.6 mg pupa
-1

) as 

compared to the larvae reared on Semsen (526.2 mg pupa
-1

) and ICC 506 EB (523.8 mg pupa
-

1
) (Table 4.6). 

Longer larval period of 23.5 days was observed in larvae reared on BS5A.1(T2) 18-

1P1, as compared to ICC 506EB and Semsen (15.5 and 16.5 days, respectively). Longest 

pupal period was recorded in larvae reared on BS5A.1(T2) 18-2P1 (13.0 days) whereas the 

shortest pupal period was recorded on ICC 506 EB (8.5 days) (Table 4.6) . 

There were significant differences in pupation between the larvae reared on diets with 

leaf powder of transgenic and non-transgenic lines. Pupation was significantly lower on 

BS5A.2(T2) 19-3P2 (5.0%) as compared to that on Semsen (34.0%) and ICC 506EB 

(31.0%).  There was no adult emergence on BS5A.1(T2) 18-2P, but 1.0 - 3.0% adult 



emergence was recorded on BS5A.2(T2) 19-3P1, BS5A.1(T2) 19-1P2, BS5A.2(T2) 19-3P2, 

BS5A.1(T2) 18-1P1, BS5A.2(T2) 19-2P1 compared to 19.0% on ICC 506EB and 12.0% 

Semsen (Table 4.6). 

Adult longevity was lowest in larvae reared on diets with leaf powder of   

BS5A.2(T2) 19-2P1 (0.5 days), followed by those reared on BS5A.1(T2) 18-1P1 (2 days). 

Longer adult survival was recorded in insects reared on diets with leaf powder of ICC 506EB 

(8.0 days) and Semsen (6.0 days) than the insects reared on diets with leaf powder of 

transgenic chickpeas. Female longevity was significantly reduced in insects reared on diets 

with leaf powder of BS5A.2(T2) 19-3P1 (0.5 days), BS5A.2(T2) 19-1P2 (1.5 days), 

BS5A.2(T2) 19-2P1, BS5A.2(T2) 19-3P2 (2.0 days) and BS5A.1(T2) 18-1P1 (4.5 days). 

Longer female survival was recorded in insects reared on diets with leaf powder of ICC 

506EB (5.0 days) and Semsen (6.0 days) than on transgenic chickpeas. There were significant 

differences in fecundity between the larvae reared on diets with transgenic and non-

transgenic chickpea leaf powders. No eggs were laid by the insects reared on diets with leaf 

powder of transgenic lines. Highest fecundity was recorded in insects reared on diets with 

leaf powder of Semsen (200.0 eggs female
-1

), followed by ICC 506 EB (95.0 eggs female
-1

). 

The survival and development of H. armigera was significantly better in insects reared on 

standard artificial diet as compared to those reared on diets with lyophilised leaf powders of 

transgenic or non transgenic chickpeas (Table 4.6 and Fig 11). 

During 2012-13, there were significant differences in survival and development of 

neonate larvae of H. armigera larvae reared on artificial diets with lyophilized leaf powder of 

transgenic and non-transgenic chickpea lines. Lower larval survival was recorded in larvae 

reared diets with leaf powder of BS5A.2(T2) 19-2P1 (7.0%) as compared to the insects reared 

on diets with leaf powder of ICC 506EB (45.0%) and Semsen (39.0%). Larval survival 

among the transgenics ranged between 7.0 to 25.0%. The larval weights at 5 DAI were 

significantly lower (0.6 mg larva
-1

) in the larvae reared on the diets containing leaf powder of 

BS5A.2(T2) 19-2P1, BS5A.2(T2) 19-3P1 (9.5 mg larva
-1

), BS5A.2(T2) 19-1P2 (14.6 mg 

larva
-1

), BS5A.1(T2) 18-1P1 (19.7 mg larva
-1

), BS5A.2(T2) 19-3P2 (25.4 mg larva
-1

) and 

BS5A.1(T2) 18-2P1 (27.5 mg larva
-1

) as compared to insects reared on diets with leaf powder 

of Semsen (162.5 mg larva
-1

) and ICC 506EB (231.1 mg larva
-1

). The mean larval weight at 

10 DAI was significantly lower in larvae reared on diets with leaf powder of BS5A.2(T2) 19-

2P1 (14.0 mg larva
-1

) as compared to insects reared on diets with leaf powder of ICC 506EB 

(1366.1 mg larva
-1

) and Semsen (1189.6 mg larva
-1

) (Table 4.7). 



There were significant differences in the pupal weights of H. armigera reared on diets 

with transgenic and non-transgenic leaf powders. The pupal weights were significantly lower 

in larvae reared on diets with leaf powder of BS5A.2(T2) 19-2P1 (7.0 mg pupa
-1

) as 

compared to non-transgenics, ICC 506EB and Semsen (466.0 and 423.5 mg pupa
-1

, 

respectively). The larval period was 15.0 days in insects reared on diets with transgenic leaf 

powder as compared to 16.5 days on Semsen and 12.5 days on ICC 506EB. Longer pupal 

period was recorded in the larvae reared on BS5A.2(T2) 19-1P2 (17.0 days) as compared to 

non-transgenics, Semsen and ICC 506EB (8.5 days and 9.5 days, respectively) (Table 4.7). 

Pupation was reduced in insects reared on diets with leaf powder of BS5A.2(T2) 19-

2P1 (2.0%) compared to ICC 506EB (29.0%) and Semsen (26.0%). Similarly, adult 

emergence was also reduced in insects reared on diets with BS5A.2(T2) 19-2 P1 leaf powder 

(1.0%) as compared to the insects reared on diets with leaf powder of ICC 506EB (20.0%) 

and Semsen (17.0%). Male longevity was significantly greater in insects reared on diets with 

leaf powder of ICC 506EB (9.5 days) as compared to 0.5 days on BS5A.2(T2) 19-1P2. 

Shorter female longevity was recorded on BS5A.2(T2) 19-1P2 (3.0 days) and BS5A.2(T2) 

19-3P2 (3.0 days) as compared larvae reared on ICC 506EB (10.5 days).  Significantly lower 

fecundity was recorded in insects reared on diets with leaf powder of BS5A.2(T2) 19-1P2 

(32.5 eggs female
-1

) as compared to that on ICC 506EB (332.5 eggs female
-1

)  and Semsen 

(187.5 eggs female
-1

). The survival and development of H. armigera was better in insects 

reared on the standard artificial diet compared to those reared on diets with lyophilised leaf 

powders of transgenic and non transgenic chickpeas (Table 4.7 and Fig 12). 

Based on the pooled data analysis, there were significant differences in the survival 

and development of H. armigera reared on artificial diets with lyophilized leaf powders of 

transgenic and non-transgenic chickpeas. Larval survival was significantly lower (9.5%) in 

insects reared on diets with leaf powder of BS5A.2(T2) 19-2P1, BS5A.2(T2) 19-3P2 

(13.5%), BS5A.2(T2) 19-3P1 (17.0%), BS5A.2(T2) 19-1P2 (21.5%) BS5A.2(T2) 18-1P1 

(22.0%) and BS5A.2(T2) 18-2P1 (22.0%) than on Semsen (56.5%) and ICC 506EB (53.0%). 

The mean larval weight at 5 DAI was significantly lower in insects reared on diets with leaf 

powder of BS5A.2(T2) 19-2P1 (0.73 mg larva
-1

) as compared to 129.9 mg larva
-1

 in ICC 

506EB and 97.2 mg larva
-1

 in Semsen. Similarly, mean larval weight at 10 DAI was lower in 

insects reared on diets with BS5A.2(T2) 19-2P1 leaf powder (8.6 mg larva
-1

) as compared to 

the insects reared on diet with ICC 506EB leaf powder (857.0 mg larva
-1

) (Table 4.8). 

Pupal weights were lower in insects reared on diets with BS5A.2(T2) 19-2P1 leaf 

powder (27.4 mg pupa
-1

) as compared to that on ICC 506EB (494.9 mg pupa
-1

). Longest 



larval period was recorded in BS5A.2(T2) 18-1P1 (26.2 days) and the shortest on ICC 506EB 

(14.0 days). The pupal period was prolonged by 5 days in larvae reared on diets with 

BS5A.2(T2) 19-1P2 leaf powder (14.7 days) as compared to those with ICC 506EB leaf 

powder (9.0 days). Pupation was greater (30.0%) in insects reared on diets with Semsen and 

ICC 506EB leaf powder compared to that on BS5A.2(T2) 19-2P1 (5.5%). The adult 

emergence was lower on BS5A.2(T2) 19-2P1 (2.0%) than on ICC 506EB (19.5%) (Table 

4.8). 

Longevity of adult males was higher on ICC 506EB (8.7 days) than on BS5A.2(T2) 

19-2P1 (0.2 days) and BS5A.2(T2) 19-1P2 (0.5 days). Shortest female longevity was 

recorded in insects reared on diets with BS5A.2(T2) 19-3P1 (0.2 days) and BS5A.2(T2) 19-

2P1 (1.0 days) leaf powder, and longest on Semsen (7.0 days) and ICC 506EB (7.7 days). 

There were significant differences in fecundity between the insects reared on diet with 

transgenic and non-transgenic chickpea leaf powder. No eggs were laid by the insects reared 

on diets with BS5A.1(T2) 18-1P1, BS5A.2(T2) 19-2P1 and BS5A.2 (T2) 19-3P1 leaf 

powder. Lower fecundity was recorded in insects reared on BS5A.2(T2) 19-1P2 (16.2 eggs 

female
-1

) as compared to that on ICC 506EB (213.7 egg female
-1

) and Semsen (194.1 eggs 

female
-1

 ). The survival and development of, H. armigera was better in insects reared on the 

standard artificial diet compared to those reared on diets with lyophilized leaf powders of 

transgenic and non-transgenic chickpeas (Table 4.8 and Fig 13). 

During 2012-13, the larvae fed on diet with BS5A.2(T2) 19-2P1 leaf powder exhibited 

lowest larval survival, larval weights at 5 and 10 DAI and pupal weights as compared to 

insects reared on diets with leaf powder of non-transgenic plants. Insects reared on diet with 

BS5A.2(T2) 19-2P1 leaf powder showed  maximum resistance to H. armigera. 

4.1.6 Survival and development of third-instar larvae of H. armigera on artificial  

         diet containing lyophilized leaf powder of transgenic chickpea 

There were significant differences in survival and development of third-instar larvae 

of H. armigera reared on artificial diets with lyophilized leaf powders of transgenic and non-

transgenic chickpea. During 2011-2012, the larval survival was significantly higher in larvae 

reared on diets with leaf powders of non-transgenic chickpea, ICC 506EB (85.0%) as 

compared to those reared on diet with leaf powder of transgenic lines BS5A.1(T2) 18-2P1 

(27.0%), BS5A.2(T2) 19-2P1 (33.0%), BS5A.1(T2) 18-1P1 (42.0%), BS5A.2(T2) 19-3P2 

(48.0%), BS5A.2(T2) 19-3P1 (52.0%) and BS5A.1(T2) 19-1P2 (60.0%). Similarly, the mean 

larval weights at 5 and 10 DAI were significantly lower in larvae reared on diets with leaf 

powder of BS5A.1(T2) 18-2P1 (8.1 and 277.9 mg larva
-1

) than on ICC 506EB (112.9 and 



1696.1 mg larva
-1

, respectively) and Semsen (63.56 and 1217.1 mg larva
-1

, respectively). The 

pupal weights of the larvae fed on diets with leaf powder of ICC 506EB and Semsen were 

significantly greater (1365.9 and 703.2 mg pupa
-1

, respectively) than the larvae reared on 

diets with leaf powder of BS5A.1(T2) 18-2P1 (123.1 mg pupa
-1

) (Table 4.9). 

The larval period was prolonged by 4 days in insects reared on diets with BS5A.2 

(T2) 19-1P2 leaf powder as compared to that on Semsen (14.5 days) and ICC 506EB (14.5 

days). The pupal period was longer in insects reared on diet with leaf powder of BS5A.1(T2) 

18-2P1, BS5A.2(T2) 19-2P1 and BS5A.2(T2) 19-3P1 (15.0 days) than on ICC 506EB (11.0 

days) and Semsen (11.5 days). Pupation was significantly lower (17.0 to 49.0%) in insects 

reared on diets with leaf powder of transgenic lines as against 77.0 and 51.0% pupation on 

non-transgenic chickpea ICC 506EB and Semsen, respectively (Table 4.9). 

Adult emergence was significantly lower on BS5A.1(T2) 18-2P1, (13.0%) as 

compared to that on ICC 506EB (72.0%) and Semsen (48.0%).  Male longevity was shorter 

on BS5A.1(T2) 18-2P1 (5.5 days) than on ICC 506EB (15.1 days) and Semsen (13.1 days). 

There were no significant differences in female longevity between the larvae reared on 

transgenic and non-transgenic diets. Female longevity was lower on BS5A.2(T2) 19-2P1 (5.5 

days) as compared to that on BS5A.1(T2) 18-2P1 (8.5 days). Fecundity of the females reared 

on diets with leaf powder of transgenic chickpea ranged between 572.0 to 804.5 egg female
-1

, 

highest fecundity was recorded in insects reared on diets with leaf powder of ICC 506EB and 

Semsen (1076.0 and 848.5 eggs female
-1

, respectively). The survival and development of H. 

armigera was significantly better when reared on standard artificial diet as compared to those 

reared on diets with lyophilised leaf powders of transgenic and non-transgenic chickpeas The 

survival and development of third-instar H. armigera larvae was significantly lower on 

BS5A.1(T2) 18-2P1 than on other transgenic chickpeas. Maximum survival was recorded in 

larvae reared on diets with leaf powder of ICC 506EB and Semsen. (Table 4.9 and Fig 14). 

During 2012-13, similar trend was observed for survival and development of third 

instar larvae of H. armigera reared on diets with leaf powder of transgenic and non-

transgenic chickpeas. Lower larval survival was recorded in insects reared on diets with leaf 

powder of BS5A.1(T2) 18-1P1 (29.0%) as compared to that on ICC 506EB and Semsen (84.0 

and 82.0%, respectively). Mean larval weights were significantly greater in larvae reared on 

diets with leaf powder of ICC 506EB and Semsen at 5 and 10 DAI (51.3 and 1305.6; 45.5 

and 1348.8 mg larva
-1

, respectively) as compared to the larvae fed on diets with leaf powder 

of transgenic chickpea line BS5A.1(T2) 18-1P1 (9.1 and 159.8 mg larva
-1

, respectively) 

(Table 4.10). 



Significantly lower pupal weight was recorded in H. armigera larvae reared on diets  

BS5A.1(T2) 18-2P1(98.5 mg pupa
-1

) as compared to that of ICC 506EB (974.0 mg pupa
-1

) 

and Semsen (952.6 mg pupa
-1

). Maximum larval period was recorded in insects reared on 

BS5A.1(T2) 18-1P1 (16.5 days) and minimum on BS5A.2(T2) 19-3P2 (12.5 days). The 

larval period in insects reared on non-transgenic lines (ICC 506EB and Semsen) was 

recorded as 14.5 and 13.5 days, respectively. The pupal period was significantly longer (15.0 

days) on BS5A.2(T2) 19-2P1 as compared to that on ICC 506EB and Semsen (11.0 and 11.5 

days, respectively) (Table 4.10).  

Pupation and adult emergence were significantly reduced in larvae reared on 

BS5A.1(T2) 18-1P1 (15.0 and 9.0%, respectively) as compared to those reared on ICC 

506EB (77.0 and 65.0%, respectively). The female longevity was significantly higher in 

insects reared on diets with leaf powder of ICC 506EB (11.5 days) and Semsen (11.0 days) as 

compared to those reared on diets with leaf powder of  transgenic lines (9.5  to 10.5 days). 

Male longevity was significantly longer in insects reared on diets with leaf powder of Semsen 

(10.0 days) than on BS5A.1(T2) 18-1P1(7.5 days). Eggs laid by the females were 

significantly reduced in insects reared on diets with leaf powder of BS5A.1(T2) 19-3P2 

(545.0 eggs female
-1

) as compared to those reared on ICC 506EB and Semsen (992.5 and 

800.0 eggs female
-1

) The survival and development of the pod borer, H. armigera larvae was 

significantly better when reared on the standard artificial diet compared to those reared on 

diets with lyophilized leaf powder of transgenic and non transgenic chickpeas.  (Table 4.10 

and Fig 15). 

Compared to the first season 2011-12, the survival and development of        third- 

instar H. armigera during 2012-13 was significantly reduced in insects reared on diets with 

leaf powder of  transgenic chickpea BS5A.1(T2) 18-1P1 as against those reared on non-

transgenic chickpea ICC 506EB. During 2012-13, BS5A.1(T2) 18-1P1 showed high levels of 

resistance to H. armigera. The survival and development of H. armigera neonate larvae 

reared on diets with leaf powder of transgenic chickpea was very poor as compared to those 

reared on non-transgenic chickpea. From the present study, it is clear that the survival and 

development of H. armigera larvae was significantly lower on transgenic chickpea diets as 

compared to those reared on non-transgenic chickpea diets.  

Based on the pooled data, the survival and development of third-instar larvae of H. 

armigera reared on diets with leaf powder of non-transgenic chickpeas was greater as 

compared to those reared on transgenic chickpea lines. Larval survival was lowest in insects 

reared on diets with leaf powder of BS5A.1(T2) 18-1P1 (35.5%), larval weight at 5 DAI was 



lowest on BS5A.1(T2) 18-2P1 (9.8 mg larva
-1

) and the larval weight at 10 DAI was lowest on 

BS5A.1(T2) 18-1P1 (231.7 mg larva
-1

). Pupal weight was lower on BS5A.1(T2) 18-2P1 

(110.8 mg pupa
-1

). Larval period was longer on BS5A.2(T2) 19-1P2 (17.0 days), and longest 

pupal period was recorded on BS5A.2(T2) 19-2P1 (15.0 days). Pupation and adult emergence 

was reduced on BS5A.1(T2) 18-2P1 (23.0 and 14.5%, respectively), and female longevity on 

BS5A.1(T2) 18-2P1 (7.5 days), and male longevity was lower on BS5A.2(T2) 18-1P1 (6.7 

days). Eggs laid by the females was reduced in insects reared on diets with leaf powder of  

BS5A.2(T2) 19-1P2 (563.2 eggs female
-1

)  as compared to those reared on ICC 506EB 

(1034.2 eggs female
-1

). The survival and development of H. armigera was significantly better 

when reared on the standard artificial diet compared to those reared on diets with lyophilised 

leaf powders of transgenic and non-transgenic chickpeas (Table 4.11 and Fig 16). 

Similar observations have earlier been made by Khalique et al. (2003), who recorded 

reduced pupation, adult emergence and fecundity, inconsistent increase in pre-oviposition 

period, and prolongation of generation H. armigera fed on spore-δ-endotoxin complex of 

indigenous strain HD-695 (8500 IU mg
-1

) of Bt- var kurstaki. Devi et al. (2011) also 

observed a significant reduction in larval survival, larval and pupal weights and fecundity, 

and prolongation of larval and pupal periods in chickpea plants sprayed with Bt (0.05%) as 

compared to unsprayed plots. Larval survival, larval and pupal weights, pupation and adult 

emergence were significantly lower on diets with leaf or pod powder of the H. armigera 

resistant genotypes than on the susceptible ones.  

Zhang et al. (2013) studied the efficacy of Cry1Ac and Cry1Ca on lifespan and 

reproductive performance of H. armigera and Spodoptera exigua adults. Cry1Ac and Cry1Ca 

affected the life span of both males and females of H. armigera and S. exigua. Moreover, 

exposure of females to 500 mg/ml of Cry1Ac and Cry1Ca significantly affected the fecundity 

in H. armigera and S. exigua.  

Continuous feeding on Bt cotton was resulted in 80-85 per cent mortality of first-

instar (Wang and Xia, 1997) and 100 per cent mortality of one to fourth-instars of 

H. armigera larvae (Zhao et al., 1998a; Cui and Xia, 1999; Zhao et al., 2000a. No bollworms 

larvae survived when fed with transgenic cotton line R93-4, with first to fourth instar to 

pupation, however, fifth-instar larvae fed on bollgard cotton survived to pupate (Zhao et al., 

1998b).  

 

 

 



4.2 Molecular and biochemical characterization of Cry IIa transgenic  

      chickpeas  
4.2.1 Biochemical profile of different transgenic chickpea lines 

          There were no significant differences in the protein content between the transgenic and 

non-transgenic chickpea lines. Protein content was highest in the leaves of BS5A.2(T2) 19-

1P2 (5.8 mg/g dw), followed by 5.5 mg/g in Semsen, 5.3 mg/g in BS5A.1(T2) 18-2P1, 

BS5A.2(T2) 19-3P1, 5.2 mg/g in BS5A.1(T2) 18-1P1, BS5A.2(T2) 19-3P2, 4.9 mg/g in 

BS5A.2(T2) 19-2P1 and 4.8 mg/g in ICC 506EB. Highest amounts of carbohydrates were 

recorded in the leaves of ICC 506EB (55.0%), whereas the leaves of Semsen (24.3%) had the 

lowest amount of carbohydrates. The amount of carbohydrates ranged from 34.0 to 49.3% in 

transgenic chickpea lines. Among the transgenic chickpea lines tested, the amount of 

carbohydrates was significantly greater in the leaves of BS5A.2(T2) 19-3P1 (49.3%) than in  

BS5A.1(T2) 18-1P1 and BS5A.2(T2) 19-1P2 (34.0%) (Table 4.12). 

            There were no significant differences in lipid content between the transgenic and non 

transgenic chickpea lines. Among the transgenics, BS5A.2(T2) 19-2P1 leaves had the highest 

lipid content (16.4%), followed by 13.9% in BS5A.1(T2) 18-1P1, 11.9% in BS5A.2(T2) 19-

3P1, 10.6% in BS5A.1(T2) 18-2P1 and 8.8% in BS5A.2(T2) 19-3P2. The lowest lipid 

content was detected in BS5A.2(T2) 19-1P2 (7.8%). Among the non-transgenic chickpea 

lines, Semsen and ICC 506EB had 13.7 and 11.5% lipid content, respectively (Table 4.12). 

There were no significant differences in phenol content in the leaves between the transgenic 

and non-transgenic chickpeas. Phenol content (mg/g dw) of leaves was highest in 

BS5A.2(T2) 19-2P1 and BS5A.2(T2) 19-3P2 (1.2 mg/g), while the leaves of BS5A.2(T2) 19-

3P1 had the lowest phenol content (0.9 mg/g). Leaves of BS5A.2(T2) 19-3P2 had the highest 

tannin content (3.2 mg/g), followed by 2.2 mg/g in BS5A.1(T2) 18-1P1, 2.1 mg/g in 

BS5A.2(T2) 19-2P1, 1.6 mg/g in BS5A.2(T2) 19-1P2, and 1.2 mg/g in BS5A.2(T2) 19-3P1. 

Tannin content was lowest in BS5A.1(T2) 18-2P1 (0.5 mg/g). Amounts of tannins in Semsen 

and ICC 506EB were 0.8 and 1.0 mg/g, respectively (Table 4.12 and Fig 17). 

                During 2012-13, the protein content was significantly higher in ICC 506EB (7.2 

mg/g) than in Semsen (4.5 mg/g). Among the transgenic chickpea lines tested, the maximum 

amount of protein was observed in BS5A.2(T2) 19-2P1 (6.4 mg/g) and BS5A.1(T2) 18-1P1 

had the lowest protein content (5.2 mg/g). There were no significant differences in 

carbohydrate content in the leaves between the transgenic and non transgenic chickpeas. The 

amounts of carbohydrates were highest (38.8%) in the leaves of BS5A.1(T2) 18-2P1 and 

BS5A.2(T2) 19-3P1. The leaves of BS5A.2(T2) 19-3P2 had the lowest (28.1%) of 



carbohydrates. Highest amounts of lipids (29.4%) were recorded in BS5A.2(T2) 19-3P1, 

followed by BS5A.1(T2) 18-2P1 (16.7%), BS5A.1(T2) 18-1P1 (16.6%), BS5A.2(T2) 19-1P2 

(14.0%), BS5A.2(T2) 19-2P1 (8.2%) and BS5A.2(T2) 19-3P2 (7.0%). The lipid content in 

Semsen and ICC 506EB was 20.1 and 13.7%, respectively. There were no significant 

differences in phenol content between the transgenic and non-transgenic chickpeas. Highest 

phenol content was recorded in BS5A.2(T2) 19-3P1 (1.2 mg/g) and the lowest in BS5A.2(T2) 

19-2P1, BS5A.2(T2) 19-3P2 and BS5A.1(T2) 18-1P1 (0.9 mg/g). Transgenic and non-

transgenic chickpea lines differed significantly in tannin content in the leaves. BS5A.2(T2) 

18-2P1 had the highest (2.0 mg/g), while BS5A.2(T2) 19-3P2 had lowest tannins (1.1 mg/g) 

(Table 4.12 and Fig 18). 

                Based on the pooled data analysis, there were no significant differences in protein 

content between the transgenic and non-transgenic chickpeas. Among the transgenic lines, 

the protein content was highest in BS5A.1(T2) 18-2P1 (5.8 mg/g). Maximum amount of 

protein was recorded in ICC 506EB (6.0 mg/g). The amounts of carbohydrates were 

significantly higher in the leaves of ICC 506EB (44.9%), followed by BS5A.2(T2) 19-3P1 

(43.6%), BS5A.1(T2) 18-2P1 (41.7%) BS5A.1(T2) 19-2P1 (34.6%), BS5A.1(T2) 18-1P1 

(34.5%), BS5A.2(T2) 19-1P2 (32.5%) and BS5A.2(T2) 19-3P2 (32.0%). Lowest 

carbohydrate content was recorded in Semsen (28.5%). There were no significant differences 

in lipid content between the leaves of transgenic and non transgenic chickpea lines. However, 

the amount of lipids were higher in BS5A.2(T2) 19-3P1 (20.6%) than in BS5A.2(T2) 19-3P2 

(7.9%). There were no significant differences in phenol and tannin contents between the 

transgenic and non transgenic chickpea lines. The phenol content ranged from 1.0 mg/g to 1.1 

mg/g and the tannins from 1.2 to 2.1 mg/g (Table 4.12). 

4.2.1.2 Correlation between resistance/susceptibility to pod borer and the amounts  

             of biochemical composition of chickpea lines (2011-12 and 2012-13) 

During 2011-12, the protein content was negatively correlated with larval survival (r 

= -0.25), larval weight (r = -0.27) and leaf damage rating (r = -0.45). Significant positive 

correlation was observed between carbohydrate content and leaf damage (r = 0.4). Negative, 

but non-significant relationship of phenols was observed with leaf damage (r = -0.24), larval 

survival (r = -0.27) and larval weight (r = -0.17). There was a negative significant association 

of tannins with leaf feeding damage (r = -0.41), larval survival (r = -0. 40) and larval weight 

(r = -0.42) (Table 4.13). 

During 2012-13, the correlation co-efficients between the protein content and damage 

rating (r = 0.31) was positive but non-significant and there was a negative association with 



the larval survival (r = -0.23), larval weight (r = -0.29). Amounts of carbohydrates were 

positively correlated with leaf damage (r = 0.25), larval survival (r = 0.23) and larval weight 

(r = 0.22). There was a negative and significant association of the phenols with larval survival 

(r = -0.40). However, a negative but non-significant correlation was observed with leaf 

damage (r = -0.33) and larval weight (r = -0.23). Association between tannins and leaf 

damage (r = -0.47), larval survival (r= -0.45) and larval weight (r = -0.43) was found to be 

negative and significant (Table 4.13). 

These results are in accordance with the earlier reports, wherein tannins have been 

shown to inactivate insecticidal crystal proteins of B. thuringiensis (Luthy et al., 1985a). 

Tannin chemistry has been implicated in variation in host plant resistance to insects. Tannins, 

an important constituent of many plants, reacts strongly with the proteinaceous insecticidal 

proteins of B. thuringiensis. Commercial tannin preparation inhibits the activity of activated 

δ-endotoxin. Interaction between host plant tannins and δ-endotoxins might be one of the 

factors affecting the field efficacy of B. thuringiensis preparations or of Bt-transgenic crops 

(Luthy et al., 1985b).  

The effectiveness of B. thuringiensis is greater on insect pests adapted to high tannin 

content (with a gut pH of 8.0 to 9.5). Therefore, insect pathogens can be more effective in a 

pest management program if antibiosis factors of host resistance are compatible with the 

insect pests. Sivamani et al. (1992) conducted bioassays with B. thuringiensis var. galleriae 

Berliner δ-endotoxin and plant phenolics on H.  armigera and reported that the presence of 

plant phenolics with not only reduced the feeding potential and weight gain by the larvae, but 

also enhanced the LC50 value of the toxin, indicating the effect of phytochemicals from 

resistant crop plants on the biocidal activity of B. thuringiensis under laboratory conditions. 

At high Btk concentration (1.72 μg/ml of diet), tannins antagonized Btk potency 

against spruce budworm, Choristoneura sps by lowering Btk-related larval mortality from 83 

to 43%, though at moderate concentration, tannin did not affect Btk potency. Host tree 

tannins antagonized not only the lethal effects of Btk toxin, but also sublethal Btk-related 

impacts in terms of larval development, pupal weight, relative consumption rate and growth 

rate (Bauce et al., 2006). Saini and Dhawan (2010) observed a positive correlation between 

mortality of H. armigera and S. litura with Cry toxins and total phenols, but a negative 

correlation with tannins. Chrysoperla carnea is negatively affected when fed with Bt-

susceptible but not Cry1Ac resistant H. armigera larvae that were fed on Bt-transgenic cotton 

expressing Cry1Ac. In the case of Cry1Ac resistant H. armigera strain, feeding on Bt cotton 

resulted in reduced glycogen content in the caterpillars. The predators, however, appeared to 



compensate for the reduced carbohydrate content of the prey by increasing biomass uptake 

which caused an excess intake of the other analyzed nutritional compounds. Nutritional prey-

quality factors other than Bt protein may be responsible for the observed negative effects 

when C. carnea larvae were fed with Bt cotton-fed prey. Possible factors were an altered 

sugar composition or fitness costs associated with the excess intake of other nutrients (Lawo 

et al. 2010). 

4.2.2 HPLC profiles of acid exudates of different transgenic chickpea lines  

The HPLC analysis of leaf samples for acid exudates at 30 DAE indicated that the 

transgenic chickpea and non-transgenic chickpea lines had two common peaks for oxalic acid 

and malic acid, during 2011-12. Similarly, during 2012-13, two common peaks (oxalic and 

malic acid) were observed for all the transgenic and non-transgenic chickpea lines (Table 

4.14). 

4.2.2.1 Amounts of organic acids on fresh weight basis  

During 2011-12, there were no significant differences in amounts of organic acids 

between the transgenic and non-transgenic chickpea lines. Maximum amount of oxalic acid 

was recorded on non-transgenic ICC 506EB (2.5 mg/g) and lowest on BS5A.2(T2) 19-2P1 

(0.8 mg/g). Among the transgenics, highest amount of oxalic acid was recorded on the leaf 

surface of BS5A.2(T2) 19-3P2 (1.5 mg/g). High amounts of malic acid were observed in 

BS5A.1(T2) 18-1P1 (2.8 mg/g), ICC 506EB (2.7 mg/g), BS5A.2(T2) 19-3P1 (2.5 mg/g), 

BS5A.1(T2) 18-2P1 (2.4 mg/g), BS5A.2(T2) 19-1P2 (2.3 mg/g), BS5A.2(T2) 19-3P2 (2.2 

mg/g) and BS5A.2(T2) 19-2P1 (2.1 mg/g) and lowest on Semsen (0.4 mg/g) (Table 4.15 and 

Fig. 19). 

During 2012-13, among the transgenic chickpea lines, the amounts of oxalic acid and 

malic acid were highest on BS5A.2(T2) 18-1P1 (1.2 and 1.8 mg/g, respectively) and lowest 

on BS5A.2(T2) 19-3P2 (0.5 and 0.9 mg/g, respectively). Among the non-transgenics, 

maximum amounts of oxalic acid and malic acid were observed on ICC 506EB (2.0 mg/g and 

2.9 mg/g), followed by Semsen (0.7 and 0.2 mg/g, respectively) (Table 4.15 and Fig 20). 

Based on the pooled data, significantly higher amounts of oxalic acid were recorded 

in BS5A.2(T2) 19-1P2 and BS5A.2(T2) 19-3P1 (1.1 mg/g) than in BS5A.2(T2) 19-2P1 (0.8 

mg/g). Highest malic acid content was recorded on BS5A.1(T2) 18-1P1 (2.3 mg/g) and 

lowest on BS5A.2(T2) 19-3P2 (1.5 mg/g). Among the non-transgenics, the maximum amount 

of oxalic acid was observed in ICC 506EB (2.2 mg/g), followed by Semsen (0.9 mg/g) (Table 

4.15). 

 



4.2.2.2 Correlation between resistance/susceptibility to pod borer and the amount  

            of organic acids 

During 2011-12, oxalic acid content was positively correlated with larval survival (r = 

0.63) and larval weight (r = 0.60). A significant and negative association was observed 

between the amounts of the malic acid and leaf feeding (r = - 0.83), larval survival (r = - 

0.93) and larval weight (r = - 0.95) (Table 4.16).  

During 2012-13, there was a positive and significant correlation between the oxalic 

acid and mean larval weight (r = 0.56). However, a positive non-significant relationship was 

observed with leaf damage (r = 0.19) and larval survival (r = 0.47). Further, the amounts of 

malic acid had positive non-significant correlation with leaf damage (r = 0.18), larval survival 

(r = 0.23) and larval weight (r = 0.27) (Table 4.16).  

Oxalic acid and malic acid were detected as major components in the leaf surface 

exudates of transgenic and non-transgenic lines (Yoshida et al., 1995). Bhagwat et al. (1995) 

reported a low amounts of acids in the leaf exudates (21.1 and 4.9 meq./100 gm) of genotypes 

(ICC 14665).  Narayanamma et al. (2013) characterized a diverse array of chickpea genotype 

for organic acid profiles in the leaf exudates. Chickpea leaf exudates contained malic acid, 

oxalic acid, acetic acid, citric acid and fumaric acid.  

4.2.3 HPLC profiles of flavonoids in transgenic and non-transgenic chickpea lines 

 During 2011-12, the HPLC analysis of leaf samples (dry weight basis) for flavonoids 

indicated that the transgenic and non-transgenic chickpea lines had 13 peaks viz., chlorgenic 

acid (peak 1), genstisic acid (peak 2), phloretic acid (peak 3), ferulic acid (peak 4), 

umbelliferone (peak 5), naringin (peak 6), 3,4 dihydroxy flavone (peak 7), quercetin (peak 8), 

cinnamic acid (peak 9), naringenin (peak 10), genstein (peak 11), formononetin (peak 12) and 

biochanin A  (peak 13). 

In BS5A.1(T2) 18-2P1 and Semsen, there were no peaks observed. Peak 2 (genstisic 

acid) peak 6 (naringin) were not observed in BS5A.2(T2) 19-3P1, while peak 2 (genstisic 

acid) was absent in BS5A.2(T2) 19-3P2. In ICC 506EB, peak 1(chlorgenic acid), peak 2 

(genstisic acid), peak 3 (chlorogenic acid), peak 6 (naringin), peak 8 (quercetin), peak 9 

(cinnamic acid), peak 10 (naringenin) were not observed, while in BS5A.2(T2) 19-2P1, peak 

9 (cinnamic acid) was absent (Table 4.17). 

During 2012-13, the HPLC analysis of leaf samples (dry weight basis) for flavonoids 

indicated that there were 11 peaks in transgenic and non-transgenic chickpea lines 

(chlorogenic acid, gentisic acid, phloretic acid, ferulic acid, naringin, 3,4 dihydroxy flavone, 

quercetin , naringenin, genistein, formononetin and biochanin A). In BS5A.1(T2) 18-1P1, 



peak 5 (naringin) was not observed, in BS5A.2 (T2) 19-1P2, peak 8 (naringenin) was not 

identified, while in BS5A.2 (T2) 19-3P1, peak 11 (biochanin A) was not observed. In Semsen 

Peak 5 (naringin) was not identified, whereas in ICC 506EB peak 7 (quercetin) and peak 8 

(naringenin) were not observed (Table 4.18). 

4.2.3.1 Amounts of flavonoids in transgenic and non-transgenic chickpeas 

During 2011-12, in BS5A.2(T2) 19-1P2, the amount of chlorogenic acid (1.6 mg/g) 

was significantly greater as compared to BS5A.2(T2) 19-3P1 (0.4 mg/g). and not detected in 

BS5A.1(T2) 18-2 P1, Semsen and ICC 506EB. Gentisic acid content was maximum in 

BS5A.1(T2) 18-1P1 (3.9 mg/g), followed by BS5A.2 (T2) 19-2P1 (3.4 mg/g), and in BS5A.2 

(T2) 19-1P2, it was recorded as lowest (1.3 mg/g). In other lines tested, the gentisic acid 

content was not detected. Highest amount of phloretic acid was recorded in BS5A.2(T2) 19-

2P1 (20.5 mg/g), followed by  BS5A.2(T2) 19-3P1 (19.1 mg/g), BS5A.1(T2) 18-1P1 (10.3 

mg/g) and BS5A.2(T2) 19-1P2 (10.2 mg/g). Lowest amount of phloretic acid was recorded in 

BS5A.2(T2) 19-3P2 (8.4 mg/g) and it was not detected in BS5A.1(T2) 18-2P1, Semsen and 

ICC 506EB. The highest amount of ferulic acid was recorded in BS5A.1(T2) 18-1P1 (26.0 

mg/g). In the other transgenic chickpea plants, it ranged from 1.0–2.6 mg/g. Least amount of 

ferulic acid was recorded in ICC 506EB (0.1 mg/g), but was not detected in BS5A.1(T2) 18-

2P1 and Semsen (Table 4.19). 

Significantly higher amount of umbellifrone was recorded in the leaves of 

BS5A.2(T2) 19-3P2 (1.8 mg/g) as compared to BS5A.2(T2) 19-1P2 (0.5 mg/g). No 

umbelliferone content was recorded in BS5A.2(T2) 18-2P1, Semsen and ICC 506EB. 

Naringin content was higher in BS5A.2(T2) 19-2P1 (19.4 mg/g) as compared to BS5A.2 (T2) 

19-3P2 (9.7 mg/g). The amount of 3,4 dihydroxy flavone was significantly higher in 

BS5A.2(T2) 19-3P2 (0.9 mg/g) as compared to BS5A.2(T2) 19-1P2 (0.2 mg/g) and 

BS5A.2(T2) 19-2P1 (0.2 mg/g) and nil in BS5A.1(T2) 18-2P1, Semsen and ICC 506EB 

(Table 4.19). 

Quercetin content was highest in BS5A.1(T2) 18-1P1 (1.7 mg/g), and least in 

BS5A.2(T2) 19-2P1 (1.0 mg/g) and nil in BS5A.1(T2) 18-2P1, Semsen and ICC 506EB.  In 

the leaves of BS5A.2(T2) 19-1P2 cinnamic acid content was highest (1.3 mg/g), and lowest 

in BS5A.2(T2) 19-3P2 (0.1 mg/g). Highest amount of naringenin was recorded in 

BS5A.1(T2) 18-1P1(25.0 mg/g) and the lowest in BS5A.2(T2) 19-3P2 (0.6 mg/g). 

Naringenin content in the other transgenic chickpea lines ranged between 1.0-5.2mg/g. In 

BS5A.1(T2) 18-2P1, Semsen and ICC 506EB, naringenin was not detected (Table 4.19). 



Highest amount of genistein was recorded in BS5A.1(T2) 18-1P1 (2.5 mg/g) and 

lowest in ICC 506EB (0.6 mg/g) and it was not detected in BS5A.1(T2) 18-2P1 and Semsen. 

The amount of formononetin was highest in BS5A.2(T2) 19-1P2 (0.4 mg/g), followed by 

BS5A.2(T2) 19-3P1 (0.1 mg/g) and BS5A.2 (T2) 19-3P2 (0.1 mg/g). Biochanin A content 

was significantly higher in BS5A.1(T2) 18-1P1(0.8 mg/g) as compared to ICC 506EB (0.2 

mg/g) (Table 4.19).   

Highest amount of gentisic (3.9 mg/g), ferulic acid (2.6 mg/g) and biochanin A (0.8 

mg/g) was recorded in the leaves of BS5A.1(T2) 18-1P1 and highest amount of chlorgenic 

was recorded in BS5A.2(T2) 19-1P2 (1.6 mg/g). In the leaves of BS5A.2(T2) 19-3P1, 

maximum amounts of umbelliferone (1.8 mg/g) and 3,4 dihydroxy flavone (0.9 mg/g) were 

recorded. Flavonoids were below detectable limits in BS5A.1(T2) 18-2P1 and Semsen (Table 

4.19). 

During 2012-13, chlorogenic acid content was significantly greater in BS5A.2(T2) 

19-2P1 (1.3 mg/g) as compared to BS5A.1(T2) 18-1P1 (0.2 mg/g). Gentisic acid content was 

highest in BS5A.2(T2) 19-2P1 (3.7 mg/g), followed by BS5A.1(T2) 18-2P1 (3.3 mg/g), 

BS5A.2(T2) 19-3P2 (3.5 mg/g) and ICC 506EB (3.5 mg/g), Semsen (3.1 mg/g), BS5A.1(T2) 

18-1P1 (2.6 mg/g) while in BS5A.2 (T2) 19-1P2 (1.3 mg/g) had the lowest amount of 

gentisic acid. Maximum amount of phloretic acid was recorded in BS5A.1(T2) 18-2P1(12.5 

mg/g)  and least in BS5A.2(T2) 19-3P2 (5.4 mg/g). The amount of ferulic acid was greater in 

Semsen (2.1 mg/g) than in BS5A.2(T2) 19-1P2  and ICC 506EB (0.5 mg/g) ( Table 4.20). 

Naringin content was highest in ICC 506EB (30.3 mg/g), followed by BS5A.2(T2) 

19-3P2 (20.7 mg/g), BS5A.2(T2) 19-1P2 (20.2 mg/g), BS5A.2(T2) 19-3P1 (13.2 mg/g) and 

BS5A.2(T2) 19-2P1 (12.5 mg/g). The amount of narignin was lowest in BS5A.1(T2) 18-2P1 

(12.1 mg/g), but below detectable limits in BS5A.1(T2) 18-1P1 and Semsen. Maximum 

amounts of 3,4 dihydroxy flavone (2.9 mg/g), quercetin (2.5 mg/g), naringenin (4.7 mg/g), 

formononetin (2.9 mg/g) and biochanin A (6.8 mg/g) were recoeded in Semsen (Table 4.20). 

Among the transgenic lines tested, the amount of 3,4 dihydroxy flavone was 

maximum in BS5A.2(T2) 19-3P2 (0.9 mg/g). Amount of quercetin was significantly higher 

in BS5A.1(T2) 18-2P2 (1.7 mg/g) as compared to BS5A.1(T2) 18-1P1 (0.5 mg/g). Narigenin 

content was highest in BS5A.2(T2) 19-2P1 (1.9 mg/g) and lowest amount in BS5A.2(T2) 19-

3P1 (0.6 mg/g) and was nil in BS5A.2(T2) 19-1P2, and ICC 506EB. In the leaves of 

BS5A.2(T2) 19-3P2 genistein content was highest (2.5 mg/g) whereas in BS5A.1(T2) 18-1P1 

(0.3 mg/g) had the lowest amounts. In BS5A.2(T2) 19-3P2 (0.4 mg/g) had the highest amount 

of formononetin, while lowest amount was recorded in BS5A.2(T2) 19-3P1 (0.1 mg/g). 



Maximum amount of biochanin A was recorded in BS5A.1(T2) 18-2P1 and BS5A.1(T2) 18-

1P1 (0.8 mg/g) and least was in BS5A.2(T2) 19-1P2 (0.5 mg/g) while nil in BS5A.2(T2) 19-

3P1 (Table 4.20). 

4.2.3.2 Correlation between resistance/susceptibility to pod borer and the amount  

            of flavonoids  

 

During 2011-12, there was a positive and significant correlation between 

formononetin and biochanin A and 3,4 dihydroxy flavones and genistein with leaf damage, 

larval survival and larval weights. Correlations between the ferulic acid, quercetin, cinnamic 

acid, naringin, gentisic acid and naringenin and leaf damage, larval survival and larval weight 

were negative but non-significant. Chlorogenic acid, phloretic acid and umbelliferone 

amounts were negatively correlated with leaf damage, larval survival and larval weight 

(Table 4.21).  

During 2012-13, chlorogenic acid, gentisic acid, ferulic acid, naringin, naringenin and 

quercetin had a positive but non-significant correlation with resistance to H. armigera. There 

was a positive and significant association between 3,4 dihydroxy flavone, genistein, 

formononetin and biochanin A with leaf damage, larval survival and larval weight. (Table 

4.22). 

4.2.3.3 Detection of Cry IIa protein in transgenic chickpea lines using ELISA 

4.2.3.3.1 Cry IIa content in fresh leaves, green pod coat and green seeds 

           The Cry IIa content during 2011-12 was highest (75.0 ppb) in the fresh leaf samples of 

BS5A.2(T2) 19-1P2, BS5A.2(T2) 19-2P1, BS5A.2(T2) 19-3P1, followed by 73.3 ppb in 

BS5A.2(T2) 19-3P2 and 57.6 ppb in BS5A.1(T2) 18-1P1 and BS5A.1 (T2) 18-2P1. During 

2012-13, CryIIa protein in fresh leaves ranged between 51.6-72.0 ppb. The CryIIa protein 

concentration in fresh leaves was higher in BS5A.2(T2) 19-1P2, BS5A.2(T2) 19-2P1, 

BS5A.2(T2) 19-3P1 and BS5A.2(T2) 19-3P2 (Table 4.23 and Fig 21). 

            The amounts of CryIIa proteins present in green pod wall in different transgenic 

plants were 73.0 ppb in BS5A.2(T2) 19-1P2, 71.0 ppb in BS5A.2(T2) 19-2P1, 70.0 ppb in 

BS5A.2(T2) 19-3P1 and 60.6 ppb in BS5A.2(T2) 19-3P2, 57.6 ppb in BS5A.1(T2) 18-1P1 

and 54.3 ppb in BS5A.1(T2) 18-2P1. The amounts of CryIIa protein were maximum in the 

seeds of BS5A.2(T2) 19-3P1 (74.3 ppb), followed by 73.6 ppb in BS5A.2(T2) 19-2P1, 69.6 

ppb in BS5A.2(T2) 19-1P2, 62.6 ppb in BS5A.2(T2) 19-3P2, 54.3 ppb in BS5A.1(T2) 18-

2P1 and 53.3 ppb in BS5A.1(T2) 18-1P1. Similarly the CryIIa protein content was high in 



dry pod wall (50.6 –70.6 ppb), dry seeds (53.6–70.0 ppb) and dry stems (49.3-70.0ppb) 

(Table 4.23).  

4.2.3.3.2 CryIIa content in Dry root and Soil 

            The concentration of the CryIIa protein in dry roots ranged between 3.2-6.9 ppb. 

CryIIa protein was not detected in the soil samples after uprooting the transgenic and non-

transgenics plants (Table 4.23 and Fig 22). 

4.2.3.3 CryIIa content in H. armigera larvae fed on transgenic chickpea            

                                                                 

            During 2011-12, concentration of CryIIa protein was significantly high in H. 

armigera larvae fed on leaves of BS5A.2(T2) 19-1P2 (54.0 ppb) and BS5A.2(T2) 19-3P1 

(52.3 ppb). The amount of protein in the larvae fed on BS5A.1(T2) 18-2P1 was 42.3 ppb. The 

protein concentration was significantly lowest in larvae fed on BS5A.2(T2) 19-3P2 (13.0 

ppb), followed by BS5A.2(T2) 19-2P1 (17.0 ppb) and BS5A.1 (T2) 18-1P1 (19.0 ppb) (Table 

4.23). During 2012-13, the CryIIa protein content was significantly higher in larvae fed on 

BS5A.2 (T2) 19-2P1 and BS5A.1 (T2) 18-1P1 (41.6 and 37.0 ppb, respectively) (Table 4.23).  

4.2.3.3.4 CryIIa content in the aphids, A. craccivora fed on transgenic chickpea leaf  

               powder mixed in 2M sucrose solution and in artificial diets 

            CryIIa protein content in A. craccivora fed on 0.05% of transgenic chickpea leaf 

powder in 2Mof sucrose solution was very low (0.9 - 1.7 ppb). CryIIa protein content in the 

aphids fed on artificial diet with 0.05% of leaf powder of transgenic chickpea lines ranged 

between 1.0 - 1.6 ppb (Table 4.23). 

4.2.3.3.5 CryIIa content in coccinellid grubs fed on transgenic leaf powder         

             A negligible amounts of CryIIa protein were detected in the grubs fed on leaf powder 

of transgenic chickpea lines (1.1 to 2.4 ppb) (Table 4.23).           

4.2.3.3.6 CryIIa content in Campoletis chlorideae larvae reared on H. armigera fed             

                on transgenic chickpeas 

                The amount of CryIIa protein in C. chlorideae larvae reared on H. armigera fed 

larvae fed on transgenic chickpeas was very low (1.0 - 1.7 ppb) (Table 4.23 and Fig 23). 

                The CryIIa protein was high in fresh leaves in season I varied from 57.6 to 75.0 ppb 

and in season II, it ranged from 51.6 to 72.0, green pod coat (54.3 to 73.0 ppb), and green 

seeds (53.3 -74.3 ppb), dry pod wall (50.6 –70.6 ppb), dry seeds (53.6 –70.0 ppb) and dry 

stems (49.3 - 70.0 ppb). In dry roots the protein concentration was quite low (3.2 to 6.9 ppb) 

whereas in soil samples, it was below detectable levels (0.0 to 0.2 ppb). The amount of 

protein transferred from fresh leaves to H. armigera larvae ranged from 13.0 - 54.0 ppb in 



season I, and 15.0 - 41.6 ppb in season II. The CryIIa protein in Bt fed aphids, coccinellid 

grubs and Bt fed C. chlorideae larvae was almost nil. Hence, the amount of CryIIa protein 

transferred from leaves to the non-target insects and natural enemies were negligible.       

4.2.3.3.8 Correlation between resistance/susceptibility to H. armigera and the  

               amounts of CryIIa protein  

   In both the seasons (2011-12 and 2012-13), the correlation co-efficient of CryIIa 

protein in fresh leaf, green pod wall, green seeds, dry pod wall, dry seeds, dry stems, dry 

roots and H. armigera larvae with leaf damage, larval survival and larval weight was negative 

and significant (Table 4.24 and 4.25). 

Difference in amounts of δ-endotoxin present in various plant parts which was 

correlated with larval survival of the bollworms throughout the growing season (Adamczyk et 

al. 2001). The green tissue had the highest concentration of toxin, followed by yellow green 

and white yellow tissues (Abel and Adamczyk, 2004). Zhang et al. (2004) found that the 

amount of Bt toxin in different plant parts was high in NuCoTN 33B (79.7-139.0 ng/g fresh 

wt) than in GK-12. ELISA teat confirmed that Spodoptera littoralis larvae ingest high 

amounts of Cry1A(b) toxin while feeding on Bt-maize and no toxin was found in parasitoid 

of S. littoralis, Cotesia marginiventris adults (Vojtech et al., 2005).  Head et al. (2001) did 

not detect Cry1Ab by ELISA in aphids feeding on transgenic Bt-Corn plants. For the 

lepidopteran insects, Ostrinia nubilalis, H. zea and Agrotis ipsilon, the levels of Cry1Ab in 

the larvae varied with feeding treatments. Dhillon and Sharma (2010) reported >5 ppb of 

CryI Ac protein on Bt-sprayed chickpeas. However, no Bt toxins were detected in the larvae, 

cocoons and adults of C. chlorideae reared on Bt-intoxicated H. armigera larvae or in adult 

parasitoids fed on Bt-contaminated honey.   

4.3 Effect of Cry IIa transgenic chickpea lines on the natural enemies of  

      H. armigera 

4.3.1 Effect of transgenic chickpea on the survival and development of the   

          parasitoid, Campoletis chlorideae  

During 2011-12 October planting, there were significant differences in survival and 

development the parasitoid, C. chlorideae when reared on H. armigera fed on transgenic and 

non-transgenic chickpea leaves. The larval period of C. chlorideae was prolonged in 

parasitoids reared on H. armigera fed on BS5A.1(T2) 18-1P1 (14.0 days) as compared to 

those reared on H. armigera fed on ICC 506EB and Semsen (8.8 and 8.3 days, respectively) 

(Table 4.26).  



Among the transgenic lines tested, the larval period of C. chlorideae ranged from 9.3 

to 10.4 days, however, there were no significant differences in pupal period of C. chlorideae 

reared on H. armigera fed on transgenic and non-transgenic chickpea (3.0 - 6.0 days). There 

was a prolongation of the post-embryonic development period (19.6 days) in C. chlorideae 

when reared on host larvae fed on the leaves of BS5A.1(T2) 18-1P1 as compared to those 

reared on other transgenic and non-transgenic chickpeas (11.8 to 16.4 days) (Table 4.26). 

Cocoon formation was significantly lower when the parasitoid was reared on H. 

armigera fed on the leaves of BS5A.1(T2) 18-1P1 (16.0%), BS5A.2(T2) 19-3P1 (18.6%), 

BS5A.2(T2) 19-1P2 (22.6%), BS5A.2(T2) 19-3P2 (26.6%), BS5A.2(T2) 19-2P1 (29.3%) and 

BS5A.2(T2) 18-2P1 (33.3%) than those reared on Semsen  (70.6%) and ICC 506EB (61.3%). 

Adult emergence was significantly reduced on BS5A.2(T2) 19-1P2 (3.8%) as compared to 

that on ICC 506EB and Semsen (39.8 and 41.5%, respectively) (Table 4.26). 

Adult longevity of C. chlorideae was shorter in the parasitoids reared on H. armigera 

fed on transgenic chickpea lines compared to those fed on non-transgenic chickpeas. No 

males emerged from parasitoids reared on H. armigera fed on BS5A.2(T2) 19-1P2. Male 

longevity was shorter in parasitoids reared on H. armigera fed on BS5A.1(T2) 18-1P1 (3.6 

days) as compared to those fed on Semsen and ICC 506EB (8.0 and 7.3 days, respectively). 

Female longevity was also shorter in insects reared on H. armigera larvae fed on BS5A.2(T2) 

19-1P2 (3.0 days), BS5A.1(T2) 18-1P1 (4.0 days), BS5A.1(T2) 18-2P1 and BS5A.2(T2) 19-

3P1 (16.3 days), BS5A.2(T2) 19-3P2 (9.3 days), BS5A.2(T2) 19-2P1 (10.6 days) and Semsen 

(10.0 days) as compared to that on ICC 506EB (17.0 days) (Table 4.26). 

There were no significant differences in adult weights of C. chlorideae reared on H. 

armigera fed on transgenic and non-transgenic chickpea leaves. There were no males of C. 

chlorideae among the adults that emerged from H. armigera larvae fed on BS5A.2(T2) 19-

1P2. Male adult weight was significantly reduced in insects reared on BS5A.1(T2) 18-1P1 

(1.1 mg adult
-1

) as compared to that on Semsen and ICC 506EB (2.2 and 2.0 mg adult
-1

, 

respectively). Weight of the adult females of C. chlorideae was also significantly lower (0.8 

mg adult
-1

) when reared on H. armigera larvae fed on the leaves of BS5A.1(T2) 18-1P1 as 

compared to those reared on Semsen and ICC 506EB (3.4 and 3.0 mg adult
-1

, respectively). 

Number of males (0.0–2.0) and females (0.3-2.6) emerged from the cocoons were 

significantly reduced on transgenics as compared to that on non-transgenic chickpeas Semsen 

(5.0 and 6.0, respectively) and ICC 506EB (4.6 and 5.6, respectively). Eggs laid by the 

females that emerged from H. armigera larvae fed on the leaves of transgenic chickpea lines 

were significantly lower (6.6 to 81.0 eggs female
-1

)
 
than those reared on non-transgenic 



chickpeas, Semsen and ICC 506EB (105.0  and 121.0 eggs female
-1

,) (Table 4.26 and Fig 

24).  

Among the transgenic lines tested, during October 2011-12 planting, a significant 

increase in egg+larval period post embryonic development period and reduction in cocoon 

formation, adult emergence, adult longevity, adult weights, sex ratio and fecundity was 

recorded in C. chlorideae reared on H. armigera fed on BS5A.1(T2) 18-1P1 and BS5A.2(T2) 

19-1P2.  

During 2012-13 October planting, the egg+larval periods of C. chlorideae were 

significantly longer when H. armigera larvae were fed on the leaves of BS5A.1(T2) 18-1P1 

(13.3 days) and BS5A.2(T2) 19-3P2 (13.3 days) as compared to  those reared on H. armigera 

fed on Semsen and ICC 506EB (9.6 and 9.3 days, respectively). The egg+larval periods of 

parasitoids reared on H. armigera fed on other transgenic lines ranged from 11.6 to 12.6 

days. The pupal period was prolonged by 5.6 - 8.0 days as compared that on Semsen and ICC 

506EB (4.6 and 5.3 days, respectively). The post-embryonic development period of C. 

chlorideae was prolonged when the H. armigera were fed on the leaves of transgenic lines 

BS5A.2(T2) 19-2P1 (20.3 days) and BS5A.1(T2) 18-1P1 (19.6 days) as compared to that on 

ICC 506EB and Semsen (14.6 and 14.3 days, respectively) (Table 4.27).  

Cocoon formation was significantly lower when the parasitoid was reared on H. 

armigera larvae fed on the leaves of transgenic plants BS5A.2(T2) 19-2P1 (21.1%) and 

BS5A.1(T2) 18-1P1 (23.3%) as compared to that on non-transgenic, ICC 506EB and Semsen 

(75.5% and 73.3%, respectively). The adult emergence was lowest when parasitoid was 

reared on host larvae fed on the leaves of BS5A.1(T2) 18-2P1 (11.1%), followed by 

BS5A.1(T2) 18-1P1 (12.2%), BS5A.2(T2) 19-1P2 (13.3%), BS5A.2(T2) 19-3P2 (15.5%), 

BS5A.2 (T2) 19-2P1 (17.7%) and BS5A.2(T2) 19-3P1 (26.6%) as compared to that on ICC 

506EB and Semsen (65.5 and 50.0%, respectively). The early mortality of H. armigera was 

largely responsible for poor cocoon formation when the parasitoid was raised on H. armigera 

larvae fed on the leaves of transgenic plants (Table 4.27).  

There were no significant differences in adult longevity between the parasitoids 

reared on H. armigera fed on transgenic and non-transgenic chickpea plants. The male adult 

longevity of C. chlorideae was slightly longer on BS5A.2(T2) 19-1P2 (11.6 days) and ICC 

506EB (11.6 days) as compared to that on BS5A.2(T2) 19-3P1 (6.0 days). Female adult 

longevity was significantly higher in parasitoids H. armigera larvae fed on the leaves of 

BS5A.1(T2) 18-2P1 (23.3 days) as compared to that on BS5A.2(T2) 19-3P2 (15.3 days). 

There were no significant differences between the weights of the adult parasitoids reared on 



H. armigera larvae fed on transgenic and non-transgenic chickpea plants. The male adult 

weight ranged from 2.6 to 3.4 mg adult
-1

. The female adult weight was significantly reduced 

on BS5A.2(T2) 19-3P2 (1.9 mg adult
-1

) as compared to Semsen and ICC 506EB (4.5 mg 

adult
-1

) (Table 4.27).   

Number of males (1.6-3.6) and females (1.6-4.3) emerged out of cocoons formed 

from the host larvae when fed on transgenic lines were significantly as compared to that on 

non-transgenic plants Semsen (7.0 and 7.3, respectively) and ICC 506EB (12.6 and 10.3, 

respectively). Eggs laid by the C. chlorideae females reared on H. armigera larvae fed on 

transgenic chickpea lines was significantly lower (6.6–50.6 eggs female
-1

) than those reared 

on the non-transgenic chickpea plants, Semsen and ICC 506EB (145.0 and 131.0 eggs 

female
-1

, respectively). Among transgenic lines tested, the survival and development of C. 

chlorideae was significantly lower when reared on BS5A.2(T2) 19-1P2 than on the non-

transgenic control. However, the survival and development of parasitoids was better when 

reared on H. armigera larvae fed on BS5A.2(T2) 19-3P1 and BS5A.2(T2) 19-2P1 (Table 

4.27 and Fig 25). 

There was a prolongation of egg+larval period, pupal period and reduction in adult 

longevity, weights and sex ratio, and increase in cocoon formation of C. chlorideae reared on 

H. armigera fed on BS5A.2(T2) 19-3P1 and BS5A.2(T2) 19-3P2.  

Based on the pooled data analysis, larval period of the parasitoids was significantly 

prolonged in C. chlorideae reared on H. armigera fed on BS5A.1(T2) 18-1P1 (13.1 days) as 

compared to that on non-transgenics, ICC 506EB and Semsen (9.0 days). There was no 

significant effect of transgenic plants on the pupal period of C. chlorideae (4.0 - 6.5 days). 

The post-embryonic development period was significantly prolonged on BS5A.1(T2) 18-1P1 

(19.6 days) as compared to those reared on H. armigera fed on the leaves of Semsen and ICC 

506EB (14.3 and 14.7 days, respectively). Cocoon formation was significantly lower in C. 

chlorideae reared on H. armigera fed on transgenic chickpea lines (19.6 to 33.8%) as 

compared to those fed on non-transgenic chickpea plants, Semsen  and ICC 506EB (72.0 and 

68.4%, respectively) (Table 4.28). 

The adult emergence was significantly lower in C. chlorideae when reared on H. 

armigera larvae fed on BS5A.2(T2) 19-1P2 (7.3%), BS5A.1(T2) 18-1P1(8.1%),  

BS5A.1(T2) 18-2P1 (11.5%), BS5A.2(T2) 19-3P2 (14.4%), BS5A.2(T2) 19-3P1 (17.3%) as 

compared to that on ICC 506EB and Semsen (53.4 and 47.0%, respectively). Male adult 

longevity was shorter in parasitoid reared on H. armigera larvae fed on transgenic plants (6.0 

– 8.6 days) as compared to those reared on non-transgenic Semsen  and ICC 506EB (9.0 and 



9.5 days, respectively). The shortest longevity of C. chlorideae females was recorded in 

insects reared on H. armigera fed on BS5A.2(T2) 19-1P2 (7.3 days) while the longest 

survival was recorded on non-transgenic plants (16.3 days) (Table 4.28).  

There were no significant differences in male adult weights between the parasitoids 

reared on H. armigera larvae fed on transgenic and non transgenic plants (1.4 to 2.7 mg adult
-

1
). Female adult weight was significantly lower on BS5A.1(T2) 18-1P1 (1.5 mg adult

-1
) as 

compared to that on Semsen (3.9 mg adult
-1

) and ICC 506EB (3.7 mg adult
-1

). Number of 

males (1.1-2.3) and females (1.0-2.6) emerged from the host larvae fed on transgenics were 

significantly reduced as compared to that on Semsen (6.0 and 6.6, respectively) and ICC 

506EB (8.6 and 8.0, respectively). The eggs laid by the females when reared on H. armigera 

fed on transgenic plants were significantly reduced (6.6–62.6 egg female
-1

) as compared to 

the wasps reared on H. armigera fed on non-transgenic plants, ICC 506EB and Semsen 

(126.6 and 125.2 egg female
-1

, respectively) (Table 4.28 and Fig 26).  

In general, reduced survival and prolonged development of the parasitic wasps was 

recorded when reared on H. armigera larvae fed on BS5A.1 (T2) 18-1P1 and BS5A.2 (T2) 

19-1P2.  

4.3.1.1 Effect of transgenic chickpea lines on survival and development of the  

             parasitoid, Campoletis chlorideae (November, 2011-12 and 2012-13) 

There were no significant differences in larval period, pupal period and post 

embryonic development period of C. chlorideae reared on H. armigera larvae fed on 

transgenic and non-transgenic plants. Longest larval period was recorded on BS5A.1(T2) 18-

1P1 (12.3 days) and the shortest on BS5A.2 (T2) 19-2P1 (6.3 days). Pupal period was 

prolonged on BS5A.2(T2) 19-1P2  (6.0 days) as compared to that on on BS5A.1(T2) 18-2P1 

(3.0 days). Post embryonic development period was also prolonged on BS5A.1(T2) 18-1P1 

(17.6 days) as compared to BS5A.1(T2) 18-2P1 (11.3 days) (Table 4.29).            

Cocoon formation was significantly lower in C. chlorideae reared on H. armigera 

larvae fed on leaves of BS5A.2(T2) 19-3P2 (3.3%), BS5A.1(T2) 18-1P1 (10.6%), 

BS5A.2(T2) 19-1P2 (14.9%), BS5A.2(T2) 19-2P1 (17.1%) and BS5A.2(T2) 19-3P1 (17.6%) 

as compared to those reared H. armigera larvae fed on ICC 506EB and Semsen (47.2 and 

43.8%, respectively). Among the transgenic plants tested, the cocoon formation was highest 

in C. chlorideae reared on H. armigera fed on BS5A.1(T2) 18-2P1 (23.8%). Adult 

emergence was poor on BS5A.2(T2) 19-3P2 (2.3%) as compared to those fed on non-

transgenic plants ICC 506EB and Semsen (39.3 and 32.0%, respectively). There were no 

significant differences in male and female adult longevity. However, male adult longevity 



was longer on BS5A.2(T2) 19-3P2 (11.6 days) and as compared to that on Semsen (4.6 days) 

and ICC 506EB (5.3 days) and longest female longevity was recorded in the parasitoids 

reared on H. armigera larvae fed on BS5A.2(T2) 19-3P1 (22.8 days), while shortest was on 

BS5A.1(T2) 18-2P1 (0.6 days) and Semsen (1.3 days) (Table 4.29).  

No significant differences were observed in weight of the adults (male, 1.3 to 2.8 mg 

adult
-1

 and female, 2.1 to 3.0 mg adult
-1

). Number of males (0.6-2.0) and females (1.0-2.3) 

emerged out of cocoons developed on H. armigera larvae fed on the transgenic plants were 

significantly lower as compared to that on non-transgenic chickpea plants Semsen (3.6 and 

4.3, respectively) and ICC 506EB (5.3 and 4.6, respectively).  Eggs laying by the females 

was significantly reduced in C. chlorideae wasps obtained from H. armigera larvae fed on 

the transgenic plants BS5A.2(T2) 19-2P1 (15.0 eggs female
-1

),  BS5A.2(T2) 19-3P2 (25.0 

eggs female
-1

), BS5A.1(T2) 18-1P1 and BS5A.1(T2) 18-2P1 (33.3 eggs female
-1

), 

BS5A.2(T2) 19-3P1 (45.0 eggs female
-1

) and BS5A.2(T2) 19-1P2 (75.0 eggs female
-1

) than 

on non-transgenic chickpea plants Semsen and ICC 506EB (102.3 and 91.6 eggs female
-1

, 

respectively). Among the transgenic lines tested, the survival and development of C. 

chlorideae was significantly better when reared on H. armigera fed on BS5A.2(T2) 19-1P2 

and BS5A.2(T2) 19-3P1 (Table 4.29 and Fig 27). 

During November 2012-13 planting, larval period of the parasitoid was significantly 

prolonged when reared on H. armigera fed on transgenic chickpea lines BS5A.1(T2) 18-2P1 

(12.3 days) and BS5A.2 (T2) 19-3P1 (12.0 days) than on Semsen and ICC 506EB (8.3 and 

8.0 days, respectively). There were no significant differences between pupal period. The post-

embryonic development period was prolonged in parasitoids obtained from H. armigera 

larvae fed on BS5A.1(T2) 18-2P1 (20.3 days) as compared to those reared on ICC 506EB 

(14.6 days) and Semsen (15.6 days) (Table 4.30). 

Cocoon formation and adult emergence were significantly reduced in the parasitoids 

reared on H. armigera larvae fed on the leaves of transgenic plants, BS5A.1(T2) 18-2P1 

(25.5 and 12.2%, respectively) as compared to those fed on non-transgenic plants, ICC 

506EB (68.8 and 54.4%, respecively) and Semsen (57.7 and 42.2%, respectively). Among the 

transgenic lines, C. chlorideae wasps obtained from BS5A.1(T2) 18-1P1 had the highest 

cocoon formation (48.8%) and adult emergence (26.6%). The longevity and weights of the 

adult parasitoids were not affected by transgenic chickpea plants. Number of males (1.3-4.0) 

and females (2.3-4.0) emerged from H. armigera larvae fed on the leaves of transgenic plants 

were significantly reduced when compared to those fed on non-transgenic plants, Semsen 

(6.6 and 6.0, respectively) and ICC 506EB (9.3 to 7.0, respectively) (Table 4.30).  



There were no eggs laying by the females obtained from H. armigera fed on the 

leaves of transgenic chickpea, BS5A.1(T2) 18-2P1 and BS5A.2 (T2) 19-3P1 (0.0 eggs 

female
-1

) as compared to that on Semsen and ICC 506EB (111.6 and 105.0 eggs          female
-

1
, respectively) and on other transgenics, (Table 4.30 and Fig 28). 

Among the transgenic lines tested, the survival and development of                     C. 

chlorideae was significantly better when reared on H. armigera fed on BS5A.1(T2) 18-1P1 

and BS5A.2(T2) 19-2P1 as compared to that on other transgenic lines. 

Based on the pooled data analysis (2011-12 and 2012-13), the larval period was 

prolonged in C. chlorideae wasps reared on H. armigera larvae fed on BS5A.2(T2) 19-3P1 

(11.3 days) as compared to that on ICC 506EB and Semsen (9.1 and 8.8 days, respectively). 

Among the transgenic lines, larval period ranged from 8.1 to 11.1 days, and there were no 

significant differences in pupal period (4.8 - 6.9 days), and post-embryonic development 

period (15.0-18.0) when reared on H. armigera larvae fed on transgenic and non-transgenic 

chickpea plants (Table 4.31).            

 Cocoon formation and adults emergence were significantly reduced in              C. 

chlorideae reared on H. armigera larvae fed on BS5A.2(T2) 19-3P2 (17.2 and 10.6%, 

respectively) than on non-transgenic ICC 506EB (58.0 and 46.8%, respectively) and Semsen 

(50.8 and 37.1%, respectively). Male longevity was longer  in                    C. chlorideae 

reared on H. armigera larvae fed on transgenics BS5A.2(T2) 19-3P2 (11.3 days) as compared 

to ICC 506EB and Semsen (7.5 and 6.5 days, respectively). Female longevity ranged from 

8.5 to 19.7 days. The male and female adult weights did not differ significantly. Number of 

males (1.3-3.0) and females (1.5-2.8) emerged from H. armigera larvae fed on the leaves of 

transgenic plants were significantly reduced when compared to those fed on non-transgenic 

plants, Semsen (5.1 and 5.1, respectively) and ICC 506EB (7.3 and 5.8, respectively). There 

was a significant reduction in fecundity of the female wasps obtained from H. armigera fed 

on transgenic chickpea plants of BS5A.1(T2) 18-2P1 (16.6 eggs female
-1

) as compared to 

those fed on Semsen and ICC 506EB (107.0 and 98.3 egg female
-1

, respectively) (Table 4.31 

and Fig 29). 

Among the transgenic lines tested, the survival and development of C. chlorideae was 

significantly better when reared on H. armigera fed on BS5A.1(T2) 18-1P1 and BS5A.2(T2) 

19-3P1 as compared to the other lines tested. 

 

 

 



4.3.1.2 Survival and development of C. chlorideae reared on H. armigera fed on  

            artificial diets with lyophilized leaf powder of different transgenic and  

            non-transgenic chickpea 

During 2011-12, the egg+larval period was significantly longer in C. chlorideae 

reared on H. armigera larvae fed on diets with  transgenic leaf powder BS5A.1(T2) 18-1P1 

(15.6 days), BS5A.1(T2) 18-2P1 (15.0 days), BS5A.2(T2) 19-1P2 (14.0 days), BS5A.2(T2) 

19-2P1(12.6 days), BS5A.2(T2) 19-3P1 (11.0 days) and BS5A.2 (T2) 19-3P2 (10.0 days) as 

compared to that on Semsen and ICC 506EB (8.6 and 9.3 days, respectively). There were no 

significant differences in the pupal period of parasitoids reared on H. armigera fed on diets 

with transgenic and non-transgenic chickpeas (7.0 to 11.0 days). The post-embryonic 

development period was longer when C. chlorideae were reared on the H. armigera fed on 

diets with transgenic chickpea leaf powder (18.0 to 26.6 days) as compared to those reared on 

non-transgenic Semsen and ICC 506EB (15.6 and 18.0 days, respectively) (Table 4.32).  

Cocoon formation of C. chlorideae was significantly reduced in when reared on H. 

armigera fed on diets with transgenic chickpea leaf powder BS5A.2(T2) 19-3P2 (54.4%) as 

compared to non-transgenic chickpea leaf powder ICC 506EB and Semsen (91.1 and 88.8%, 

respectively). Among the transgenic chickpeas, cocoon formation and adult emergence was 

better on BS5A.1(T2) 18-2P1 (80.0 and 63.3%, respectively) and BS5A.1(T2) 18-1P1 (65.5 

and 52.2%, respectively). Adult emergence was significantly reduced on BS5A.2(T2) 19-1P2 

(21.1%) as compared to that on Semsen and ICC 506EB (61.1 and 63.3%, respectively)  

(Table 4.32). 

There was no negative effects of transgenic chickpeas on male longevity, and adult 

weights of the parasitoids. The male longevity was ranged from 8.0 to 11.3 days. The female 

longevity longest on BS5A.2(T2) 19-2P1 (24.0 days), and the shortest on BS5A.2(T2) 19-

3P1 (9.3 days) (Table 4.32). 

Number of males (4.0-9.6) emerged from H. armigera larvae fed on the leaves of 

transgenic plants were significantly lower as compared to that on non-transgenic plants, 

Semsen (12.0) and ICC 506EB (14.0), and the female parasitoids emerged from H. armigera 

larvae fed on the leaves of transgenic plants BS5A.1(T2) 18-2P1 (9.3) and BS5A.1(T2) 18-

1P1 (7.6) as compared to that on Semsen (6.3) and ICC 506EB (5.0). Eggs laid by the 

females were significantly reduced when C. chlorideae was reared on H. armigera larvae fed 

on transgenic chickpea lines BS5A.2(T2) 19-1P2 (24.6 eggs female
-1

) and BS5A.2(T2) 19-

3P1 (30.6 eggs female
-1

) as compared those fed on non-transgenic chickpeas, ICC 506EB and 

Semsen (152.3 and 119.3 eggs female
-1

, respectively). Among the transgenic chickpea lines, 



higher fecundity was recorded on BS5A.1(T2) 18-1P1 (71.0 eggs female
-1

) and BS5A.1(T2) 

18-2P1 (53.3 eggs female
-1

) (Table 4.32 and Fig 30). 

In general, the survival and development of parasitoids were affected when reared on 

H. armigera larvae fed on diets with transgenic BS5A.2(T2) 19-1P2 and BS5A.2(T2) 19-3P1 

leaf powder as compared to that on other transgenics lines during 2011-12.  

During 2012-13, significant reduction in survival and development of C. chlorideae 

wasps reared on H. armigera fed on diets with leaf powder of different transgenic lines. The 

egg+larval period, pupal, and post-embryonic development periods were significantly 

reduced in insects reared on transgenics lines, BS5A.1(T2) 18-2P1 (12.0, 9.3 and 21.3 days, 

respectively) as compared to the non-transgenic Semsen (9.0,6.0 and 15.0 days, respectively) 

and ICC 506EB  (8.3, 7.0 and 15.3 days, respectively) (Table 4.33).  

Cocoon formation and adult emergence were significantly reduced in C. chlorideae 

reared on H. armigera larvae fed on diets with transgenic leaf powder of BS5A.2(T2) 19-1P2 

(28.8 and 21.1%, respectively) and BS5A.2(T2) 19-3P2 (37.7 and 22.2%, respectively) as 

compared to that on Semsen (76.6% and 58.8%, respectively) and ICC 506EB (56.6 and 

32.2%, respectively). There was a significant difference in male longevity, the males of C. 

chlorideae survived for longer period when reared on H. armigera larvae fed on diets with 

transgenic leaf powder BS5A.2(T2) 19-2P1 (10.3 days) than on BS5A.2(T2) 19-3P2 (3.3 

days). There were no significant differences in female longevity ranged from 8.6 to 19.3 days 

between the C. chlorideae reared on H. armigera larvae fed on diets with leaf powder of 

transgenic and non-transgenic chickpeas. The male adult weights were significantly reduced 

in C. chlorideae reared on H. armigera larvae fed on diets with transgenic BS5A.2(T2) 19-

2P1 leaf powder (1.8 mg adult
-1

) as compared to that on non-transgenic chickpeas Semsen 

and ICC 506EB  (1.9 and 3.0 mg adult
-1

, respectively). Female weights were greater in C. 

chlorideae reared on H. armigera larvae fed on diets with transgenic BS5A.1(T2) 18-2P1 leaf 

powder (4.0 mg adult
-1

) as compared to that on Semsen and  ICC 506EB  (3.0 and 3.1 mg 

adult
-1

, respectively) (Table 4.33). 

Number of males (3.3-5.0) and females (2.6-4.0) emerged from H. armigera larvae 

fed on the leaves of transgenic plants were significantly lower as compared to that on non-

transgenic plants, Semsen (9.0 and 5.3, respectively) and ICC 506EB (5.3 and 4.3, 

respectively). Eggs laid by the females were lowest in parasitoids reared on H. armigera fed 

on diets with transgenic chickpea leaf powder BS5A.2(T2) 19-1P2 (20.0 eggs female
-1

), 

BS5A.2(T2) 19-3P2 (26.6 eggs female
-1

), BS5A.2(T2) 19-2P1 (48.3 eggs female 
-1

), 

BS5A.1(T2) 18-2P1 (50.0 eggs female
-1

), BS5A.2(T2) 19-3P1 (70.0 eggs female 
-1

) and 



BS5A.1(T2) 18-1P1 (83.3 eggs female 
-1

) as compared to that on Semsen and ICC 506EB 

(163.3 and 112.3 eggs female
-1

, respectively) (Table 4.33 and Fig 31).  

Survival and development of C. chlorideae wasps obtained from H. armigera larvae 

fed on diets with transgenic BS5A.1(T2) 18-1P1, BS5A.1(T2) 18-2P1 and BS5A.2(T2) 19-

3P1 leaf powder was better as compared to that on BS5A.2(T2) 19-1P2 and BS5A.2(T2) 19-

3P2. 

Based on pooled data analysis (2011-12 and 2012-13), the egg+larval period was 

significantly extended when C. chlorideae developed in H. armigera fed on diets with 

BS5A.1(T2) 18-2P1 leaf powder (13.5 days) as compared to that on Semsen and ICC 506EB 

(8.8 days). The larval period on other transgenic lines ranged from 10.1 to 12.6 days. The 

pupal periods ranged from 6.5 to 9.3 days but there were no significant differences between 

the lines tested. The post embryonic development period was significantly prolonged in C. 

chlorideae reared on H. armigera fed on diets with transgenic chickpea leaf powder (18.8 to 

22.8 days) as compared to non-transgenic plants of Semsen and ICC 506EB (15.3 and 16.6 

days, respectively). Cocoon formation and adult emergence were significantly reduced in C. 

chlorideae reared on host larvae fed on diets with transgenic chickpea BS5A.2(T2) 19-1P2 

leaf powder (44.4 and 21.1%, respectively) and BS5A.2(T2) 19-3P2 (46.1 and 23.8%, 

respectively) as compared to Semsen (82.7 and 60.0%, respectively) and ICC 506EB (73.8 

and 47.7%, respectively). Among the transgenic chickpea lines tested, highest cocoon 

formation and adult emergence were recorded in C. chlorideae reared on H. armigera fed on 

diets with BS5A.1(T2) 18-2P1 leaf powder (66.1 and 46.6%, respectively) (Table 4.34). 

Adult longevity of both males (5.6-9.6 days) and the females (11.5-19.7 dats) of C. 

chlorideae was not affected when reared on H. armigera fed on diets with transgenic and 

non-transgenic chickpea leaf powder. The male adult weight was significantly reduced on 

BS5A.1(T2) 18-1P1 and BS5A.2(T2) 19-2P1 (2.3 mg adult
-1

) as compared to that on ICC 

506EB (3.2 mg). There were no significant differences in female adult weight. Number of 

males (4.1-7.3) and females (2.1-6.6) emerged from H. armigera larvae fed on the leaves of 

transgenic plants were significantly lower as compared to that on non-transgenic plants, 

Semsen (10.5 and 7.5, respectively) and ICC 506EB (9.6 and 8.6, respectively). Fecundity of 

the parasitoids was reduced in C. chlorideae reared on H. armigera fed on diets with 

transgenic chickpea leaf powder BS5A.2(T2) 19-1P2 (22.3 eggs female
-1

) and BS5A.2(T2) 

19-3P2 (39.6 egg female
-1

) as compared to that on Semsen and ICC 506EB (141.3 and 132.3 

eggs female
-1

, respectively). Among the transgenic lines tested, fecundity was significantly 



greater in the wasps reared on BS5A.1(T2) 18-1P1 (77.1 eggs female
-1

) and BS5A.1(T2) 18-

2P1 (51.6 eggs female
-1

) than on other transgenic lines tested (Table 4.34 and Fig 32). 

Across the seasons (November, 2011-12 and 2012-13), survival and development of 

C. chlorideae was better in insects reared on H. armigera larvae fed on diets with leaf powder 

of BS5A.1(T2) 18-1P1 and BS5A.1(T2) 18-2P2 than on other chickpea lines. The survival 

and development of C. chlorideae was affected when reared on H. armigera larvae fed on 

fresh leaves of transgenic lines than those reared on H. armigera larvae fed on diets with 

transgenic chickpea leaf powder.  

No CryIIa protein was detected in the C. chlorideae larvae, the negative effects of 

transgenic chickpeas on survival and development of C. chlorideae were due to the early 

mortality of H. armigera as a result the parasitoids failed to complete the development on 

such larvae. The survival and development of C. chlorideae was poorer when reared on H. 

armigera larvae fed on fresh leaf samples than the artificial diets intoxicated with transgenic 

chickpea leaf powders.  

Similar results were reported by Sharma et al. (2007), who reported poor survival and 

development of C. chloridae obtained from H. armigera larvae fed on the leaves of Bt cotton 

hybrid Mech 184. When H. armigera larvae were fed on artificial diet impregnated with 

Cry1Ab and Cry1Ac at LC50 and ED50 levels before and after parasitisation, there was a 

significant reduction in cocoon formation and adult emergence of C. chlorideae. Larval 

period of the parasitoid was prolonged by 2 days when fed on Bt-intoxicated larvae. No 

adverse effects were observed on female fecundity.  

Yang et al. (2005) observed reduced cocoon formation and cocoon weight in parasitic 

wasps reared on H. armigera fed on diets made with transgenic cotton for Microplitis 

mediator, the cocoon formation and cocoon weight was reduced by 26.1% and 1 mg, 

respectively where for C. chlorideae, the reduction was 17.9% and 5.1 mg, respectively and 

larvae of the two wasps developing in the haemocoel of H. armigera larvae reared on 

transgenic cotton exhibited delayed development and, in some cases, abnormal development. 

The body weight of the larvae of the parasitoids was significantly reduced when obtained 

from hosts fed on transgenic cotton leaves compared to those fed on traditional cotton. 

Duration of egg and larval period was significantly prolonged, whereas pupal and adult 

weights of C. chloridae decreased when the host larvae were fed on transgenic cotton leaves 

for more than 48 h.  



The development duration of C. chlorideae pupae on the hosts fed with transgenic 

cotton leaves was not significantly different than those on the controls. The longevity of 

female and male parasitoids fed on a solution containing Cry1Ac toxin did not differ 

significantly with that of the control (Liu et al., 2005). Zhang et al. (2006b) observed 

shortened pupal stage and reduced body length of adult male. Survival, pupal mortality, and 

adult longevity of C. chlorideae were unaffected in Bt-resistant H. armigera larvae fed on Bt-

toxin, suggesting that there is very limited effect on the life history parameters in two 

generations C. chlorideae parasitizing Bt–Bt H. armigera larvae. In both the generations, C. 

chlorideae was affected when Bt-resistant H. armigera larvae were fed on Bt toxin for 

different durations. 

Maximum cocoon formation and adult emergence were recorded on H. armigera 

(82.4% and 70.5%, respectively) than on other insect hosts. When the H. armigera larvae 

were fed on artificial diet impregnated with CryIAb and CryIAc at LC50 and ED50  levels 

before and after parasitisation. There was a significant reduction in cocoon formation and 

adult emergence. Larval period of the parasitoid was prolonged by 2 days when Bt–

intoxicated larvae and no adverse effects were observed on female fecundity (Sharma et al., 

2008). Mohan and Sushil (2008) reported that no larvae survived in diets with a lethal dose of 

Btk HD-1 (LC70 and LC90). The growth and survival of the parasitoid were normal when the 

host larvae were fed with sublethal doses or subjected to short time exposure to lethal doses 

of Btk HD-1. However, the parasitoid offsprings developed slowly, and pupal as well as adult 

periods, adult weights and adult emergence rate were reduced significantly if the parasitoid 

was developing inside a severely Bt intoxicated host larvae. There was a significant influence 

of host size on development and survival of the parasitoid. Bt toxins were detected in H. 

armigera larvae fed on Bt–sprayed chickpea, but not in C. chlorideae reared on H. armigera 

larvae fed on Bt-sprayed chickpeas, and in the parasitoid adults fed on honey intoxicated with 

0.05% Bt (Dhillon and Sharma, 2010). 

4.3.2. Direct effect of CryIIa transgenic chickpea on coccinellid, Cheilomenus  

          sexmaculatus  

During 2012-13, survival of coccinellid, C. sexmaculatus grubs was significantly 

reduced when fed on 0.02% of transgenic chickpea leaf powder in 2M sucrose solution. The 

larval survival was significanlty lower when fed on diets with leaf powder of transgenic 

chickpea lines (56.6 to 70.0%) as compared to that on non-transgenic chickpeas, ICC 506EB 



and Semsen (83.3 and 80.0%, respectively). There were no significant differences in larval 

(6.0 - 7.3 days), pupal period (3.0 - 5.3 days), and mean grub weight (10.7 - 20.7 mg grub
-1

) 

when fed on transgenic and non-transgenic chickpea intoxicated diets.  

Pupation and adult emergence were significantly reduced in coccinellids fed on diets 

intoxicated with transgenic BS5A.2(T2) 19-3P1 leaf powder (30.0 and 23.3%, respectively), 

as compared to that on non-transgenics chickpeas ICC 506EB (63.3 and 50.0%, respectively) 

and Semsen (56.6 and 40.0%, respectively). Among the transgenic lines, pupation and adult 

emergence were significantly greater on BS5A.1(T2) 18-1P1 (40.0 and 33.3%, respectively) 

and BS5A.2(T2) 19-1P2 (46.6 and 36.6%, respectively) than on the other transgenic lines 

tested. The weight of males was significantly reduced in coccinellids fed on diets intoxicated 

with transgenic BS5A.2(T2) 19-2P1 leaf powder (4.0 mg adult
-1

) as compared to that on ICC 

506EB (8.6 mg adult
-1

). There were no significant differences in weights of C. sexmaculatus 

females fed on transgenic and non-transgenic leaf powder intoxicated diets (5.7-9.6 mg adult
-

1
). The survival and development of coccinellid grubs was significantly higher when fed on 

0.02% diet intoxicated with BS5A.2(T2) 19-3P1 leaf powder as compared to that on other 

transgenic lines (Table 4.35 and Fig 33).    

At 0.05% concentration, larval survival was significantly reduced in coccinellids fed 

on diets intoxicated with transgenic BS5A.1(T2) 18-2P1 and BS5A.2(T2) 19-3P2 (46.6%) 

leaf powder as compared to that on Semsen and ICC 506EB (80.0%). Among the transgenic 

lines, highest larval survival was recorded on BS5A.1(T2) 18-1P1  (60.0%). The larval period 

was prolonged on transgenic lines (8.3 to 9.3 days) as compared to that on non-transgenic 

chickpeas (6.6 and 7.3 days, respectively) (Table 4.35). 

The mean grub weight was drastically reduced when fed on diets with 0.05% 

transgenic BS5A.1(T2) 18-2P1 leaf powder (1.7 mg grub
-1

) as compared to that on non-

transgenic diets, ICC 506EB and Semsen (9.5 and 9.9 mg grub
-1

, respectively). The pupal 

period was prolonged in coccinellids fed on diets intoxicated with transgenic leaf powder (3.6 

-5.0 days) as compared to that on non-transgenics (3.0 days). Pupation was significantly 

reduced when coccinellid grubs fed on diets with BS5A.2(T2) 19-2P1, BS5A.2(T2) 19-1P2 

and BS5A.2(T2) 19-3P2 (30.0%) leaf powder as compared to that on ICC 506EB and Semsen 

(63.3%). Adult emergence was significantly reduced in coccinellids fed on diets intoxicated 

with transgenic leaf powder BS5A.2(T2) 19-1P2 and BS5A.2(T2) 19-3P2 (10.0%) as 

compared to that on Semsen and ICC 506EB (40.0%). Among the transgenic lines tested, the 



pupation and adult emergence were highest on BS5A.1(T2) 18-1P1 (46.6 and 36.6%, 

respectively) (Table 4.35). 

The adult weight of males were slightly reduced on transgenics (5.5 to 6.3 mg adult
-1

) 

as compared to that on non-transgenic chickpeas ICC 506EB and Semsen (7.9 and 8.0 mg 

adult
-1

, respectively). There were no significant differences in adult female weight (7.7 to 9.7 

mg adult
-1

) (Table 4.35 and Fig 33). 

In diets having 0.02% and 0.05% leaf powder, the survival and development of 

coccinellids was greater when developed on BS5A.1(T2) 18-1P1 intoxicated diet as 

compared to that on the other transgenic lines tested.  

The larval survival was significantly reduced when fed on diets with of 0.1% 

transgenic chickpea leaf powder (26.6 to 53.3%) as compared to that on non-transgenic 

chickpeas, Semsen and ICC 506EB (80.0 and 83.3%, respectively). Larval period was 

significantly prolonged in coccinellids reared on diets intoxicated with transgenic leaf powder 

BS5A.2(T2) 19-2P1 (10.6 days) as compared to that on non-transgenic chickpeas, Semsen 

and ICC 506EB (7.0 and 6.6 days). The mean grub weight was significantly reduced on 

BS5A.1(T2) 18-1P1 (1.9 mg grub
-1

) as compared to that on Semsen and ICC 506EB (9.7 and 

11.6 mg grub
-1

, respectively) (Table 4.35).  

There were no significant differences in pupal period of C. sexmaculatus reared on 

diets intoxicated with transgenic and non transgenic leaf powder (2.6 to 4.6 days). Pupation 

was significantly reduced in C. sexmaculatus reared on diets intoxicated with transgenic 

chickpea BS5A.2(T2) 19-1P2 leaf powder (13.3%) as compared to that on Semsen and ICC 

506EB (53.3 and 66.6%, respectively). Among the transgenic lines tested, pupation was 

highest on BS5A.1(T2) 18-2P1 (33.3%). Similarly, adult emergence was significantly 

reduced in C. sexmaculatus reared on diets intoxicated with transgenic BS5A.1(T2) 18-1P1 

leaf powder (3.3%) as compared to that on Semsen and ICC 506EB (36.6 and 43.3%, 

respectively). Among the transgenic lines tested, highest adult emergence was recorded on 

BS5A.2(T2) 19-3P2 (20.0%). The male adult weight was not affected (1.5–7.5 mg adult
-1

), 

but the female adult weight was significantly reduced on BS5A.1(T2) 18-1P1 (2.1 mg adult
-1

) 

as compared to that on ICC 506EB and Semsen (9.7 and 9.8 mg adult
-1

, respectively) (Table 

4.35 and Fig 33).  

The survival and development of coccinellid was significantly affected when fed on diets 

intoxicated with BS5A.1(T2) 18-1P1 leaf powder but better survival was recorded on 

BS5A.1(T2) 18-2P1 and BS5A.2(T2) 19-3P2. In general, the direct effects on coccinellids 



were greater when fed on 0.1% Bt intoxicated diet, followed by diets with 0.05% and 0.02% 

Bt.  

4.3.3. Direct effects of CryIIa transgenic chickpea on coccinellid, Cheilomenus  

          sexmaculatus  

During 2013-14, there were significant effects of Cry IIa transgenic chickpeas on 

survival and development of coccinellids fed on diets with different concentrations (0.02, 

0.05, and 0.1%) of transgenic and non-transgenic chickpea leaf powder. When the coccinellid 

grubs were fed on 0.02% of leaf powder intoxicated diets, the larval survival was 

significantly lower on BS5A.1(T2) 18-2P1 and BS5A.2(T2) 19-2P1 (43.3%)  as compared to 

that on Semsen and ICC 506EB (80.0 and 73.3%, respectively) (Table 4.36). 

There were significant differences in larval period of coccinellids and longest larval 

period was recorded in insects reared on diets with BS5A.1(T2) 18-2P1 and BS5A.2(T2) 19-

2P (17.6 days) leaf powder while the shortest period was on BS5A.2(T2) 19-3P2  and ICC 

506EB (6.0 days). The mean grub weight was significantly reduced in C. sexmaculatus reared 

on diets intoxicated with transgenic BS5A.2 (T2) 19-2P1 (8.6 mg grub
-1

), BS5A.1(T2) 18-

1P1 (9.0 mg grub
-1

), BS5A.1(T2) 18-2P1 (10.3 mg grub
-1

), BS5A.2(T2) 19-1P2 (10.7 mg 

grub
-1

), BS5A.2(T2) 19-3P1  (12.1 mg grub
-1

) and BS5A.2(T2) 19-3P2 (12.1 mg grub
-1

) leaf 

powder as compared to that on non-transgenic plants, Semsen and ICC 506EB (26.5 and 25.0 

mg grub
-1

, respectively). The pupal period was prolonged in insects reared on BS5A.1(T2) 

18-1P1 (5 days) as compared to that on Semsen and ICC 506EB (3.3 days) (Table 4.36).  

There was a significant reduction in pupation and adult emergence in coccinellids fed 

on diets with BS5A.2(T2) 19-2P1 (30.0 and 16.6%, respectively) and BS5A.1(T2) 18-2P1 

(30.0 and 20.0%, respectively) leaf powder as compared to that on ICC 506EB (66.6 and 

60.0%, respectively) and Semsen (66.6 and 56.6%, respectively). The male adult weight was 

significantly reduced on BS5A.1(T2) 18-1P1 (4.5 mg adult
-1

) as compared to that on Semsen 

and ICC 506EB (9.1 and 8.5 mg adult
-1

, respectively). Similarly, a slight reduction in female 

weight was observed on BS5A.2(T2) 19-2P1 (7.9 mg adult
-1

), and highest weights were 

recorded on ICC 506EB (10.0 mg adult
-1

). Among the transgenic lines, the survival and 

development was least affected when the grubs were fed on diets intoxicated with 

BS5A.2(T2) 19-1P2 leaf powder as compared to that on BS5A.1(T2) 18-2P1 and 

BS5A.2(T2) 19-2P1 (Table 4.36 and Fig 34). 

In diets with 0.05% leaf powder, the survival of coccinellid grubs was significantly lower 

on BS5A.2(T2) 19-1P2 (33.3%), BS5A.2(T2) 19-2P1 and BS5A.2(T2) 19-3P1 (36.6%), 

BS5A.2(T2) 19-3P2 (46.6%), BS5A.1(T2) 18-2P1 (53.3%) and BS5A.1(T2) 18-1P1 (63.3%) 



as compared to that on Semsen and ICC 506EB (83.3 and 80.0%, respectively). The larval 

period was prolonged on BS5A.2(T2) 19-1P2 (9.3 days) as compared to that on ICC 506EB 

and Semsen (5.0  and 6.0 days, respectively). The mean grub weight of the grubs was 

significantly reduced when fed on diets intoxicated with transgenic chickpea leaf powder (3.9 

to 9.1 mg grub
-1

) as compared to that on non-transgenic chickpeas (21.8 and 22.9 mg grub
-1

, 

respectively). There were no significant differences in pupal period. Pupation and adult 

emergence were significantly reduced in coccinellids fed on diets intoxicated with 

BS5A.2(T2) 19-2P1 leaf powder (6.6 and 3.3%, respectively) as compared to those fed on 

diets with Semsen (70.0 and 60.0%, respectively) and ICC 506EB (70.0 and 56.6%, 

respectively) leaf powder. Male adult weight was significantly reduced when the coccinellid 

grubs were fed on BS5A.2(T2) 19-2P1 leaf powder intoxicated diets (1.8 mg adult
-1

) as 

compared to that on Semsen and ICC 506EB (9.0 and 8.9 mg adult
-1

). There were no 

significant effects on the weight of adult females (7.2 to 9.9 mg adult
-1

) (Table 4.36 and Fig 

34). 

Among the transgenic lines tested, coccinellids were least affected when fed on 

BS5A.1(T2) 18-1P1 and BS5A.1(T2) 18-2P1 intoxicated leaf powder diets as compared 

compared to those fed on BS5A.2(T2) 19-2P1. 

In the diet 0.1% leaf powder concentration, larval survival was lowest in C. sexmaculatus 

fed on diets with BS5A.1(T2) 18-2P1 (26.6%) leaf powder. On other diets the larval survival 

ranged from 33.3 to 43.3% as compared to 80.0% on ICC 506EB and 76.6% on Semsen. The 

larval period was prolonged when coccinellid grubs were fed on diets intoxicated with 

transgenic chickpeas (6.6 to 8.6 days) as compared to that on ICC 506EB and Semsen (5.3 

and 5.6 days, respectively) (Table 4.36).  

The mean grub weight was drastically reduced when the coccinellids were fed on 

BS5A.1(T2) 18-1P1 (1.7 mg grub
-1

), BS5A.2(T2) 18-2P1 (2.2 mg grub
-1

), BS5A.2(T2) 19-

3P1 (2.5 mg grub
-1

), BS5A.2(T2) 19-1P2 (3.2 mg grub
-1

), BS5A.2(T2) 19-2P1 (3.3mg grub
-1

) 

and BS5A.2(T2) 19-3P2 (4.1 mg grub
-1

) as compared to Semsen and ICC 506EB (19.7 and 

24.0 mg grub
-1

, respectively). There were no significant differences in pupal periods of 

coccinellids (2.6 to 4.6 days). Pupation and adult emergence were significantly reduced when 

the grubs were fed on the diets with BS5A.1(T2) 18-2P1 leaf powder (6.6 and 0.0%, 

respectively) as compared to that on ICC 506EB (66.6 and 53.3%, respectively) and Semsen 

(60.0 and 53.3%, respectively) (Table 4.36).  

Since there was no adult emergence was observed on BS5A.1(T2) 18-2P1, the adult 

weight was recorded as zero (0.0 mg adult
-1

). The male adult weight was significantly 



reduced on BS5A.1(T2) 18-1P1 (1.8 mg adult
-1

) and BS5A.2(T2) 19-3P1 (2.1 mg adult
-1

) as 

compared to that on ICC 506EB and Semsen (7.6 and 6.8 mg adult
-1

, respectively). The 

female adult weights ranged from 0.0 to 5.5 mg adult
-1

 when coccinellids were fed on diets 

intoxicated with transgenic leaf powder as compared to that on non-transgenic chickpeas (8.5 

and 8.2 mg, respectively). The survival and development of the coccinellids were 

significantly reduced when fed on diet with 0.1% transgenic chickpea BS5A.1(T2) 18-2P1 

leaf powder as compared to that on BS5A.2(T2) 19-2P1 (Table 4.36 and Fig 34). 

Based on the pooled data analysis, there were significant differences in survival and 

development of coccinellid grubs when fed on diets intoxicated with 0.02% transgenic 

chickpea leaf powder as compared to those fed on diets with leaf powder of non-transgenic 

chickpeas. The larval survival was reduced on diets with BS5A.2(T2) 19-2P1 leaf powder 

(50.0%) as compared to that on Semsen and ICC5O6 EB (80.0 and 78.3%, respectively). 

There was a slight prolongation in the larval period when fed on diets intoxicated with 

transgenic chickpea leaf powder (6.0 to 7.5 days) as compared to Semsen and ICC 506EB 

(6.6 and 6.1 days, respectively). Mean grub weight was significantly reduced when fed on 

diets with BS5A.2(T2) 19-1P2 leaf powder (10.7 mg grub
-1

) as compared to that on Semsen 

and  ICC 506EB (22.9 and 18.4 mg grub
-1

). The pupal period was significantly prolonged on 

BS5A.2(T2) 19-2P1 (9.0 days) as compared to  that on Semsen and ICC 506EB (3.1 days) 

(Table 4.37).  

Pupation and adult emergence were significantly reduced on BS5A.2(T2) 19-2P1 

(33.3 and 21.6%, respectively) and BS5A.1(T2) 18-2P1 (35.0 and 21.6%, respectively) as 

compared to that on ICC 506EB (65.0 and 55.0%, respectively) and Semsen (61.6 and 48.3%, 

respectively). Among the transgenic lines, pupation and adult emergence were highest when 

fed on diets with BS5A.2(T2) 19-1P2 leaf powder (45.0 and 40.0%, respectively). The weight 

of the males was slightly reduced when reared on diets with transgenic chickpea leaf powder 

(5.1-7.9 mg adult
-1

) as compared to that on Semsen and ICC 506EB (8.7 and 8.5 mg adult
-1

, 

respectively). There were no significant differences in female adult weights ranged from 8.0 

to 9.3 mg adult
-1

. The survival and development were significantly reduced when reared on 

diets with 0.02% of BS5A.1(T2) 18-2P1 and BS5A.2(T2) 19-2P1 leaf  powder as compared 

to that on BS5A.2(T2) 19-1P2 (Table 4.37 and Fig 35).  

At 0.05% concentration, the survival of grubs was significantly lower on diets with 

BS5A.2(T2) 19-1P2 (43.3%) leaf powder as compared to that on non-transgenic chickpeas 

(80.0 to 81.6%). The larval period was prolonged in grubs fed on diets with BS5A.2(T2) 19-

1P2 leaf powder (9.3 days) as compared to that on Semsen and ICC 506EB (6.6 and 5.8 days, 



respectively). The mean grub weight was significantly reduced in grubs fed on diets with 

transgenic leaf powder (2.9 to 5.9 mg grub
-1

) as compared to that on non-transgenic Semsen 

and ICC 506EB (15.8 and 16.2 mg, respectively). The pupal period was prolonged (4.0-4.6 

days) when coccinellids were fed on diets with transgenic leaf powder as compared to that on 

non-transgenic Semsen and ICC 506EB (3.0 and 3.1 days, respectively) (Table 4.37).  

Pupation was significantly lower when the grubs were fed on diets with BS5A.2(T2) 

19-2P1 leaf powder (18.3%) as compared to that on Semsen and ICC5O6 EB (66.6%). Adult 

emergence was also significantly reduced in C. sexmaculatus grubs fed on diets with 

BS5A.2(T2) 19-2P1 leaf powder (11.6%) as compared to that on Semsen and ICC 506EB 

(50.0 and 48.3%, respectively). The male and female weights were reduced in coccinellids 

fed on diets with BS5A.2(T2) 19-2P1 leaf powder (3.9 and 5.7 mg adult
-1

, respectively) as 

compared to that on Semsen (8.5 and 9.8 mg adult
-1

, respectively) and ICC 506EB (8.4 and 

8.5 mg adult
-1

, respectively). At 0.05% concetration, the survival and development of 

coccinellids were adversely affected when fed on diets with BS5A.2(T2) 19-2P1 leaf powder 

(Table 4.37 and Fig 35). 

There were significant differences in the survival and development of coccinellid 

grubs fed on diets with 0.1% transgenic and non-transgenic chickpea leaf powder. The Larval 

survival was  significantly reduced when fed on diets intoxicated with BS5A.2(T2) 19-3P2 

(45.0%), BS5A.2(T2) 19-3P1 (50.0%), BS5A.1(T2) 18-1P1 (53.3%), BS5A.2(T2) 19-1P2 

(53.3%), BS5A.1(T2) 18-2P1 (60.0%), BS5A.2(T2) 19-2P1 (70.0%) as compared to that on 

Semsen and ICC506 EB (71.6 and 75.0%, respectively). There was no significant effect on 

larval period. The weight of the grubs was significantly reduced in coccinellids fed on diets 

intoxicated with transgenic leaf powder (4.7 to 8.8 mg grub
-1

, respectively) as compared to 

that on Semsen and ICC 506EB (23.5 and 21.5 mg grub
-1

). There were no significant 

differences in pupal period (3.3 to 4.0 days). Pupation and adult emergence were significantly 

reduced on BS5A.2(T2) 19-3P2 (33.3 and 11.6%, rfespectively) as compared to that on 

Semsen (60.0 and 45.0%, respectively) and ICC 506EB (61.6 and 48.3%, respectively). The 

male adult weight was significantly reduced on BS5A.1(T2) 18-1P1 (6.2 mg adult
-1

) as 

compared to that on Semsen and ICC 506EB (13.2 and 10.8 mg adult
-1

) but there were no 

significant effects on female adult weights (9.0-10.6 mg adult
-1

) (Table 4.37 and Fig 35).  

The survival and development of coccinellids was reduced when fed on diets with 

0.1% of BS5A.2 (T2) 19-3P1 and BS5A.2 (T2) 19-3P2 leaf powder, but not on diets with 

BS5A.1(T2) 18-2P1 leaf powder. Based on the pooled data analysis, the direct effects of 



transgenic chickpeas on survival and development of lady bird beetles were 0.02% < 0.05% < 

0.1%. 

Based on the earlier studies, the CryIAb has been detected in the phloem sap of Bt- 

oilseed rape and the aphids, Myzus persicae feeding on the Bt-oil seed rape plants (Burgio 

et.al. 2007). Bt toxins have also been detected in the coccinellid, Propylaea japonica larvae 

and the prey, A. gossypii when reared on Bt cottons (Zhang et.al.2006c). There was a 

significant and positive correlation between Bt detection in aphids, and survival of 

coccinellids larvae and adults. The amounts of Bt toxins detected in coccinellid grubs were 

higher as compared to the aphids, suggesting that coccinellid larvae accumulated Bt toxins in 

their gut (Haider et al., 1986). 

4.3.4 Indirect effect of CryIIa transgenic chickpea lines on survival and  

         development of C. sexmaculatus reared on A. craccivora fed on  diets with  

         chickpea leaf powder 

         During 2012-13, there were no significant differences in survival and development of 

the coccinellids fed on aphids that were reared diets intoxicated with 0.02% leaf powder of 

plants. The larval survival ranged from 70.0 to 76.6%. The larval period was prolonged in 

coccinellids fed on aphids reared on diets intoxicated with transgenic leaf powder (8.0 to 9.0 

days) as compared to that on Semsen and ICC506 EB (6.6 and 7.0 days, respectively). The 

mean grub weight was significantly reduced in coccinellid reared on aphids fed on diets 

intoxicated with transgenic chickpea leaf powder (2.7 to 8.9 mg grub
-1

) as compared to that 

on ICC506 EB and Semsen (11.2 and 6.9 mg, respectively). The pupal period was 

significantly prolonged when C. sexmaculatus grubs were reared on aphids fed on diets 

intoxicated with BS5A.2(T2) 19-1P2 leaf powder (4.3 days) as compared to that on Semsen 

and ICC506 EB (3.0 days). There were no significant differences in the pupation (36.6-

73.3%) and adult emergence (30.0-63.3%) of coccinellids grubs when reared on aphids fed 

on diets intoxicated with transgenic and non-transgenic chickpea leaf powder (Table 4.38). 

There was a slight reduction in adult weights of the males of coccinellids when fed on 

diets with transgenic and non-transgenic chickpea leaf powder. Highest male adult weight 

was recorded on diets with ICC506 EB leaf powder (9.3 mg adult
-1

) as compared to that on 

BS5A.2(T2) 19-3P2 (5.3 mg adult
-1

). However, the female adult weights were unaffected 

(7.0-9.4 mg adult
-1

) (Table 4.38 and Fig 36). 

In diets with 0.05% leaf powder, there were no significant differences in the larval 

survival (43.3-60.0%), larval period (5.0-6.3 days), pupal period (3.0-4.0 days), pupation 

(36.6-50.0%), adult emergence (16.6-30.0%) and adult weights [male (5.2-7.5 mg adult
-1

) and 



female (9.6-13.7 mg adult
-1

)] in coccinellids fed on diets with transgenic and non transgenic 

leaf powder. However, mean grub weight was significantly reduced on diets with BS5A.1T2) 

18-1P1 and BS5A.2(T2) 19-2P1 (3.8 mg grub
-1

) leaf powder as compared to that on Semsen 

(5.2 mg grub
-1

) and ICC 506EB (7.9 mg grub
-1

) (Table 4.38 and Fig 36). 

In diets with 0.1% leaf powder there were no significant differences in survival and 

development of coccinellid grubs when fed on aphids reared on diets with transgenic and 

non-transgenic chickpea leaf powder. There were no significant differences in larval survival 

(46.6-70.0%), larval period (4.6-5.6 days), pupal period (3.3-3.6 days), pupation (43.3-

56.6%) and adult emergence (23.3-46.6%). The mean grub weight was significantly reduced 

in diets with BS5A.2(T2) 19-3P2 (5.0 mg grub
-1

)  leaf powder as compared to that on Semsen 

and  ICC 506EB (18.7 and 17.8 mg grub
-1

, respectively). The male adult weight was 

significantly reduced on diets with BS5A.1T2) 18-1P1 (6.0 mg adult
-1

) leaf powder as 

compared to that on Semsen and ICC 506EB (17.3 and 12.6 mg adult
-1

, respectively). The 

female adult weights were greater on diets with BS5A.2(T2) 19-1P2 (11.7 mg adult
-1

) leaf 

powder as compared to that on Semsen and  ICC 506EB (8.5 and 9.0 mg adult
-1

, respectively) 

(Table 4.38 and Fig 36). 

In general, there were no significant effects on survival and development of 

coccinellid grubs when fed on aphids reared on diets with 0.02% and 0.1% leaf powder of 

transgenic chickpeas. The survival and development was slightly affected on diets with 

BS5A.2(T2) 19-3P2 leaf powder. The coccinellids fed on diets with 0.05% BS5A.2(T2) 19-

3P1 leaf powder showed a marginal reduction in survival and development as compared to 

that on other transgenic lines.  

4.3.5 Indirect effect of CryIIa transgenic chickpea lines on survival and  

         development of C. sexmaculatus reared on A. craccivora fed on diets with  

         chickpea leaf powder  

         During 2013-14, in diets with 0.02% leaf powder, there was a slight reduction in larval 

survival in coccinellid grubs reared on aphids fed on diets with transgenic and non transgenic 

leaf powder. Larval survival was significantly reduced on  diets with BS5A.2(T2) 19-1P2 

(60.0%) leaf powder as compared to that on Semsen and ICC 506EB (83.3%). Larval period 

was prolonged in coccinellids reared on aphids fed on diets intoxicated with BS5A.2(T2) 19-

3P2 (7.3 days) leaf powder as compared to that on Semsen and ICC 506EB (5.3 days). The 

mean grub weight was also significantly reduced on diets with BS5A.2(T2) 19-3P2 (2.2 mg 

grub
-1

) leaf powder as compared to that on Semsen and ICC 506EB (12.1 and 12.3 mg grub
-1

, 

respectively).There was no effect on pupal period.  Pupation was significantly reduced in 



coccinellid grubs reared on aphids fed on diets with transgenic BS5A.2(T2) 19-1P2 and 

BS5A.2(T2) 19-2P1 leaf powder (43.3%) as compared to that on Semsen and ICC 506EB 

(63.3 and 76.6%, respectively). Adult emergence ranged from 36.6% to 56.6%. Male adult 

weight was significantly reduced on diets with BS5A.1(T2) 18-2P1 leaf powder (6.5 mg 

adult
-1

) as compared to that on Semsen and ICC 506EB (9.9 and 10.5 mg adult
-1

, 

respectively). Female weight was also significantly reduced on diets with BS5A.1(T2) 18-

1P1 leaf powder (8.0 mg adult
-1

) as compared to that on Semsen and ICC 506EB (10.3 and 

12.2 mg adult
-1

, respectively) (Table 4.39 and Fig 37). 

In diets with 0.05% leaf powder, there were no significant differences in larval 

survival (46.6-56.6%). The larval period increased marginally in coccinellid grubs reared on 

aphids fed on diets with BS5A.1(T2) 18-1P1, BS5A.1(T2) 18-2P1 and BS5A.2(T2) 19-3P2 

leaf powder (7.0 days) as compared to that on non-transgenic chickpea Semsen and ICC 

506EB (6.0 days). There were significant differences in mean grub weight of coccinellid 

grubs reared on aphids fed on diets with BS5A.1(T2) 18-1P1 leaf powder (5.3 mg grub
-1

) as 

compared to that on ICC 506EB (12.5 mg). There were no significant differences in pupal 

period (3.6 to 4.6 days), pupation (30.0-53.3%) and adult emergence (23.3-40.0%). The 

maximum male weight was recorded in grubs reared on diets with BS5A.2(T2) 19-2P1 leaf 

powder (9.0 mg adult
-1

), and the lowest on BS5A.1(T2) 18-1P1 (6.5 mg adult
-1

). The female 

adult weight was significantly reduced on diets with BS5A.2(T2) 19-2P1 leaf powder (7.0 mg 

adult
-1

) as compared to that on Semsen and ICC5O6 EB (12.0 and 11.7 mg adult
-1

, 

respectively). The survival and development of coccinellids were slightly affected when fed 

on diets with BS5A.2(T2) 19-3P2 leaf powder as compared to that on other transgenic lines 

(Table 4.39 and Fig 37). 

In diet with 0.1% leaf powder, there were significant differences in survival and 

development of coccinellids reared on aphids fed on diets with transgenic and non-transgenic 

chickpea leaf powder. The larval survival was significantly reduced in coccinellids reared on 

aphids fed on diets with leaf powder of BS5A.2(T2) 19-3P1 (40.0%), BS5A.2(T2) 19-3P2 

(43.3%), BS5A.1(T2) 18-1P1(46.6%), BS5A.2(T2) 19-1P2 (46.6%), BS5A.1(T2) 18-2P1 

(53.3%) and BS5A.2(T2) 19-2P1 (70.0%) as compared to that on Semsen and ICC 506EB 

(76.6 and 80.0%, respectively). There were no significant differences in larval period (5.3 to 

6.6 days). The mean grub weight was significantly reduced in coccinellid grubs reared on 

aphids fed on diets with BS5A.2(T2) 19-3P1 leaf powder (3.7 mg grub
-1

) as compared to that 

on Semsen and ICC 506EB (18.4 and 15.3 mg grub
-1

, respectively). There was a slight 

reduction in pupal period of coccinellids reared on aphids fed on diets with BS5A.1(T2) 18-



2P1 leaf powder (3.0 days) as compared to that on Semsen and ICC 506EB (3.3 days). 

Significant reduction in pupation and adult emergence were recorded on diets with 

BS5A.2(T2) 19-3P1(20.0 and 10.0%, respectively) leaf powder as compared to that on ICC 

506EB (66.0 and 56.6%, respectively) and Semsen (63.3 and 53.3%, respectively) No 

significant differences in the male (6.5-9.1 mg adult
-1

) and female adult weights (9.3-11.5 mg 

adult
-1

) was recorded between the transgenic and non-transgenic chickpeas (Table 4.39 and 

Fig 37). 

In diets with 0.1%, the survival and development was affected adversely when the 

coccinellid grubs were fed diets with BS5A.2(T2) 19-3P1 leaf powder.  

Based on the pooled data analysis, at 0.02%, there were no significant differences in 

survival and development of coccinellid grubs. Larval survival ranged from 70.0 to 83.3%. 

Significant prolongation of larval period was observed on diets with BS5A.2(T2) 19-3P2 leaf 

powder (8.1 days) as compared to that on Semsen and ICC506 (6.0 and 6.1 days, 

respectively). The weight gain by the grubs was significantly reduced when coccinellid grubs 

were reared on aphids that fed on diets with BS5A.2(T2) 19-2P1 leaf powder (4.5 mg grub
-1

) 

as compared to that on Semsen and ICC 506EB (14.5 and 16.7 mg grub
-1

, respectively). 

Pupal period was prolonged on diets with BS5A.2(T2) 19-1P2 (4.5 days) leaf powder as 

compared to Semsen and ICC 506EB (3.1 and 3.0 days, respectively). Pupation was also 

reduced significantly in coccinellids reared on aphids fed on diets with BS5A.2(T2) 19-3P2 

leaf powder (43.3%) as compared to that on Semsen and ICC 506EB (65.0 and 75.0%, 

respectively). There were no significant differences in adult emergence (46.6 to 60.0%). The 

male adult weight was reduced significantly when reared on diets with BS5A.2(T2) 19-3P2 

leaf powder (6.5 mg adult
-1

) compared to that on Semsen and ICC 506EB (8.2 and 9.9 mg 

adult
-1

, respectively). There was a slight reduction in female weights on diets BS5A.2(T2) 19-

2P1 and BS5A.2(T2) 19-3P2 leaf powder (7.9 mg adult
-1

) as compared to that on Semsen and 

ICC 506EB (9.5 and 10.8 mg adult
-1

, respectively) (Table 4.40 and Fig 38). 

In diets with 0.05% leaf powder, there were no significant effects on larval survival 

(48.3-61.6%). The larval period was prolonged in coccinellids grubs reared on aphids fed on 

diets with transgenic BS5A.1(T2) 18-2P1 leaf powder (6.8 days) as compared to that on 

Semsen and ICC 506EB (5.8 and 5.5 days, respectively). Similarly, the mean grub weight 

was significantly reduced on diets with BS5A.1(T2) 18-1P1 leaf powder (4.6 mg grub
-1

) as 

compared to that on Semsen and ICC 506EB (7.1 and 12.7 mg grub
-1

, respectively). There 

were no significant differences in pupal period (3.3-4.1 days). Pupation was significantly 

higher on diets with BS5A.2(T2) 19-3P1 leaf powder (51.6%) as compared to that on Semsen 



and ICC 506EB (46.6 and 48.3%, respectively). Similarly, significant differences were 

recorded in adult emergence (20.0-33.3%). Effects of Bt transgenic chickpeas on male adult 

weights were non-significant (6.7-7.8 mg adult
-1

), but there was a slight increase in female 

adult weight on diets with BS5A.1(T2) 18-2P1 leaf powder (11.5 mg adult
-1

) but a slight 

reduction was observed on BS5A.1(T2) 18-1P1 (8.9 mg adult
-1

) (Table 4.40 and Fig 38). 

In diets with 0.1% leaf powder, significantly lower larval survival was recorded on 

BS5A.2(T2) 19-3P2 (45.0%) as compared to that on Semsen (71.6%) and ICC5O6 EB 

(75.0%). There was no significant difference in larval (5.3-6.1 days) and pupal period (3.1-

4.0 days). But there was a significant reduction in mean grub weight was observed in 

coccinellid grubs reared on aphids fed on diets with BS5A.2(T2) 19-3P2 leaf powder (4.7 mg 

grub
-1

) as compared to that on Semsen and ICC506 (13.5 and 11.5 mg grub
-1

). Pupation and 

adult emergence were reduced on diets with BS5A.2(T2) 19-3P2 leaf powder (33.3 and 

21.6%, respectively) as compared to that on Semsen (60.0 and 45.0%, respectively) and 

ICC5O6 EB (61.6 and 48.3%, respectively). The male adult weight was significantly reduced 

when coccinellids reared on aphids fed on diets with BS5A.1(T2) 18-1P1 leaf powder (6.2 

mg adult
-1

) as compared to that on Semsen and ICC 506EB (13.2 and 10.8 mg adult
-1

, 

respectively) but there was no significant differences in the female adult weights (9.0 to 10.6 

mg adult
-1

) (Table 4.40 and Fig 38). 

The survival and development of coccinellid grubs were slightly affected when reared 

on aphids fed on diets with different concentrations (0.02%, 0.05% and 0.1%) of transgenic 

chickpea leaf powder. 

Based on the earlier studies, no adverse effects of Bt-transgenic crops have been 

reported on the development, survival, and development of lady bird beetles, C. maculata, 

Hippodamia convergens (Guerin-Meneville), and P. japonica through their aphid preys on 

Bt-transgenic crops (Dogan et al., 1996; Duan et al., 2002; Lundgren and Weidenmann 2002; 

Zhu et al., 2006). Chrysoperla carnea larvae were also not affected on Bt-maize reared 

aphids (Lozzia., 1998; Dutton et al., 2002), or through the Bt-maize reared spider mites, 

Tetranychus urticae (Koch), even though the spider mites had much more amounts of Cry1 

Ab toxin than the lepidopteran larvae (Dutton et al. 2002). However, poor prey quality and 

Cry1 Ac toxin mediated negative effects have been observed on the predatory beetle, P. 

japonica when fed on young S. litura larvae fed on Bt-transgenic cotton (Zhang et al., 

2006a). Such negative effects of Bt toxins on the coccinellid, C. sexmaculatus were also 

observed when fed on young H. armigera larvae reared only on Bt-ammended artificial diet 

(Sharma, H.C, unpublished data), indicating that the adverse effects of  Bt toxins to the 



coccinellids might depend on the processing of the Bt toxins and the quality of the insect 

host. Hilbeck et al., 1998 observed some adverse effects of the Bt-fed lepidopteran, 

Spodoptera littoralis (Boisduval) larvae on the chrysopid, C. carnea. Under natural 

conditions in the field, no significant differences were observed in the abundance of 

coccinellid beetles between Bt-transgenic and non-transgenic cottons (Sharma et al., 2007). 

Dhillon and Sharma (2009a) reported that there were no adverse effects of Bt toxins on C. 

sexmaculatus when the larvae were reared on A. craccivora fed on different concentrations of 

CryIAb or CryIAc in the artificial diet, a significant and positive correlation was observed 

between the presence of Bt toxins in aphids and coccinellid larvae and adults. The results 

suggested that a direct exposure to Bt toxins expressed in transgenic plants or predation on H. 

armigera on Bt transgenic plants have little effect on the activity and abundance of the 

ladybird, C. sexmaculatus.  

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



FIGURES 

 

 
 

 

Figure 1: Evaluation of transgenic chickpea lines for resistance to Helicoverpa armigera    

                  under greenhouse conditions (October planting 2011-2012) 

 

 

 
 

Figure 2: Evaluation of transgenic chickpea lines for resistance to H. armigera under  

                  green house conditions (October planting 2012-2013) 
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Figure 3: Evaluation of transgenic chickpea lines for resistance to H.  armigera under          

                 greenhouse conditions (November planting 2011-2012) 

 

 
 

Figure 4: Evaluation of transgenic chickpea lines for resistance to H. armigera under             

                 greenhouse conditions (November planting 2012-2013) 
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Figure 5: Evaluation of transgenic chickpeas for resistance to H. armigera under  

                  greenhouse conditions using cage technique (2011-2012) 

 

 
 

 

Figure 6: Evaluation of transgenic chickpeas for resistance to H. armigera under  

                  greenhouse conditions using cage technique (2012-2013) 
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Figure 7: Agrnomic performance of transgenic chickpea lines (g/3 plants) with 

resistance to H. armigera under greenhouse conditions using cage technique (2011-2012) 

 

 

 
 

Figure 8: Agrnomic performance of transgenic chickpea lines (g/3 plants) with 

resistance to H. armigera under greenhouse conditions using cage technique (2012-2013) 
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Figure 9: Agronomic performance of transgenic chickpea lines in un infested plants (g/3  

                  plants)  under green house conditions (2011-2012) 

 

 

 
 

Figure 10: Agronomic performance of transgenic chickpea lines in un infested plants 

(g/3 plants) under green house conditions (2012-2013) 
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Figure 11: Survival and development of neonates of H. armigera larvae reared on 

artificial diet with lyophilized leaf powder of transgenic chickpea lines (2011-2012).      
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Figure 12: Survival and development of neonates of H. armigera larvae reared on 

artificial diet with lyophilized leaf powder of transgenic chickpea lines (2012-13)       
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Figure 13: Survival and development of neonates of H. armigera larvae reared on 

artificial diet with lyophilized leaf powder of transgenic chickpea lines (2011- 2013, 

Pooled)      
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Figure 14: Survival and development of third-instar larvae of H. armigera reared on  

                   artificial diet with lyophilized leaf powder of transgenic chickpea lines  

                   (2011-12)  
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Figure 15: Survival and development of third-instar larvae of H. armigera reared on  

                   artificial diet with lyophilized leaf powder of transgenic chickpea lines (2012- 

                   13)       
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Figure 16: Survival and development of third-instar larvae of H. armigera reared on  

                   artificial diet with lyophilized leaf powder of transgenic chickpea lines (2011- 

                   2013 Pooled) 
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Figure 17: Biochemical profile of different transgenic chickpea lines (dry wt basis) 

(2011-12) 

 

 
Figure 18: Biochemical profile of different transgenic chickpea lines (dry wt basis) 

(2012-13) 
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Figure 19: Concentration of organic acids (on fresh weight basis) present on the leaf   

                   surface of transgenic chickpea lines 2011-2012) 

 

 
 

Figure 20: Concentration of organic acids (on fresh weight basis) present on the leaf  

                   surface of transgenic chickpea lines 2012-2013) 
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Figure 21: Amount of Cry IIa protein (ppb) in different green plant parts of transgenic  

                   chickpea lines 

 

 
 

Figure 22: Amount of Cry IIa protein (ppb) in different dry plant parts of transgenic  

                   Chickpea lines 

 

 
 

Figure 23: Amount of Cry IIa protein (ppb) in Bt fed H. armigera larvae, aphids and  

                   natural enemies 
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Figure 24: Biology of Campoletis chlorideae parasitizing H. armigera fed on leaves of  

                   transgenic chickpea lines (October 2011-2012) 

 

 
 

Figure 25: Biology of C. chlorideae parasitizing H. armigera fed on leaves of transgenic  

                   chickpea lines (October 2012-2013) 
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Figure 26: Biology of C. chlorideae parasitizing H. armigera fed on leaves of transgenic  

                 chickpea lines (October 2011-2012 and 2012-2013) (Pooled analysis). 

 

 

 
 

Figure 27: Biology of C. chlorideae parasitizing H. armigera fed on leaves of transgenic  

                 chickpea lines (November 2011-2012)  
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Figure 28: Biology of C. chlorideae parasitizing H. armigera fed on leaves of transgenic 

chickpea lines (November 2012-2013) 

 

 
 
 

Figure 29: Biology of C.chlorideae parasitizing H. armigera fed on leaves of transgenic  

                 chickpea lines (2012 and 2013, November, pooled) 
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Figure 30: Biology of C. chlorideae parasitizing H. armigera fed on diets with lyophilized  

                    leaf powders of different transgenic chickpea lines (2011-2012) 

 

 
 

 

Figure 31: Biology of C. chlorideae parasitizing H. armigera fed on diets with lyophilized    

                   leaf powders of different transgenic chickpea lines (2012-2013) 
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Figure 32: Biology of C. chlorideae parasitizing H. armigera fed on diets with lyophilized  

                   leaf powders of different transgenic  chickpea lines (2011-12 and 2012-2013)   

                   (pooled analysis) 
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Figure 33:  Direct effect of Cry IIa transgenic chickpea lines on Cheilomenes 

sexmaculatus at different concentrations (0.02%, 0.05% and 0.1%) (2012-2013) 
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Figure 34: Direct effect of Cry IIa transgenic chickpea lines on C. sexmaculatus at 

different concentrations (0.02%, 0.05% and 0.1%) (2013-2014) 
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Figure 35: Direct effect of Cry IIa transgenic chickpea lines on Cheilomenes sexmaculat 

at different concentrations (0.02%, 0.05% and 0.1%) (2012-2013 and 2013-14) (pooled) 
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Figure 36: Indirect effect of Cry IIa transgenic chickpea lines on different biological  

                   parameters of the coccinellid, C. sexmaculatus reared on Bt intoxicated  

                   artificial diet fed Aphis craccivora (2012-2013) 
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Figure 37: Indirect effect of Cry IIa transgenic chickpea lines on different biological  

                   parameters  of the coccinellid, C. sexmaculatus reared on Bt intoxicated  

                   artificial diet fed A. craccivora (2013-2014) 
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Figure 38: Indirect effect of Cry IIa transgenic chickpea lines on different biological  

                   parameters of the coccinellid, C. sexmaculatus reared on Bt intoxicated  

                   artificial diet fed A. craccivora (2012-2014) (pooled) 
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Table 4.1: Evaluation of transgenic chickpea lines for resistance to Helicoverpa armigera under greenhouse conditions (ICRISAT, 

Patancheru 2011-2013) 

 

 

 

Genotype 

 

October , 2011-12 

 

October, 2012-13 

 

Pooled analysis 

HDR
1
 

Larval 

survival 

(%) 

Mean larval 

weight (mg) 
HDR

1
 

Larval 

survival (%) 

Mean larval 

weight (mg) 

 

HDR
1
 

Larval 

survival 

(%) 

Mean larval 

weight (mg) 

BS5A.1(T2) 18-1 P1 1.7
ab

 

30.5
a
 

(33.3) 0.6
a
 1.5

a
 

28.8
a
 

(32.1) 0.6
a
 1.6

a
 

29.7
a
 

(32.7) 0.6
a
 

BS5A.1(T2) 18-2 P1 3.2
c
 

35.5
a
 

(36.5) 1.2
a
 1.5

a
 

31.6
a
 

(33.8) 0.5
a
 2.3

a
 

33.61
a
 

(35.2) 0.8
a
 

BS5A.2(T2) 19-1 P2 1.3
a
 

46.1
a
 

(42.7) 0.8
a
 1.6

a
 

30.0
a
 

(32.8) 0.3
a
 1.5

a
 

38.0
a 

(37.7) 0.6
a
 

BS5A.2(T2) 19-2 P1 1.6
ab

 

40.0
a
 

(38.9) 0.8
a
 1.0

a
 

10.5
a
 

(17.0) 0.1
a
 1.3

a
 

25.2
a 

(27.9) 0.4
a
 

BS5A.2(T2) 19-3 P1 2.3
abc

 

41.6
a
 

(40.0) 1.1
a
 1.0

a
 

19.4
a
 

(24.3) 0.4
a
 1.6

a
 

30.5
a
 

(32.1) 0.7
a
 

BS5A.2(T2) 19-3 P2 2.7
bc

 

46.1
a
 

(42.7) 1.4
a
 1.2

a
 

24.4
a
 

(29.4) 0.4
a
 1.9

a
 

35.2
a
 

(36.1) 0.9
a
 

Semsen (Control) 7.8
e
 

83.8
b
 

(66.5) 5.4
c
 4.6

b
 

73.8
b
 

(59.4) 3.0
c
 6.2

c
 

78.8
b
 

(63.0) 4.2
c
 

ICC 506 EB (Resistant 

check) 5.3
d
 

74.1
b
 

(59.6) 3.8
b
 3.9

b
 

77.7
b
 

(61.8) 2.4
b
 4.6

b
 

75.9
b
 

(60.7) 3.1
b
 

Mean 3.2 49.7 1.9 2.0 37.1 1.0 2.6 43.4 1.4 

SE + 0.3 5.4 0.2 0.3 7.0 0.1 0.4 5.4 0.3 

Fp <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Vr 33.8 12.0 35.6 12.4 12.3 48.7 16.9 15.2 22.2 

LSD (P 0.05) 1.1* 16.5* 0.8* 1.1* 21.5* 0.4* 1.2* 15.6* 0.8* 

CV (%) 20.3 19.0 26.5 33.1 33.1 26.8 39.7 30.8 50.1 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

Figures in parenthesis are Angular transformed values, HDR
1
-Leaf damage rating (1= <10 %, and 9= >80 % leaf area damaged) 



Table 4.2: Evaluation of transgenic chickpea lines for resistance to H.  armigera under greenhouse conditions (ICRISAT, Patancheru 

2011-2013). 

 

 

Genotype 

November, 2011-12 November, 2012-13 Pooled analysis 

HDR
1 Larval 

survival 

(%) 

Mean 

larval 

weight 

(mg) 

HDR
1 Larval 

survival 

(%) 

Mean 

larval 

weight 

(mg) 

 
HDR

1 
Larval 

survival 

(%) 

Mean 

larval 

weight 

(mg) 

BS5A.1(T2) 18-1 P1 1.4
a
 

38.8
ab

 

(38.4) 
0.8

a
 1.6

ab
 

13.8
a
 

(20.1) 
1.1

a
 1.3

a
 

26.3
ab

 

(29.3) 
1.0

a
 

BS5A.1(T2) 18-2 P1 1.5
a
 

33.3
ab

 

(34.9) 
0.9

a
 2.3

b
 

24.4
ab

 

(29.3) 
1.3

a
 1.4

a
 

28.8
ab

 

(32.1) 
0.9

a
 

BS5A.2(T2) 19-1 P2 1.0
a
 

21.6
a
 

(27.5) 
0.3

a
 1.2

a
 

10.0
a
 

(16.4) 
1.0

a
 1.0

a
 

15.8
a
 

(21.9) 
0.2

a
 

BS5A.2(T2) 19-2 P1 1.0
a
 

24.4
a
 

(29.4) 
0.3

a
 1.3

ab
 

12.7
a
 

(19.9) 
1.0

a
 1.0

a
 

18.6
a
 

(24.7) 
0.7

a
 

BS5A.2(T2) 19-3 P1 1.2
a
 

48.3
b
 

(44.0) 
0.7

a
 1.8

ab
 

30.0
b
 

(33.0) 
1.2

a
 1.3

a
 

39.1
b
 

(38.5) 
0.7

a
 

BS5A.2(T2) 19-3 P2 1.6
a
 

39.3
ab

 

(38.7) 
1.2

a
 2.1

ab
 

30.0
b
 

(33.1) 
1.2

a
 1.5

a
 

34.6
b
 

(35.9) 
1.0

a
 

Semsen (Control) 7.2
c
 

75.0
c
 

(61.1) 
3.7

b
 7.5

d
 

50.5
c
 

(45.3) 
2.8

b
 5.0

c
 

62.7
c
 

(53.2) 
2.9

b
 

ICC 506 EB (Resistant 

check) 
3.3

b
 

72.7
c
 

(58.6) 
4.4

b
 4.3

d
 

62.2
c
 

(52.1) 
3.0

b
 3.1

b
 

67.5
c
 

(55.4) 
3.5

b
 

Mean 2.3 44.2 1.6 2.8 29.2 1.6 1.9 36.7 1.4 

SE + 0.3 6.4 0.3 0.3 4.5 0.2 0.4 5.1 0.2 

Fp <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Vr 35.0 9.8 22.1 37.6 17.1 12.6 12.5 14.1 15.5 

LSD (P 0.05) 1.08* 19.5* 1.0* 1.0* 13.6* 0.7* 1.1* 14.6* 0.8 

CV (%) 26.8 25.2 36.5 30.7 26.7 25.3 50.3 34.0 51.4 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

Figures in parenthesis are Angular transformed values, HDR
1
-Leaf damage rating (1= <10 %, and 9= >80 % leaf area damaged). 



Table 4.3: Evaluation of transgenic chickpeas for resistance to H. armigera under greenhouse conditions using cage technique 

(ICRISAT, Patancheru 2011-2013). 

 

 

 

Genotype 

2011-2012 

 

2012-2013 

 

Pooled analysis 
HDR

1 Larval 

survival 

(%) 

Mean 

larval 

weight 

(mg) 

HDR
1 Larval 

survival 

(%) 

Mean 

larval 

weight 

(mg) 

HDR
1 Larval 

survival 

(%) 

Mean larval 

weight (mg) 

BS5A.1(T2) 18-1 

P1 2.5
ab

 

52.3
b 

(46.5) 3.9
a
 2.2

a
 

37.6
a
 

(37.5) 2.9
a
 2.4

a
 

44.9
a
 

(41.9) 3.4
a
 

BS5A.1(T2) 18-2 

P1 4.1
b
 

49.7
b 

(44.8) 5.1
ab

 2.5
a
 

41.2
a
 

(39.8) 3.6
a
 3.3

ab
 

45.4
a
 

(42.3) 4.3
a
 

BS5A.2(T2) 19-1 

P2 4.4
b
 

36.4
a
 

(37.1) 5.2
ab

 3.2
ab

 

40.1
a 

(39.2) 4.4
ab

 3.8
ab

 

38.2
a
 

(38.2) 4.8
ab

 

BS5A.2(T2) 19-2 

P1 1.6
a
 

41.3
ab

 

(40.0) 6.4
bc

 3.7
ab

 

37.6
a
 

(37.8) 4.3
ab

 2.7
a
 

39.4
a
 

(38.9) 5.4
ab

 

BS5A.2(T2) 19-3 

P1 2.8
ab

 

35.0
a
 

(36.2) 7.3
cd

 3.7
ab

 

41.1
a
 

(39.9) 4.4
ab

 3.2
ab

 

38.1
a
 

(38.1) 5.8
ab

 

BS5A.2(T2) 19-3 

P2 4.3
b
 

50.8
b 

(45.4) 8.7
d
 4.3

bc
 

48.1
a
 

(43.9) 6.4
b
 4.3

b
 

49.4
a
 

(44.6) 7.5
b
 

Semsen (Control) 7.8
c
 

75.7
c
 

(60.5) 12.7
e
 7.7

d
 

70.2
b
 

(56.9) 13.6
c
 7.8

c
 

72.9
b
 

(58.7) 13.1
c
 

ICC 506 EB 

(Resistant check) 8.0
c
 

72.3
c
 

(58.2) 11.2
e
 5.5

c
 

79.3
b
 

(62.9) 17.0
d
 6.7

c
 

75.8
b
 

(60.6) 14.1
c
 

Mean 4.4 51.7 7.5 4.1 49.4 7.1 4.3 50.6 7.3 

SE + 0.5 3.5 0.5 0.4 5.9 0.7 0.4 3.4 0.8 

Fp <0.001 <0.001 <0.001 <0.001 0.009 <0.001 <0.001 <0.001 <0.001 

Vr 19.2 18.0 30.0 16.7 7.4 51.9 15.2 19.0 21.7 

LSD (P 0.05) 1.7* 11.9* 1.8* 1.4* 19.8* 2.4* 1.4* 10.2* 2.5* 

CV (%) 16.9 9.8 10.5 14.9 17 14.5 23.2 13.8 23.8 

*Figures followed by the same letter within a column are not significantly different at P< 0.05 

 Figures in parenthesis are Angular transformed values. HDR
1
-Leaf damage rating (1= <10 %, and 9= >80 % leaf area damaged). 



Table 4.4: Agrnomic performance of transgenic chickpea lines (g/3 plants) with resistance to Helicoverpa armigera under greenhouse 

condition using cage technique (ICRISAT, Patancheru 2011-2013). 

 

 

Genotype 

Infested (2011-2012) Infested (2012-2013) Pooled analysis 

Wt. of 

the dry 

matter 

Wt. of 

pod 

Wt. of 

seed 

No. of 

seeds 

Wt. of 

the dry 

matter 

Wt. of 

pod 

Wt. of 

seed 

No. of 

seeds 

Wt. of 

the 

dry 

matter 

Wt. of 

pod 

Wt. of 

seed 

No. of 

seeds 

BS5A.1(T2) 18-1 P1 5.8
bc

 1.7
b
 1.2

bc
 16

c
 6.2

b
 2.2

ab
 1.9

ab
 21

bcd
 6.0

b
 1.9

abc
 1.5

ab
 18

c
 

BS5A.1(T2) 18-2 P1 6.0
c
 1.5

b
 1.4

c
 14

c
 6.7

b
 2.0

a
 1.9

ab
 16

b
 6.4

b
 1.7

ab
 1.6

abc
 15

bc
 

BS5A.2(T2) 19-1 P2 6.5
c
 1.6

b
 1.3

bc
 10

b
 5.2

ab
 3.2

bc
 2.9

bc
 23

cd
 5.9

b
 2.4

bcd
 2.1

bcd
 17

c
 

BS5A.2(T2) 19-2 P1 5.0
b
 2.6

c
 2.0

d
 9

b
 6.8

b
 4.1

c
 3.5

c
 26

d
 5.9

b
 3.3

d
 2.7

d
 17

c
 

BS5A.2(T2) 19-3 P1 6.4
c
 2.3

c
 2.1

d
 10

b
 6.7

b
 3.2

bc
 2.9

bc
 19

bc
 6.5

b
 2.7

cd
 2.5

cd
 14

bc
 

BS5A.2(T2) 19-3 P2 5.1
b
 1.8

b
 1.6

c
 8

b
 6.5

b
 1.5

a
 1.2

a
 15

b
 5.8

b
 1.6

ab
 1.4

ab
 11

bc
 

Semsen (Control) 3.3
a
 0.6

a
 0.5

a
 2

a
 3.6

a
 1.3

a
 0.9

a
 3

a
 3.4

a
 1.0

a
 0.7

a
 2

a
 

ICC 506 EB 

(Resistant check) 3.5
a
 1.3

b
 0.9

ab
 7

b
 4.0

a
 1.2

a
 1.0

a
 6

a
 3.7

a
 1.3

a
 1.0

ab
 7

ab
 

Mean 5.2 1.7 1.4 0.0 5. 2.3 2.0 0.0 5.4 2.0 1.7 0.0 

SE + 0.0 0.0 0.1 0.0 0.5 0.3 0.3 0.0 0.3 0.0 0.0 0.0 

Fp <0.001 <0.001 <0.001 <0.001 0.014 0.004 0.006 <0.001 <0.001 <0.001 <0.001 0.006 

Vr 26.7 18.6 15.6 16.0 6.2 9.7 8.2 21.4 9.9 6.4 5.7 3.9 

LSD (P 0.05) 0.7* 0.4* 0.4* 3.5* 1.7* 1.1* 1.1* 0.0* 1.1* 0.8* 0.8* 0.0* 

CV (%) 6.4 11.3 12.9 16.2 12.9 19.9 23.4 15.3 13.7 30.1 33.7 44.7 

 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 



Table 4.5: Agronomic performance of transgenic chickpea lines in un-infested plants (g/3 plants) under green house conditions 

(ICRISAT, Patancheru 2011-2013). 

 

 

 

Genotype 

2011-2012 2012-2013 Pooled analysis 

Wt. of 

the dry 

matter 

Wt. of 

pod 

Wt. of 

seed 

No. of 

seeds 

Wt. of the 

dry matter 

Wt. of 

pod 

Wt. of 

seed 

No. of 

seeds 

Wt. of 

the dry 

matter 

Wt. of 

pod 

Wt. 

of 

seed 

No. of 

seeds 

BS5A.1(T2) 18-1 

P1 4.6
a
 2.6

bc
 2.3

c
 21

c
 5.4

ab
 2.9

b
 2.3

b
 38

b
 5.0

b
 2.7

b
 2.3

b
 29

b
 

BS5A.1(T2) 18-2 

P1 4.2
a
 2.7

bc
 2.3

c
 23

c
 4.2

a
 3.3

b
 2.9

bc
 47

cd
 4.2

a
 3.0

b
 2.6

bc
 35

bc
 

BS5A.2(T2) 19-1 

P2 5.6
b
 3.3

c
 2.3

c
 38

e
 5.4

ab
 3.3

b
 3.7

d
 53

d
 5.5

bc
 3.3

bc
 3.0

bc
 45

bc
 

BS5A.2(T2) 19-2 

P1 6.1
bc

 3.3
c
 2.6

c
 43

f
 6.1

b
 5.2

d
 5.0

f
 64

e
 6.1

c
 4.2

c
 3.9

c
 53

c
 

BS5A.2(T2) 19-3 

P1 6.4
c
 3.0

c
 2.4

c
 28

d
 5.7

ab
 3.1

b
 2.7

b
 39

bc
 6.1

c
 3.0

b
 2.5

bc
 33

bc
 

BS5A.2(T2) 19-3 

P2 6.2
bc

 2.2
b
 2.2

c
 20

bc
 5.7

ab
 4.4

cd
 4.6

e
 53

d
 5.9

c
 3.3

bc
 3.4

bc
 36

bc
 

Semsen (Control) 9.3
d
 0.1

a
 0.9

a
 2

a
 8.5

c
 3.5

a
 2.0

a
 6

a
 8.9

d
 0.2

a
 0.3

a
 4

a
 

ICC 506 EB 

(Resistant check) 5.7
b
 2.4

bc
 1.5

b
 16

b
 5.7

ab
 3.7

bc
 3.6

cd
 44.0

bcd
 5.7

bc
 3.0

b
 2.5

bc
 30

b
 

Mean 6.0 2.5 2.0 23.6 5.8 3.3 3.2 0.0 5.96 2.90 2.62 0.03 

SE + 0.2 0.2 0.2 0.0 0.4 0.2 0.2 0.0 0.26 0.36 0.48 0.01 

Fp <0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 0.001 

Vr 58.5 17.2 17.1 86.2 6.6 33.8 49.7 42.5 28.00 11.00 5.00 5.000 

LSD (P 0.05) 0.6* 0.8* 0.2* 0.0* 1.5* 0.8* 0.6* 0.0* 0.7* 1.0* 1.4* 0.0* 

CV (%) 4.7 13.9 14.2 8.1 11.4 10.4 9.0 8.8 8.6 24.5 36.6 37.9 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 



Table 4.6: Survival and development of neonates of H. armigera larvae reared on artificial diet with lyophilized leaf powder of                                                                       

                  transgenic chickpea lines (ICRISAT, Patancheru 2011-2012).      


Genotype Larval survival       

(%) 

Mean larval       

weight (mg)       

(5 DAI) 

Mean larval       

weight (mg)          

(10 DAI) 

Pupal weight (mg) Larval period 

(days) 

Pupal period 

(days) 

BS5A.1(T2) 18-1 P1 

23.0
a
 

(28.5) 2.1
a
 32.6

a
 65.6

a
 23.5

c
 10.5

ab
 

BS5A.1(T2) 18-2 P1 

19.0
a
 

(25.6) 1.3
a
 25.9

a
 45.0

a
 19.5

abc
 13.0

b
 

BS5A.2(T2) 19-1 P2 

25.0
a
 

(29.7) 4.5
a
 101.4

a
 63.8

a
 19.5

abc
 12.5

b
 

BS5A.2(T2) 19-2 P1 

12.0
a
 

(20.0) 0.8
a
 3.3

a
 47.8

a
 19.0

abc
 11.5

ab
 

BS5A.2(T2) 19-3 P1 

21.0
a
 

(26.7) 2.7
a
 47.6

a
 45.2

a
 19.0

abc
 9.5

ab
 

BS5A.2(T2) 19-3 P2 

10.0
a
 

(18.3) 0.8
a
 3.9

a
 20.5

a
 22.0

bc
 10.5

ab
 

Semsen (Control) 

74.0
bc

 

(59.4) 31.9
b
 438.0

b
 526.2

b
 16.5

ab
 11.0

ab
 

ICC 506 EB (Resistant 

check) 

61.0
b
 

(51.3) 28.8
b
 347.9

b
 523.8

b
 15.5

ab
 8.5

a
 

Artificial diet 

88.0
c 

(69.8) 62.6
c
 1056.0

c
 1870.1

c
 14.5

a
 10.0

ab
 

Mean 
37.0 15.1 229.0 356.0 18.7 10.7 

SE + 
5.2 6.4 48.9 111.0 1.8 1.0 

Fp 
<0.001 0.001 <0.001 <0.001 0.111 0.237 

Vr 
31.0 11.2 50.8 29.6 2.4 1.6 

LSD (P 0.05) 
17.1* 21.0* 48.9* 361.9* NS NS 

CV (%) 
20 60.6 30.3 44 14 14.3 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

Figures in parenthesis are Angular transformed values. DAI- Days after initiation of experiment.  

 

 



Table 4.6 (Conti.) 

 

Genotype 
Pupation           

(%) 

Adult emergence            

 (%) 

Adult longevity                                     

 (days) 
Fecundity 

(eggs female 
-1

) 
Male Female 

BS5A.1(T2) 18-1 P1 

13.0
a
 

(21.1) 

3.0
a
 

(9.8) 2.0
a
 4.5

bcd
 - 

BS5A.1(T2) 18-2 P1 

8.0
a
 

(16.3) 

0.0
a
 

(0.0) - - - 

BS5A.2(T2) 19-1 P2 

11.0
a
 

(19.2) 

2.0
a
 

(5.7) - 1.5
ab

 - 

BS5A.2(T2) 19-2 P1 

9.0
a
 

(17.4) 

3.0
a
 

(9.8) 0.5
a
 2.0

abc
 - 

BS5A.2(T2) 19-3 P1 

9.0
a
 

(16.7) 

1.0
a
 

(4.0) - 0.5
a
 - 

BS5A.2(T2) 19-3 P2 

5.0
a
 

(12.8) 

2.0
a
 

(5.7) - 2.0
abc

 - 

Semsen (Control) 

34.0
b
 

(35.6) 

12.0
ab

 

(20.2) 6.0
b
 6.0

d
 200.8

c
 

ICC 506 EB (Resistant check) 

31.0
b
 

(33.6) 

19.0
b
 

(25.7) 8.0
b
 5.0

cd
 95.0

a
 

Artificial diet 

76.0
c
 

(60.9) 

19.0
b
 

(25.7) 9.5
b
 6.5

d
 325.0

d
 

Mean 21.8 9.8 2.8 3.1 69.0 

SE + 4.3 4.3 1.0 0.9 27.3 

Fp <0.001 0.001 <0.001 0.01 <0.001 

Vr 28.1 11.7 13.1 5.9 18.7 

LSD (P 0.05) 14.0* 14.2* 3.4* 3.2* 89.2* 

CV (%) 28.0 63.0 52.1 45.1 56.1 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

  Figures in parenthesis are Angular transformed values.  

 



Table 4.7:  Survival and development of neonates of H. armigera larvae reared on artificial diet with lyophilized leaf powder of 

transgenic chickpea  lines (ICRISAT, Patancheru 2012-13).       



Genotype 

Larval        

survival           

(%) 

Mean larval      

weight (mg)                        

(5 DAI) 

Mean larval       

weight (mg)          

(10 DAI) 

Pupal      

weight       

(mg) 

Larval 

period 

(days) 

Pupal 

period 

(days) 

BS5A.1(T2) 18-1 P1 

21.0
ab

 

(27.2) 19.7
a
 338.9

ab
 37.3

a
 29.0

b
 14.5

ab
 

BS5A.1(T2) 18-2 P1 

25.0
abc

 

(30.0) 27.5
a
 450.2

abc
 91.9

a
 31.5

b
 13.0

ab
 

BS5A.2(T2) 19-1 P2 

18.0
a
 

(24.9) 14.6
a
 226.8

ab
 22.5

a
 31.5

b
 17.0

b
 

BS5A.2(T2) 19-2 P1 

7.0
a
 

(14.9) 0.6
a
 14.0

a
 7.0

a
 27.0

b
 14.5

ab
 

BS5A.2(T2) 19-3 P1 

13.0
a
 

(18.7) 9.5
a
 174.2

ab
 21.8

a
 31.0

b
 10.5

a
 

BS5A.2(T2) 19-3 P2 

17.0
a
 

(23.0) 25.4
a
 306.8

ab
 43.6

a
 28.0

b
 10.5

a
 

Semsen (Control) 

39.0
bcd

 

(38.6) 162.5
b
 1189.6

bcd
 423.5

b
 16.5

a
 8.5

a
 

ICC 506 EB (Resistant check) 

45.0
cd

 

(42.1) 231.1
b
 1366.1

cd
 466.0

b
 12.5

a
 9.5

a
 

Artificial diet 

52.0
d
 

(46.1) 356.7
c
 1653.1

d
 702.1

c
 15.5

a
 11.0

ab
 

Mean 26.3 94.2 639.0 202.0 24.7 12.1 

SE + 6.0 29.8 287.2 64.5 2.4 1.7 

Fp 0.008 <0.001 0.026 <0.001 0.002 0.114 

Vr 6.5 18.1 4.3 16.0 9.4 2.4 

LSD (P 0.05) 19.6* 97.3* 936.5* 210.4* 8.1* NS 

CV (%) 32.3 44.8 63.9 45.2 14.2 20.8 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

Figures in parenthesis are Angular transformed values. DAI- Days after initiation of experiment.  



Table 4.7 (Conti.) 

Genotype 
Pupation          

(%) 

Adult emergence      

 (%) 

Adult longevity                                  

 (days) 

 

Fecundity 

(eggs female 
-1

) 

Male Female 

BS5A.1(T2) 18-1 P1 

6.0
a
 

(13.9) 

4.0
a
 

(11.5) 2.0
ab

 3.5
abc

 - 

BS5A.1(T2) 18-2 P1 

13.0
ab

 

(21.1) 

10.0
ab

 

(18.3) 4.5
abc

 8.0
bc

 162.5
b
 

BS5A.2(T2) 19-1 P2 

5.0
a
 

(12.8) 

5.0
a
 

(12.8) 0.5
a
 3.0

ab
 32.5

a
 

BS5A.2(T2) 19-2 P1 

2.0
a
 

(5.7) 

1.0
a
 

(4.0) - - - 

BS5A.2(T2) 19-3 P1 

4.0
a
 

(8.2) 

4.0
a
 

(8.2) - - - 

BS5A.2(T2) 19-3 P2 

7.0
a
 

(14.2) 

4.0
a
 

(8.2) 1.5
a
 3.0

ab
 42.5

a
 

Semsen (Control) 

26.0
bc

 

(30.5) 

17.0
b
 

(23.8) 6.0
bcd

 8.0
bc

 187.5
b
 

ICC 506 EB (Resistant 

check) 

29.0
cd

 

(32.4) 

20.0
b
 

(26.5) 9.5
d
 10.5

c
 332.5

c
 

Artificial diet 

42.0
d
 

(40.3) 

36.0
c
 

(36.8) 8.0
cd

 8.5
bc

 312.5
c
 

Mean 14.9 11.2 3.5 4.9 118.9 

SE + 4.0 2.9 1.2 2.0 28.0 

Fp <0.001 <0.001 0.004 0.042 <0.001 

Vr 12.3 14.6 7.8 3.6 23.1 

LSD (P 0.05) 13.0* 9.6* 4.1* 6.5* 91.4* 

CV (%) 38.1 37.3 51.1 57.8 33.3 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

  Figures in parenthesis are Angular transformed values. 

 



Table 4.8:  Survival and development of neonates of H. armigera larvae reared on artificial diet with lyophilized leaf powder of 

transgenic chickpea lines  (ICRISAT, Patancheru 2011-2013) (Pooled analysis).      

  

Genotype 

Larval survival       

(%) 

Mean larval      

weight (mg)                        

(5 DAI) 

Mean larval       

weight (mg)            

(10 DAI) 

Pupal 

weight 

(mg) 

Larval 

period 

(days) 

Pupal 

period 

(days) 

BS5A.1(T2) 18-1 P1 

22.0
a
 

(27.8) 10.9
a
 185.7

a
 51.5

a
 26.2

c
 12.5

abc
 

BS5A.1(T2) 18-2 P1 

22.0
a
 

(27.8) 14.4
a
 238.1

a
 68.5

a
 25.5

c
 13.0

bc
 

BS5A.2(T2) 19-1 P2 

21.5
a
 

(27.3) 9.6
a
 164.0

a
 43.1

a
 25.5

c
 14.7

c
 

BS5A.2(T2) 19-2 P1 

9.5
a
 

(17.5) 0.7
a
 8.60 27.4

a
 23.0

bc
 13.0

bc
 

BS5A.2(T2) 19-3 P1 

17.0
a
 

(22.7) 6.1
a
 110.9

a
 33.5

a
 25.0

c
 10.0

ab
 

BS5A.2(T2) 19-3 P2 

13.5
a
 

(20.7) 13.1
a
 155.3

a
 32.1

a
 25.0

c
 10.5

ab
 

Semsen (Control) 

56.5
b
 

(49.0) 97.2
ab

 813.8
b
 474.9

b
 16.5

ab
 9.7

ab
 

ICC 506 EB (Resistant check) 

53.0
b
 

(46.7) 129.9
ab

 857.0
b
 494.9

b
 14.0

a
 9.0

a
 

Artificial diet 

70.0
b
 

(57.9) 209.6
b
 1354.6

b
 1286.1

c
 15.0

ab
 10.5

ab
 

Mean 31.7 55.0 432.0 279.0 21.7 11.4 

SE + 6.2 39.5 189.0 127.1 2.6 1.0 

Fp <0.001 0.007 <0.001 <0.001 0.006 0.014 

Vr 12.3 3.5 5.9 11.1 3.6 3.0 

LSD (P 0.05) 18.2* 114.7* 549.4* 369.5* 7.6* 3.1* 

CV (%) 39.6 144.0 87.5 91.1 24.3 19.2 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

  Figures in parenthesis are Angular transformed values. DAI- Days after initiation of experiment. 



Table 4.8 (Conti.)                                             

Genotype 
Pupation              

(%) 

Adult emergence               

(%) 

Adult longevity                                         

(days) 

 
Fecundity                  

(eggs female 
-1

) 

Male Female 

BS5A.1(T2) 18-1 P1 

9.5
a
 

(17.5) 

3.5
a
 

(10.6) 2.0
a
 4.0

ab
 - 

BS5A.1(T2) 18-2 P1 

10.5
a
 

(18.7) 

5.0
a
 

(9.1) 2.2
a
 4.0

ab
 81.2

a
 

BS5A.2(T2) 19-1 P2 

8.0
a
 

(16.0) 

3.5
a
 

(9.3) 0.5
a
 2.2

a
 16.2

a
 

BS5A.2(T2) 19-2 P1 

5.5
a
 

(11.6) 

2.0
a
 

(6.9) 0.2
a
 1.0

a
 - 

BS5A.2(T2) 19-3 P1 

6.5
a
 

(12.4) 

2.5
a
 

(6.1) - 0.2
a
 - 

BS5A.2(T2) 19-3 P2 

6.0
a
 

(13.5) 

3.0
a
 

(6.9) 0.7
a
 2.5

a
 21.2

a
 

Semsen (Control) 

30.0
b
 

(33.0) 

14.5
b
 

(22.0) 6.0
b
 7.0

b
 194.1

b
 

ICC 506 EB (Resistant 

check) 

30.0
b
 

(33.0) 

19.5
b
 

(26.1) 8.7
c
 7.7

b
 213.7

b
 

Artificial diet 

59.0
c
 

(50.6) 

41.0
c
 

(39.7) 8.7
c
 7.5

b
 318.7

c
 

Mean 18.3 10.5 3.2 4.0 94.0 

SE + 4.3 2.5 0.8 1.4 32.7 

Fp <0.001 <0.001 <0.001 0.003 <0.001 

Vr 17.2 25.1 18.0 4.0 13.2 

LSD (P 0.05) 12.69* 7.531* 2.486* 4.074* 94.9* 

CV (%) 47.6 49.3 53.1 69.6 69.5 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

  Figures in parenthesis are Angular transformed values. 



Table 4.9: Survival and development of third-instar larvae of H. armigera reared on artificial diet with lyophilized leaf powder of 

transgenic chickpea lines (ICRISAT, Patancheru

Genotype Larval           

survival               

(%) 

Mean larval               

weight (mg)                                   

(5 DAI) 

Mean larval       

weight (mg)             

(10 DAI) 

Pupal    

weight      

(mg) 

Larval 

period 

(days) 

Pupal 

period 

(days) 

BS5A.1(T2) 18-1 P1 

42.0
abc

 

(40.3) 19.0
abc

 303.5
ab

 238.5
ab

 15.5
ab

 14.5
b
 

BS5A.1(T2) 18-2 P1 

27.0
a
 

(31.3) 8.1
a
 277.9

a
 123.1

a
 16.5

ab
 15.0

b
 

BS5A.2(T2) 19-1 P2 

60.0
d
 

(54.9) 27.0
c
 563.0

b
 362.3

b
 18.0

b
 14.0

ab
 

BS5A.2(T2) 19-2 P1 

33.0
ab

 

(35.0) 11.0
ab

 224.2
a
 133.5

a
 15.0

a
 15.0

b
 

BS5A.2(T2) 19-3 P1 

52.0
cd

 

(46.1) 19.2
abc

 315.2
ab

 251.7
ab

 16.5
ab

 15.0
b
 

BS5A.2(T2) 19-3 P2 

48.0
bc

 

(43.8) 25.7
bc

 365.4
ab

 278.4
ab

 16.5
ab

 14.5
ab

 

Semsen (Control) 

67.0
d
 

(54.9) 63.5
d
 1217.1

c
 703.2

c
 14.5

a
 11.5

ab
 

ICC 506 EB (Resistant 

check) 

85.0
e
 

(67.2) 112.9
e
 1696.1

d
 1365.9

d
 14.5

a
 11.0

a
 

Artificial diet 

92.0
e
 

(73.6) 129.8
f
 1881.0

d
 1212.9

d
 14.5

a
 13.5

ab
 

Mean 57.0 46.2 760.3 518.8 15.7 13.7 

SE + 4.9 4.4 77.3 48.8 0.7 0.9 

Fp <0.001 <0.001 <0.001 <0.001 0.087 0.124 

Vr 20.4 105.0 72.4 92.6 2.7 2.3 

LSD (P 0.05) 16.1* 14.5* 252.1* 159.3* 2.4* NS 

CV (%) 12.3 13.6 14.4 13.3 6.7 10.2 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

Figures in parenthesis are Angular transformed values. DAI- Days after initiation of experiment.  



Table 4.9 (Conti.) 

Genotype 
Pupation          

(%) 

Adult emergence         

(%) 

Adult longevity                                       

(days) 

 

Fecundity              

(eggs female 
-1

) 

Male Female 

BS5A.1(T2) 18-1 P1 

36.0
b
 

(36.8) 

27.0
ab

 

(31.2) 9.5
abc

 6.1
ab

 645.5
a
 

BS5A.1(T2) 18-2 P1 

17.0
a
 

(24.2) 

13.0
a
 

(21.0) 5.5
a
 8.5

b
 590.0

a
 

BS5A.2(T2) 19-1 P2 

49.0
bc

 

(44.4) 

44.0
cd

 

(41.5) 10.1
abc

 7.5
ab

 572.5
a
 

BS5A.2(T2) 19-2 P1 

23.0
a
 

(28.6) 

16.0
ab

 

(23.4) 12.1
bc

 5.5
a
 699.0

a
 

BS5A.2(T2) 19-3 P1 

44.0
bc

 

(41.4) 

30.0
bc

 

(32.9) 6.5
ab

 8.1
ab

 804.5
ab

 

BS5A.2(T2) 19-3 P2 

38.0
bc

 

(38.0) 

27.0
ab

 

(31.2) 9.5
abc

 7.5
ab

 740.0
a
 

Semsen (Control) 

51.0
c
 

(45.5) 

48.0
d
 

(43.8) 13.1
c
 7.5

ab
 848.5

ab
 

ICC 506 EB (Resistant 

check) 

77.0
d
 

(61.3) 

72.0
e
 

(58.0) 15.1
c
 7.5

ab
 1076.0

ab
 

Artificial diet 

84.0
d
 

(66.4) 

78.0
e
 

(62.0) 13.5
c
 8.5

b
 1295.5

b
 

Mean 46.6 39.4 10.5 7.3 808.0 

SE + 3.9 4.6 1.7 0.7 147.2 

Fp <0.001 <0.001 0.058 0.189 0.096 

Vr 32.1 25.2 3.2 1.9 2.0 

LSD (P 0.05) 12.8* 15.0* 5.7* NS 479.9* 

CV (%) 11.9 16.5 23.8 14.2 25.8 
*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

Figures in parenthesis are Angular transformed values. 



Table 4.10: Survival and development of third-instar larvae of H. armigera reared on artificial diet with lyophilized leaf powder of 

transgenic chickpea lines (ICRISAT, Patancheru

Genotype  Larval             

survival               

(%) 

Mean larval             

weight(mg)  

(5 DAI)  

Mean larval          

weight (mg)             

(10 DAI)  

Pupal 

weight 

(mg) 

Larval 

period 

(days) 

Pupal 

period 

(days) 

BS5A.1(T2) 18-1 P1 

29.0
a
 

(32.5) 9.1
a
 159.8

a
 115.3

a
 16.5

b
 12.5

ab
 

BS5A.1(T2) 18-2 P1 

48.0
ab

 

(43.8) 11.5
a
 201.1

a
 98.5

a
 15.5

ab
 14.0

ab
 

BS5A.2(T2) 19-1 P2 

47.0
ab

 

(43.2) 10.7
a
 258.1

a
 130.6

a
 16.0

b
 13.0

ab
 

BS5A.2(T2) 19-2 P1 

74.0
bcd

 

(59.7) 25.7
b
 396.5

a
 195.60

a
 15.5

ab
 15.0

b
 

BS5A.2(T2) 19-3 P1 

60.0
bc

 

(50.7) 20.3
ab

 344.8
a
 182.3

a
 15.5

ab
 13.0

ab
 

BS5A.2(T2) 19-3 P2 

46.0
ab

 

(2.64) 10.0
a
 333.7

a
 158.4

a
 12.5

a
 13.0

ab
 

Semsen (Control) 

82.0
cd

 

(66.3) 45.5
c
 1348.8

b
 952.6

b
 13.5

ab
 11.5

ab
 

ICC 506 EB (Resistant check) 

84.0
cd

 

(66.8) 51.3
c
 1305.6

b
 974.0

b
 14.5

ab
 11.0

ab
 

Artificial diet 

92.0
d
 

(73.6) 69.2
d
 1438.6

b
 949.0

b
 12.5

a
 10.5

a
 

Mean 62.4 28.2 643.0 417.0 14.6 12.6 

SE + 8.2 3.7 121.6 44.1 0.9 1.1 

Fp 0.007 <0.001 <0.001 <0.001 0.098 0.253 

Vr 6.8 34.3 20.2 85.0 2.6 1.6 

LSD (P 0.05) 26.7* 12.2* 396.7* 143.9* 3.0* NS 

CV (%) 18.6 18.8 26.8 15.0 8.9 12.6 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

Figures in parenthesis are Angular transformed values. DAI- Days after initiation of experiment.                                                                                                                                                                                                                                                         

 



Table 4.10 (Conti.) 

Genotype 
Pupation          

(%) 

Adult emergence            

(%) 

Adult longevity                                               

(days) 
Fecundity            

(eggs female 
-1

) 
Male Female 

BS5A.1(T2) 18-1 P1 

15.0
a
 

(22.6) 

9.0
a
 

(17.4) 9.5
a
 7.5

a
 500.0

ab
 

BS5A.1(T2) 18-2 P1 

29.0
ab

 

(32.5) 

16.0
a
 

(23.4) 9.5
a
 8.5

a
 612.5

ab
 

BS5A.2(T2) 19-1 P2 

28.0
ab

 

(31.8) 

15.0
a
 

(22.7) 10.0
a
 8.5

a
 554.0

a
 

BS5A.2(T2) 19-2 P1 

47.0
b
 

(43.2) 

30.0
b
 

(33.1) 10.5
a
 8.5

a
 640.0

ab
 

BS5A.2(T2) 19-3 P1 

45.0
b
 

(42.1) 

36.0
b
 

(36.8) 9.5
a
 9.0

a
 587.5

ab
 

BS5A.2(T2) 19-3 P2 

26.0
ab

 

(30.3) 

17.0
a
 

(24.1) 9.5
a
 9.0

a
 545.0

a
 

Semsen (Control) 

72.0
c
 

(58.2) 

61.0
c
 

(51.3) 11.0
a
 10.0

a
 800.0

bc
 

ICC 506 EB (Resistant 

check) 

77.0
c
 

(61.6) 

65.0
c
 

(53.7) 11.5
a
 9.5

a
 992.5

c
 

Artificial diet 

80.0
c
 

(63.4) 

75.0
d
 

(60.0) 12.5
a
 9.5

a
 958.5

c
 

Mean 46.6 36.0 10.3 8.8 698.0 

SE + 6.2 2.8 1.3 1.1 69.3 

Fp <0.001 <0.001 0.698 0.894 0.009 

Vr 15.1 75.5 0.6 0.4 6.3 

LSD (P 0.05) 20.4* 9.3* NS NS 226.0* 

CV (%) 19.1 11.2 17.8 18.7 14.0 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. Figures in parenthesis are Angular transformed 

values. 



Table 4.11: Survival and development of third instar larvae of H. armigera reared on artificial diet with lyophilized leaf powder of 

transgenic chickpea lines (ICRISAT, Patancheru 2011-2013) (Pooled analysis).      

Genotype 

Larval       

survival          

(%) 

Mean larval       

weight (mg)               

(5 DAI)  

Mean larval         

weight (mg)                

(10 DAI)  

Pupal           

weight           

(mg) 

Larval         

period           

(days) 

Pupal           

period 

(days) 

BS5A.1(T2) 18-1 P1 

35.5
a
 

(36.4) 14.0
a
 231.7

a
 176.9

a
 16.0

bc
 13.5

bcd
 

BS5A.1(T2) 18-2 P1 

37.5
ab

 

(37.5) 9.8
a
 239.5

a
 110.8

a
 16.0

bc
 14.5

d
 

BS5A.2(T2) 19-1 P2 

57.0
bc

 

(49.1) 18.8
a
 410.5

a
 246.4

a
 17.0

c
 13.5

bcd
 

BS5A.2(T2) 19-2 P1 

53.5
ab

 

(47.4) 18.4
a
 310.4

a
 164.5

a
 15.2

abc
 15.0

d
 

BS5A.2(T2) 19-3 P1 

56.0
abc

 

(48.4) 19.7
a
 330.0

a
 217.0

a
 16.0

bc
 14.0

cd
 

BS5A.2(T2) 19-3 P2 

47.0
ab

 

(43.2) 17.9
a
 349.5

a
 218.4

a
 14.5

ab
 13.7

bcd
 

Semsen (Control) 

74.5
cd

 

(60.6) 54.5
b
 1282.9

b
 827.9

b
 14.0

ab
 11.5

ab
 

ICC 506 EB (Resistant 

check) 

84.5
d
 

(67.0) 82.1
c
 1500.8

bc
 1169.9

c
 14.5

ab
 11.0

a
 

Artificial diet 

92.0
d
 

(73.6) 99.5
c
 1659.8

c
 1080.9

c
 13.5

a
 12.0

abc
 

Mean 59.7 37.2 701.6 468.0 15.1 13.1 

SE + 6.5 9.4 90.5 65.6 0.7 0.7 

Fp <0.001 <0.001 <0.001 <0.001 0.029 0.01 

Vr 9.2 12.5 43.1 42.8 2.6 3.2 

LSD (P 0.05) 19.0* 27.3* 263.3* 190.7* 2.0* 2.2* 

CV (%) 22 50.5 25.8 28 9.3 11.6 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

Figures in parenthesis are Angular transformed values. DAI- Days after initiation of experiment.                



Table 4.11 (Conti.) 

Genotype 
Pupation    

(%) 

Adult emergence 

(%) 

Adult longevity                                                

(days) 
Fecundity                

(eggs female 
-1

) 
Male Female 

BS5A.1(T2) 18-1 P1 

25.5
a
 

(29.7) 

18.0
ab

 

(24.3) 9.5
abcd

 6.7
a
 617.8

a
 

BS5A.1(T2) 18-2 P1 

23.0
a
 

(28.3) 

14.5
a
 

(22.2) 7.5
a
 8.5

a
 601.2

a
 

BS5A.2(T2) 19-1 P2 

38.5
ab

 

(38.1) 

29.5
bc

 

(32.1) 10.0
abcd

 8.0
a
 563.2

a
 

BS5A.2(T2) 19-2 P1 

35.0
ab

 

(35.9) 

23.0
abc

 

(28.2) 11.2
bcde

 7.0
a
 669.5

a
 

BS5A.2(T2) 19-3 P1 

44.5
b
 

(41.8) 

33.0
c
 

(34.8) 8.0
ab

 8.5
a
 696.0

a
 

BS5A.2(T2) 19-3 P2 

32.0
ab

 

(34.2) 

22.0
abc

 

(27.7) 9.5
abc

 8.2
a
 642.5

a
 

Semsen (Control) 

61.5
c
 

(51.9) 

54.5
d
 

(47.6) 12.0
cde

 8.7
a
 824.2

ab
 

ICC 506 EB (Resistant check) 

77.0
cd

 

(61.4) 

68.5
e
 

(55.9) 13.2
e
 8.5

a
 1034.2

bc
 

Artificial diet 

82.0
d
 

(64.9) 

76.5
e
 

(61.0) 13.0
ce

 9.0
a
 1127.0

c
 

Mean 46.6 37.7 10.4 8.1 753.0 

SE + 5.4 4.6 1.0 0.7 83.7 

Fp <0.001 <0.001 0.006 0.449 <0.001 

Vr 16.1 24.8 3.6 1.0 5.7 

LSD (P 0.05) 15.8* 13.3* 3.1* 2.2* 243.4* 

CV (%) 23.4 24.4 20.8 18.8 22.2 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

Figures in parenthesis are Angular transformed values. 

 



Table 4.12:  Biochemical profile of different transgenic chickpea lines (dry weight basis) (ICRISAT, Patancheru 2011-13).      

Genotype 

2011-2012 2012-2013 Pooled analysis 

Proteins 

(mg/g) 

Carbohy

drates 

(%) 

Lipids 

(%) 

Phenols 

(mg/g) 

Tannins 

(mg/g) 

Proteins 

(mg/g) 

Carbohydrat

es 

(%) 

Lipids 

(%) 

Phenols 

(mg/g) 

Tannins 

(mg/g) 

Proteins 

(mg/g) 

Carbohyd

rates 

(%) 

Lipids 

(%) 

Phenols 

(mg/g) 

Tannins 

(mg/g) 

BS5A.1(T2) 18-1 P1 5.2ab 34.0b 13.9a 1.1a 2.2d 5.2ab 35.0a 16.6ab 0.9a 1.5a 5.2a 34.5abc 15.2ab 1.0a 1.9a 

BS5A.1(T2) 18-2 P1 5.3ab 44.6cd 10.6a 1.0a 0.5a 6.3cd 38.8a 16.7ab 1.0a 2.0a 5.8a 41.7bcd 13.6ab 1.0a 1.2a 

BS5A.2(T2) 19-1 P2 5.8b 34.3b 7.8a 1.1a 1.6c 5.4bcd 30.6a 14.0ab 1.1a 1.4a 5.6a 32.5ab 10.9a 1.1a 1.5a 

BS5A.2(T2) 19-2 P1 4.9a 38.00bc 16.4a 1.2a 2.1d 6.4de 31.3a 8.2a 0.9a 1.6a 5.6a 34.6abc 12.3ab 1.1a 1.8a 

BS5A.2(T2) 19-3 P1 5.3ab 49.3de 11.9a 0.9a 1.2b 6.1bcd 38.0a 29.4c 1.2a 1.7a 5.7a 43.6cd 20.6b 1.0a 1.4a 

BS5A.2(T2) 19-3 P2 5.2ab 36.0bc 8.8a 1.2a 3.2e 5.4bc 28.1a 7.0a 0.9a 1.1a 5.3a 32.0a 7.9a 1.0a 2.1a 

ICC 506 EB 

(Resistant check) 4.8a 55.0e 11.5a 1.0a 1.0b 7.2e 34.8a 13.7ab 1.0a 1.8a 6.0a 44.9d 12.6ab 1.0a 1.4a 

Semsen (Control) 5.5ab 24.3a 13.7a 1.1a 0.8b 4.5a 32.8a 20.1b 1.1a 1.6a 5.0a 28.5a 16.9ab 1.1a 1.2a 

Mean 5.2 39.5 11.8 1.1 1.6 5.8 33.7 15.7 1.0 1.6 5.5 36.5 13.8 1.0 1.6 

SE + 0.2 2.8 3.2 0.1 0.1 0.2 3.7 2.9 0.1 0.4 0.3 3.0 2.8 0.1 0.3 

Fp 0.191 <0.001 0.641 0.695 <0.001 <0.001 0.502 0.003 0.80 0.901 0.422 0.002 0.101 1.00 0.318 

Vr 1.6 11.5 0.7 0.6 60.5 9.0 0.9 5.7 0.5 0.3 1.0 3.9 1.8 0.1 1.2 

LSD (P 0.05) NS 8.69 NS NS 0.3468 0.8426 NS 8.947 NS NS NS 8.684 NS NS NS 

CV (%) 7.6 12.6 47.7 19.0 12.3 8.2 19.3 32.5 23.5 45.5 14.1 20.3 50.3 20.8 46.6 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 



Table 4.14 : HPLC fingerprints (area) of organic acids on leaf surface of transgenic chickpea lines (ICRISAT, Patancheru 2011-2013). 

 

 

 

 

 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

 

 

Genotype 

2011-2012 2012-2013 

Peak 1 Peak 2 Peak 1 Peak 2 

Oxalic acid  

(μV*sec) 

Malic acid  

(μV*sec) 

Oxalic acid  

(μV*sec) 

Malic acid  

(μV*sec) 

BS5A.1(T2) 18-1 P1 541334
ab

 127666
bc

 1157860
b
 145349

b
 

BS5A.1(T2) 18-2 P1 510886
ab

 103817
bc

 898310
ab

 121824
b
 

BS5A.2(T2) 19-1 P2 579302
ab

 85062
b
 847282

ab
 79664

ab
 

BS5A.2(T2) 19-2 P1 502150
a
 100117

bc
 652908a 77532

ab
 

BS5A.2(T2) 19-3 P1 817376
ab

 130085
c
 779966

a
 110829

b
 

BS5A.2(T2) 19-3 P2 1076296
b
 124572

bc
 805094

a
 112528

b
 

Semsen (Control) 672385
ab

 18891
a
 615042

a
 15646

a
 

ICC 506  EB (Resistant check) 1059318
ab

 128734
bc

 827882
ab

 99784
b
 

Mean 719881 86276 823043 95305 

SE + 157289.6 12180.4 97781.1 22627.7 

Fp 0.148 <0.001 0.093 0.087 

Vr 2.29 16.93 2.88 2.98 

LSD (P 0.05) NS 40732.4* 326987.7* 75668.9* 

CV (%) 30.9 20.0 16.8 33.5 



Table 4.15: Concentration of organic acids (on fresh weight basis) present on the leaf surface of transgenic chickpea lines (ICRISAT, 

Patancheru 2011-2013) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

 

 

 

Genotype 

2011-2012 2012-2013 Pooled 

Oxalic acid      

(mg/g) 

Malic acid 

(mg/g) 

Oxalic acid 

(mg/g) 

Malic acid 

(mg/g) 

Oxalic acid 

(mg/g) 

Malic acid 

(mg/g) 

BS5A.1(T2) 18-1 P1 0.9
a
 2.8

b
 1.2

ab
 1.8

bc
 1.0

a
 2.3

b
 

BS5A.1(T2) 18-2 P1 1.0
a
 2.4

b
 0.8

a
 1.3

ab
 0.9

a
 1.9

b
 

BS5A.2(T2) 19-1 P2  1.3
abc

 2.3
b
 1.0

ab
 1.2

ab
 1.1

a
 1.7

ab
 

BS5A.2(T2) 19-2 P1 0.8
a
 2.1

b
 0.7

a
 1.1

ab
 0.8

a
 1.6

ab
 

BS5A.2(T2) 19-3 P1 1.3
ab

 2.5
b
 0.9

a
 1.6

b
 1.1

a
 2.1

b
 

BS5A.2(T2) 19-3 P2  1.5
abcd

 2.2
b
 0.5

a
 0.9

ab
 1.0

a
 1.5

ab
 

Semsen (Control) 1.2
a
 0.4

a
 0.7

a
 0.2

a
 0.9

a
 0.3

a
 

ICC 506  EB (Resistant check) 2.5
bd

 2.7
a
 2.0

b
 2.9

c
 2.2

b
 2.6

ab
 

Mean 1.3 1.8 1.0 1.4 1.1 1.6 

SE + 0.3 0.3 0.2 0.3 0.2 0.4 

Fp 0.132 0.004 0.095 0.022 0.007 0.152 

Vr 2.4 9.7 2.8 5.2 3.7 1.7 

LSD (P 0.05) NS 1.1* 0.9* 1.1* 0.6* NS 

CV (%) 35.4 25.5 37.7 34.8 40.0 55.8 



 

 

Table 4.13: Correlation between resistance/susceptibility to pod borer, H. armigera and the amounts of biochemical components in 

transgenic chickpea (on dry weight basis) (ICRISAT, Patancheru 2011-13). 

      

 

HDR 

2011-12 2012-13 

Proteins Carbohydrates Lipids Phenols Tannins Proteins Carbohydrates Lipids Phenol

s 

Tannins 

-0.45* 0.40* 0.02 -0.24 -0.41* 0.31 0.25 0.05 -0.33 -0.47* 

Larval 

survival (%) 
-0.25 0.15 0.08 -0.27 -0.40* -0.23 0.23 0.00 -0.40* -0.45* 

Mean larval 

wt. (mg) -0.27 0.10 0.09 -0.17 -0.42* -0.29 0.22 0.07 -0.23 -0.43* 

 

 *,** Significant at P≤ 0.05 and 0.01, respectively 

 

Table 4.16: Correlation between resistance/susceptibility to pod borer, H. armigera and the amounts organic acids in transgenic 

chickpea (on fresh weight basis) (ICRISAT, Patancheru 2011-13). 

 

 

 

 

HDR 

2011-12 2012-13 

Oxalic acid Malic acid Oxalic acid Malic acid 

0.32 -0.83** 0.19 0.18 

Larval 

survival (%) 0.63** -0.93** 0.47 0.23 

Mean larval 

wt. (mg) 0.60* -0.95** 0.56* 0.27 

 

  *,** Significant at P≤ 0.05 and 0.01, respectively 



 

Table 4.17: HPLC finger prints (area) of flavonoids in leaf samples of transgenic chickpea lines (on dry weight basis) (ICRISAT, 

Patancheru 2011-2012). 

 

Genotype 

Peak1 Peak 2 Peak 3 Peak 4 Peak 5 Peak 6 

Chlorogenic 

acid 

(μV*sec) 

Gentisic              

acid 

(μV*sec) 

Phloretic 

acid 

(μV*sec) 

Ferulic                

acid             

(μV*sec) 

Umbelliferone 

(μV*sec) 

 Naringin 

(μV*sec) 

BS5A.1(T2) 18-1 P1 329266
ab

 372440
b
 437575

abc
 16131072

a
 271966

ab
 1701744

ab
 

BS5A.1(T2) 18-2 P1 0
a
 0

a
 0

a
 0

a
 0

a
 0

a
 

BS5A.2(T2) 19-1 P2 551442
b
 125474

a
 433084

abc
 735058

a
 142180

ab
 1442113

ab
 

BS5A.2(T2) 19-2 P1 421452
b
 323184

b
 867355

c
 665861

a
 343448

ab
 2559470

b
 

BS5A.2(T2) 19-3 P1 148518
ab

 0
a
 807677

c
 1241720

a
 334952

ab
 0

a
 

BS5A.2(T2) 19-3 P2 394218
ab

 0
a
 593158

ac
 1644224

a
 500959

b
 1283384

ab
 

Semsen (Control) 0
a
 0

a
 0

ab
 0

a
 0

a
 0

a
 

ICC 506 EB (Resistant 

check) 0
a
 0

a
 0

ab
 63298

a
 84122

a
 0

a
 

Mean 230612 102637 392356 2560154 209703 873339 

SE + 112818 47404.4 164726.1 5316741.2 110570.8 678247.8 

Fp 0.048 0.003 0.028 0.463 0.107 0.161 

Vr 3.84 11.1 4.76 1.08 2.69 2.2 

LSD (P 0.05) 377272.5* 158524.2* 550857.4* NS NS NS 

CV (%) 69.2 65.3 59.4 293.7 74.6 109.8 

 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

 

 



Table 4.17 (Conti.) 

 

 

Genotype 

Peak 7 Peak 8 Peak 9 Peak 10 Peak 11 Peak 12 Peak 13 

  3, 4 

Dihydroxy 

flavones 

(μV*sec) 

Quercetin 

(μV*sec) 

 Cinnamic          

acid              

(μV*sec) 

Naringenin  

(μV*sec) 

Genistein  

(μV*sec) 

Formononetin 

(μV*sec) 

Biochanin A 

(μV*sec) 

BS5A.1(T2) 18-1 P1 347334
a
 1623148

f
 158572

a
 5042944

a
 2862246

d
 256907

bc
 625598

b
 

BS5A.1(T2) 18-2 P1 0
a
 0

a
 0

a
 0

a
 0

a
 0

a
 0

a
 

BS5A.2(T2) 19-1 P2 191440
a
 1116417d 1199464

b
 1067709

a
 1163205

abc
 317068

c
 437628

ab
 

BS5A.2(T2) 19-2 P1 196366
a
 970904

b
 0

a
 209626

a
 2020932

cd
 262563

bc
 358566

ab
 

BS5A.2(T2) 19-3 P1 648484
a
 1040136

c
 0

a
 229192

a
 1422276

bc
 85014

a
b 513928

ab
 

BS5A.2(T2) 19-3 P2 787536
a
 1317268

e
 127563

a
 129458

a
 2280872

cd
 238864

bc
 270246

ab
 

Semsen (Control) 0
a
 0

a
 0

a
 0

a
 0

a
 0

a
 0

a
 

ICC 506 EB 

(Resistant check) 303457
a
 0

a
 0

a
 0

a
 687841

ab
 109255

ab
 222427

ab
 

Mean 309327 758484 185700 834866 1304671 158709 303549 

SE + 267806.3 2822.9 76838.1 1861350.8 347850.5 50623.7 150915.9 

Fp 0.442 <0.001 <0.001 0.57 0.005 0.014 0.152 

Vr 1.1 54469.8 29.1 0.8 9.1 6.1 2.2 

LSD (P 0.05) NS 9439.9* 256952.8* NS 1163239.9* 169289.8* NS 

CV (%) 122.4 0.5 58.5 315.3 37.7 45.1 70.3 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

 

 

 



Table 4.18: HPLC finger prints (area) of flavonoids in leaf samples of transgenic chickpea lines (on dry weight basis) (ICRISAT, 

Patancheru 2012-2013). 

Genotype 

Peak1 Peak 2 Peak 3 Peak 4 Peak 5 

 Chlorogenic         

acid            

(μV*sec) 

 Gentisic                        

acid                         

(μV*sec) 

Phloretic                                

acid                                        

(μV*sec) 

Ferulic  

acid 

(μV*sec) 

Naringin  

(μV*sec) 

BS5A.1(T2) 18-1 P1 341620
a
 246850

a
 384178

a
 437546

a
 0

a
 

BS5A.1(T2) 18-2 P1 139686
a
 368740

a
 528310

a
 1150268

ab
 1594698

ab
 

BS5A.2(T2) 19-1 P2 263896
a
 126810

a
 484580

a
 337444

a
 2663882

ab
 

BS5A.2(T2) 19-2 P1 442229
a
 375851

a
 663945

a
 829470

ab
 1650000

ab
 

BS5A.2(T2) 19-3 P1 287856
a
 189262

a
 459612a 438298

a
 1750243

ab
 

BS5A.2(T2) 19-3 P2 324675
a
 334284

a
 231320

a
 937321

ab
 2696740

ab
 

Semsen (Control) 305630
a
 297672

a
 281908

a
 1355736

b
 0

a
 

ICC 506 EB (Resistant 

check) 375348
a
 334730

a
 416121

a
 359800

a
 4002615

b
 

Mean 310118 284275 431247 730735 1794772 

SE + 124285.1 98619.6 187470.3 251127.3 1081227 

Fp 0.806 0.599 0.785 0.13 0.28 

Vr 0.51 0.82 0.54 2.45 1.58 

LSD (P 0.05) NS NS NS NS NS 

CV (%) 56.7 49.1 61.5 48.6 85.2 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

 

 

 

 



Table 4.18 (Conti.) 

 

 

 

Genotype 

Peak 6 Peak 7 Peak 8 Peak 9 Peak 10 Peak 11 

3, 4 Dihydroxy 

flavones          

(μV*sec) 

Quercetin    

(μV*sec) 

 Naringenin         

(μV*sec) 

Genistein     

(μV*sec) 

Formononetin          

(μV*sec) 

Biochanin A 

(μV*sec) 

BS5A.1(T2) 18-1 P1 85750
a
 466168

a
 181786

bc
 444424

a
 257604

ab
 671826

f
 

BS5A.1(T2) 18-2 P1 618770
a
 1619896

a
 207626

c
 2082074

bc
 251340

ab
 663998

e
 

BS5A.2(T2) 19-1 P2 534006
a
 453998

a
 0

a
 716590

a
 229824

ab
 450466

b
 

BS5A.2(T2) 19-2 P1 248480
a
 1365238

a
 253814

c
 1409192

ab
 307628

b
 606301

d
 

BS5A.2(T2) 19-3 P1 122678
a
 753750

a
 86438

ab
 1077256

ab
 128575

a
 0

a
 

BS5A.2(T2) 19-3 P2 814960
a
 716384

a
 231976

c
 2913119

b
 371516

b
 595440

c
 

Semsen (Control) 2580110
a
 2349121

a
 629969

d
 17232816

c
 2317562

c
 5286246

h
 

ICC 506 EB 

(Resistant check) 1045459
a
 0

a
 0

a
 2738210

b
 401805

b
 972870

g
 

Mean 756277 965570 198951 3576710 533232 1155893 

SE + 829938.7 1017055 30436.2 562610.3 48808.7 2278.1 

Fp 0.525 0.769 <0.001 <0.001 <0.001 <0.001 

Vr 0.95 0.56 43.5 98.75 221.24 1.04 

LSD (P 0.05) NS NS 101781.0* 1881413.9* 163220.3* 7618.3* 

CV (%) 155.2 149 21.6 22.2 12.9 0.3 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

 

 

 



Table 4.19: Amount of flavonoids in transgenic chickpea lines (dry weight basis) (ICRISAT, Patancheru 2011-2012). 

 

Genotype Chlorogenic 

acid (mg/g) 

Gentisic acid 

(mg/g) 

Phloretic acid 

(mg/g) 

Ferulic acid 

(mg/g) 

Umbelliferone 

(mg/g) 

Naringin              

(mg/g) 

BS5A.1(T2) 18-1 P1 0.9
ab

 3.9
b
 10.3

ab
 26.0

a
 1.0

ab
 12.9

ab
 

BS5A.1(T2) 18-2 P1 0.0
a
 0.0

a
 0.0

a
 0.0

a
 0.0

a
 0.0

a
 

BS5A.2(T2) 19-1 P2 1.6
b
 1.3

a
 10.2

ab
 1.1

a
 0.5

a
 10.9

ab
 

BS5A.2(T2) 19-2 P1 1.2
b
 3.4

b
 20.5

b
 1.0

a
 1.2

ab
 19.4

b
 

BS5A.2(T2) 19-3 P1 0.4
ab

 0.0
a
 19.1

b
 2.0

a
 1.2

ab
 0.0

a
 

BS5A.2(T2) 19-3 P2 1.1
ab

 0.0
a
 8.4

ab
 2.6

a
 1.8

b
 9.7

ab
 

Semsen (Control) 0.0
a
 0.0

a
 0.0

a
 0.0

a
 0.0

a
 0.0

a
 

ICC 506 EB (Resistant 

check) 0.0
a
 0.0

a
 0.0

a
 0.1

a
 0.0

a
 0.0

a
 

Mean 0.6 1.0 8.5 4.1 0.7 6.6 

SE + 0.3 0.5 4.5 8.5 0.3 5.1 

Fp 0.048 0.003 0.070 0.463 0.053 0.161 

Vr 3.8 11.1 3.2 1.0 3.6 2.2 

LSD (P 0.05) 1.1* 1.6* 15.3* NS 1.2* NS 

CV (%) 69.2 65.3 75.3 293.7 70.9 109.8 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

 

 

 

 

 

 



Table 4.19 (Conti.) 

 

 

Genotype 

3, 4 Dihydroxy 

flavone (mg/g) 

Quercetin 

(mg/g) 

Cinnamic 

acid 

(mg/g) 

Naringenin 

(mg/g) 

Genistein 

(mg/g) 

Formononetin 

(mg/g) 

Biochanin A 

(mg/g) 

BS5A.1(T2) 18-1 P1 0.4
a
 1.7

f
 0.1

a
 25.0

a
 2.5

d
 0.3

b
 0.8

b
 

BS5A.1(T2) 18-2 P1 0.0
a
 0.0

a
 0.0

a
 0.0

a
 0.0

a
 0.0

a
 0.0

a
 

BS5A.2(T2) 19-1 P2 0.2
a
 1.1

d
 1.3

b
 5.2

a
 1.0

abc
 0.4

b
 0.5

ab
 

BS5A.2(T2) 19-2 P1 0.2
a
 1.0

a
 0.0

a
 1.0

a
 1.7

cd
 0.3

b
 0.4

ab
 

BS5A.2(T2) 19-3 P1 0.7
a
 1.1

a
 0.0

a
 1.1

a
 1.2

bc
 0.1

ab
 0.6

ab
 

BS5A.2(T2) 19-3 P2 0.9
a
 1.4

e
 0.1

a
 0.6

a
 1.9

cd
 0.1

ab
 0.3

ab
 

Semsen (Control) 0.0
a
 0.0

a
 0.0

a
 0.0

a
 0.0

a
 0.0

a
 0.0

a
 

ICC 506 EB 

(Resistant check) 0.3
a
 0.0

a
 0.0

a
 0.0

a
 0.6

ab
 0.1

ab
 0.2

ab
 

Mean 0.3 0.8 0.2 4.1 1.1 0.1 0.3 

SE + 0.3 0.0 0.1 9.2 0.3 0.1 0.1 

Fp 0.442 <0.001 <0.001 0.57 0.005 0.066 0.152 

Vr 1.1 54469.8 29.1 0.8 9.1 3.3 2.2 

LSD (P 0.05) NS 0.0* 0.2* NS 1.0* 0.2* NS 

CV (%) 122.4 0.5 58.5 315.3 37.7 68.1 70.3 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

 

 



Table 4.20: Amount of flavonoids in transgenic chickpea lines (dry weight basis) (ICRISAT, Patancheru 2012-2013).  

 

Genotype Chlorogenic acid    

(mg/g) 

Gentisic acid 

(mg/g) 

Phloretic acid 

(mg/g) 

Ferulic acid 

(mg/g) 

Naringin              

(mg/g) 

BS5A.1(T2) 18-1 P1 1.0
a
 2.6

a
 9.1

a
 0.7

a
 0

a
 

BS5A.1(T2) 18-2 P1 0.4
a
 3.9

a
 12.5

a
 1.8

ab
 12.1

ab
 

BS5A.2(T2) 19-1 P2 0.7
a
 1.3

a
 11.4

a
 0.5

a
 20.2

ab
 

BS5A.2(T2) 19-2 P1 1.3
a
 4.0

a
 8.3

a
 1.3

ab
 12.5

ab
 

BS5A.2(T2) 19-3 P1 0.8
a
 2.0

a
 10.8

a
 0.7

a
 13.2

ab
 

BS5A.2(T2) 19-3 P2 0.9
a
 3.5

a
 5.4

a
 1.5

ab
 20.7

ab
 

Semsen (Control) 0.9
a
 3.1

a
 6.6

a
 2.1

b
 0

a
 

ICC 506 EB 1.1
a
 3.5

a
 9.8

a
 0.5

a
 30.3

b
 

Mean 0.9 3.0 9.2 1.1 13.6 

SE + 0.3 1.0 4.0 0.4 8.2 

Fp 0.806 0.599 0.906 0.130 0.280 

Vr 0.5 0.8 0.3 2.4 1.5 

LSD (P 0.05) NS NS NS NS NS 

CV (%) 56.7 3.5 62.0 48.6 85.2 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

 

 

 



Table 4.20 (Conti.) 

Genotype 3, 4 Dihydroxy 

flavone (mg/g) 

Quercetin 

(mg/g) 

Naringenin 

(mg/g) 

Genistein 

(mg/g) 

Formononetin     

(mg/g) 

Biochanin A 

(mg/g) 

BS5A.1(T2) 18-1 P1 0.0
a
 0.5

a
 1.3

bc
 0.3

a
 0.3

ab
 0.8

f
 

BS5A.1(T2) 18-2 P1 0.7
a
 1.7

a
 1.5

c
 1.8

ab
 0.3

ab
 0.8

e
 

BS5A.2(T2) 19-1 P2 0.6
a
 0.4

a
 0.0

a
 0.6

a
 0.2

ab
 0.5

b
 

BS5A.2(T2) 19-2 P1 0.2
a
 1.4

a
 1.9

c
 1.2

ab
 0.3

b
 0.7

d
 

BS5A.2(T2) 19-3 P1 0.1
a
 0.8

a
 0.6

ab
 0.9

ab
 0.1

a
 0.0

a
 

BS5A.2(T2) 19-3 P2 0.9
a
 0.7

a
 1.7

c
 2.5

b
 0.4

b
 0.7

c
 

Semsen (Control) 2.9
a
 2.5

a
 4.7

d
 1.5

ab
 2.9

c
 6.8

h
 

ICC 506 EB 1.2
a
 1.0

a
 0.0

a
 2.3

b
 0.5

b
 1.2

g
 

Mean 0.8 1.0 1.5 1.1 0.6 1.4 

SE + 0.9 1.0 0.2 0.4 0.0 0.0 

Fp 0.525 0.769 <.001 <.001 <.001 <.001 

Vr 0.9 0.5 43.5 98.7 221.2 5.5 

LSD (P 0.05) NS NS 0.7* 1.6* 0.2* 0.1* 

CV (%) 155.2 149.0 21.6 22.2 12.9 0.3 

 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

 

 

 

 

 



Table 4.21: Correlation between resistance/susceptibility to pod borer, H. armigera and, the amount of flavonoids in transgenic chickpea 

lines (on dry weight basis) (ICRISAT, Patancheru 2011-12). 

 

 

 

 

 

 

HDR 

Chloro

genic 

acid 

Genti

sic 

acid 

Phlore

tic 

acid 

Ferulic 

acid 

Umbellif

erone 

Naringin 3, 4 

Dihydro

xy 

flavone 

Quer

cetin 

Cinna

mic 

acid 

Naring

enin 

Genist

ein 

Formonon

etin 

Biocha

nin A 

-0.57* -0.30 

-

0.75** -0.25 -0.58* -0.56 0.89** -0.09 -0.34 -0.20 0.89** 0.87** 0.90** 

 Larval 

surviva

l (%) -0.51* -0.39 

-

0.66** -0.30 -0.52* -0.34 0.84** -0.37 -0.33 -0.28 0.72** 0.69** 0.72** 

Mean 

larval 

wt. 

(mg) -0.54* -0.31 

-

0.76** -0.29 -0.60* -0.33 0.83** -0.38 -0.34 -0.27 0.72** 0.71** 0.74** 

 *,** Significant at P≤ 0.05 and 0.01, respectively 

Table 4.22: Correlation between resistance/susceptibility to pod borer, H. armigera and, the amount of flavonoids in transgenic chickpea 

lines (on dry weight basis) (ICRISAT, Patancheru 2012-13). 

 

  

Chloroge

nic acid 

Gentisi

c acid 

Phloreti

c acid 

Feruli

c acid 

Naringin 3, 4 

Dihydrox

y flavone 

Quercetin Naringeni

n 

Genistei

n 

Formononeti

n 

Biochanin A 

HDR 
0.07 0.20 -0.39 0.46 0.19 0.94** 0.45 0.64 0.91** 0.90** 0.91** 

 Larval 

survival 

(%) 0.12 0.24 -0.28 0.19 0.13 0.71** 0.10 0.30 0.62** 0.59* 0.59* 

Mean 

larval wt. 

(mg) 0.22 0.36 -0.29 0.19 0.13 0.72** 0.09 0.31 0.61* 0.60* 0.63** 

*,** Significant at P≤ 0.05 and 0.01, respectively. 



Table 4.23: Amount of Cry IIa protein (ppb) in different plant parts of transgenic chickpea lines, Bt fed H. armigera larvae, aphids, and 

natural enemies (ICRISAT, Patancheru).  

Genotype 

Plant samples (ppb) 
 

Bt fed 

H. armigera 

larvea 

Bt fed aphids Bt fed natural enemies 

Fresh 

leaf  

S - 1 

Fresh 

leaf   

S - 2 

Green 

pod 

coat 

Green 

seed 

Dry 

pod 

coat 

Dry 

seed 

Dry 

stem 

Dry 

root 
Soil 

Bt fed 

larvea  

S - 1 

Bt fed 

larvae 

S - 2 

Bt fed 

aphids 

Bt in 

artifitial 

diet of 

aphids 

Bt fed 

Coccinellid 

grubs 

Bt fed 

Campoletis 

larva 

BS5A.1(T2) 18-1 P1 57.6
b
 55.6

bc
 57.6

b
 53.3

b
 51.6

bc
 61.3

bc
 49.3

b
 3.2

a
 0.2

a
 19.0

ab
 37.0

a
 1.7

b
 1.6

c
 2.1

b
 1.0

bc
 

BS5A.1(T2) 18-2 P1 57.6
b
 51.6

b
 54.3

b
 54.3

b
 50.6

b
 53.6

b
 54.3

bc
 3.7

a
 0.0

a
 42.3

bc
 29.4

a
 1.1

ab
 1.2

c
 2.4

b
 1.3

c
 

BS5A.2(T2) 19-1 P2 75.0
b
 72.0

c
 73.0

b
 69.6

b
 70.6

c
 54.6

b
 70.0

d
 3.9

a
 0.0

a
 54.0

c
 15.0

a
 1.5

b
 1.2

c
 1.9

b
 1.7

c
 

BS5A.2(T2) 19-2 P1 75.0
b
 72.0

bc
 71.0

b
 73.6

b
 69.0

c
 70.0

c
 70.0

cd
 6.9

a
 0.2

a
 17.0

ab
 41.6

a
 1.6

b
 1.1

bc
 1.9

b
 1.5

c
 

BS5A.2(T2) 19-3 P1 75.0
b
 71.0

c
 70.0

b
 74.3

b
 69.0

c
 70.0

c
 64.3

bcd
 4.2

a
 0.0

a
 52.3

c
 19.0

a
 1.1

ab
 1.3

c
 1.1

a
 1.4

c
 

BS5A.2(T2) 19-3 P2 73.3
b
 71.0

bc
 60.6

b
 62.6

b
 64.0

bc
 70.0

c
 57.6

bc
 6.5

a
 0.1

a
 13.0

ab
 18.5

a
 0.9

ab
 1.0

abc
 2.0

b
 1.0

bc
 

Semsen (Control) 0.1
a
 0.1

a
 0.0

a
 0.1

a
 0.0

a
 0.0

a
 0.1

a
 0.0

a
 0.0

a
 0.0

a
 0.0

a
 0.0

a
 0.0

ab
 0.0

a
 0.1

ab
 

ICC 506 EB 

(Resistant check) 0.0
a
 0.0

a
 0.1

a
 0.0

a
 0.0

a
 0.0

a
 0.1

a
 0.0

a
 0.1

a
 0.0

a
 0.1

a
 0.0

a
 0.0

a
 0.1

a
 0.0

a
 

Mean 51.7 49.3 49.1 48.7 48.1 50.3 47.4 4.2 0.1 25.1 20.1 1.0 1.0 1.5 1.0 

SE + 5.9 6.0 5.8 6.6 4.7 5.6 6.0 1.4 0.1 9.6 12.0 0.3 0.2 0.2 0.2 

Fp <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.31 0.58 0.01 0.27 0.07 0.03 0.001 0.01 

Vr 30.1 26.4 25.0 21.3 41.0 29.0 25.7 1.3 0.8 5.0 1.6 3.3 4.9 12.3 6.2 

LSD (P 0.05) 18.0* 18.3* 17.6* 20.0* 14.3* 16.9* 18.4* NS NS 29.1* NS 1.2* 0.6* 0.7* 0.7* 

CV (%) 20.0 21.3 20.5 23.5 17.1 19.3 22.2 61.4 133.3 66.3 85.1 52.4 26.8 20.1 31.9 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. S1-season 1(2011-12), S2-season 2 (2012-13) 

 



Table 4.24: Correlation between resistance/susceptibility to pod borer, H. armigera and the amounts of Cry IIa protein in transgenic 

chickpea (ICRISAT, Patancheru 2011-12).  

 

   HDR 

Fresh 

leaf 

Green 

pod 

coat 

Green 

seed 

Dry 

pod 

coat Dry seed 

Dry 

stem 

Dry 

root 

Bt fed 

larvae 

-0.89** -0.90** -0.89** -0.91** -0.86** -0.89** -0.51* -0.62** 

Larval 

survival 

(%) -0.92** -0.94** -0.92** -0.94** -0.89** -0.93** -0.57** -0.63** 

Mean 

larval 

wt. (mg) -0.96** -0.98** -0.97** -0.98** -0.93** -0.96** -0.58** -0.69** 

               *,** Significant at P≤ 0.05 and 0.01, respectively 

 

Table 4.25: Correlation between resistance/susceptibility to pod borer, H. armigera and the amounts of Cry IIa protein in transgenic 

chickpea (ICRISAT, Patancheru 2012-13).  

 

 

Fresh 

leaf 

Green 

pod 

coat 

Green 

seed 

Dry 

pod 

coat Dry seed 

Dry 

stem 

Dry 

root 

Bt fed 

larvae 

HDR 
-0.91** -0.92** -0.92** -0.93** -0.89** -0.91** -0.55*8 -0.76** 

Larval 

survival 

(%) -0.89** -0.92** -0.89** -0.91** -0.82** -0.94** -0.59** -0.81** 

Mean 

larval 

wt. (mg) -0.97** -0.99** -0.97** -0.98** -0.92** -0.98** -0.61** -0.73** 

               *,** Significant at P≤ 0.05 and 0.01, respectively 
 



Table 4.26:  Biology of Campoletis chlorideae parasitizing H. armigera fed on leaves of transgenic chickpea lines (ICRISAT, Patancheru October 2011-2012 ) 

 

 

 

 

 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

Figures in parenthesis are Angular transformed values.  

 

 

 

Genotype 

Egg+larv

al period 

(days) 

Pupal 

period 

(days) 

Post 

embryonic 

development 

period (days) 

Cocoon 

formation 

(%) 

Adult 

emergence 

(%) 

Adult longevity    

(days) 

 

Wt of the adult 

(mg) 

 

No. of adults 

emerged 

Fecundit

y (eggs 

female 
-

1
) Male Female Male Female Male Female 

BS5A.1(T2) 18-1 P1 14.0
b
 5.6

b
 19.6

c
 

16.0
a
 

(23.1) 

9.3
ab

 

(4.0) 3.6
ab

 4.0
a
 1.1

ab
 0.8

a
 0.6

a
 0.3

a
 16.6

a
 

BS5A.1(T2) 18-2 P1 10.4
a
 6.0

b
 16.4

bc
 

33.3
a 

(35.0) 

20.0
bc 

(12.0) 5.6
b
 6.3

a
 1.4

ab
 1.5

ab
 2.0

a
 1.0

ab
 33.3

ab
 

BS5A.2(T2) 19-1 P2 10.8
a
 3.0

a
 11.8

a
 

22.6
a
 

(27.1) 

3.8
a
 

(1.3) 0.0
a
 3.0

a
 0.0

a
 1.0

ab
 0.0

a
 0.3

a
 6.6

a
 

BS5A.2(T2) 19-2 P1 9.5
a
 5.0

b
 14.5

ab
 

29.3
a 

(32.6) 

23.2
c
 

(16.0) 4.3
ab

 10.6
ab

 1.8
ab

 2.6
ab

 1.3
a
 2.6

b
 81.6

bc
 

BS5A.2(T2) 19-3 P1 9.6
a
 6.1

b
 15.7

b
 

18.6
a
 

(25.5) 

16.0
bc

 

(8.0) 6.0
b
 6.3

a
 1.7

ab
 1.9

ab
 1.0

a
 1.0

ab
 33.3

ab
 

BS5A.2(T2) 19-3 P2 9.3
a
 5.0

b
 14.3

ab
 

26.6
a
 

(31.0) 

21.2
c 

(13.3) 7.3
b
 9.3

ab
 1.6

ab
 2.4

ab
 1.3

a
 2.0

ab
 18.3

a
 

Semsen (Control) 8.3
a
 6.0

b
 14.7

ab
 

70.6
b 

(57.2) 

41.5
d
 

(44.0) 8.0
b
 10.0

ab
 2.2

b
 3.4

b
 5.0

b
 6.0

c
 105.0

c
 

ICC 506  EB 

(Resistant check) 8.8
a
 5.9

b
 14.7

ab
 

61.3
b
 

(51.5) 

39.8
d 

(41.3) 7.3
b
 17.0

b
 2.0

b
 3.0

ab
 4.6

b
 5.6

c
 121.6

c
 

Mean 10.1 5.1 15.2 34.8 17.5 5.2 8.3 1.5 2.1 2 2.3 52.1 

SE + 0.9 0.8 1.1 5.8 3.9 1.6 2.8 0.5 0.6 0.6 0.6 17.1 

Fp 0.029 0.011 0.018 <0.001 <0.001 0.078 0.067 0.251 0.173 <0.001 <0.001 0.001 

Vr 3.2 4.1 3.7 12.0 16.8 2.3 2.5 1.4 1.7 8.6 13.2 6.6 

LSD (P 0.05) 2.9* 2.5* 3.5* 17.6* 12.0* 5.1* 8.5* NS NS 1.8* 1.8* 52.1* 

CV (%) 16.8 28.5 13.3 28.9 39.2 55.3 58.4 65.8 57 54.1 45.6 57.2 



Table 4.27:  Biology of C. chlorideae parasitizing H. armigera fed on leaves of transgenic chickpea lines (ICRISAT, Patancheru October 2012-

2013).  

 
Genotype 

Egg+lar

val 

period 

(days) 

Pupal 

period 

(days) 

Post 

embryonic 

developme

nt period 

(days) 

Cocoon 

formation 
(%) 

Adult 

emergenc

e (%) 

Adult longevity 

(days) 

 

Wt of the adult 

(mg) 

 

No. of adults 

emerged 
Fecundity 

(eggs 

female 
-1

) 

Male Female Male Female Male Female 

BS5A.1(T2) 18-1 P1 13.3
b 7.3

bc 19.6
b 

23.3
a
  

(28.5) 
12.2

a
  

(20.1) 8.6
a 20.3

a 3.1
a 2.1

ab 2.0
a 1.6

a 35.0
a 

BS5A.1(T2) 18-2 P1 11.6
b 7.0

abc 18.6
b 

34.4
a
  

(35.9) 
11.1

a
  

(19.1) 8.0
a 23.3

a 2.7
a 3.0

abc 1.6
a 1.6

a 29.6
a 

BS5A.2(T2) 19-1 P2 11.6
b 7.0

abc 18.6
b 

25.5
a  

(30.1) 
13.3

a
  

(21.3) 11.6
a 11.6

a 2.9
a 2.6

abc 2.3
a 1.6

a 6.6
a 

BS5A.2(T2) 19-2 P1 12.3
b      8.0

c 20.3
b 

21.1
a
  

(27.2) 
17.7

ab
 

(24.8) 11.0
a 17.3

a 2.8
a 4.0

bc 2.6
a 2.6

a 43.6
ab 

BS5A.2(T2) 19-3 P1 12.6
b 6.0

abc 18.6
b 

42.2
a
  

(40.3) 
26.6

b
  

(31.0) 6.0
a 16.6

a 2.9
a 4.1

bc 3.6
a 4.3

ab 50.6
ab 

BS5A.2(T2) 19-3 P2 13.3
b 5.6

abc 19.0
b 

36.6
a
  

(37.2) 
15.5

a
  

(23.2) 10.0
a 15.3

a 2.6
a 1.9

a 3
.0 1.6

a 97.6
bc 

Semsen (Control) 9.6
a 4.6

a 14.3
a 

73.3
b  

(59.7) 
50.0

c
  

(45.0) 10.0
a 18.0

a 3.2
a 4.5

c 7.0
b 7.3

bc 145.6
c 

ICC 506 EB 

(Resistant check) 9.3
a 5.3

ab 14.6
b 

75.5
b
  

(60.6) 
65.5

d  

(54.0) 11.6
a 15.6

a 3.4
a 4.5

c 12.6
c 10.3

c 131.6
c 

Mean 11.6 6.3 18.0 41.5 26.5 9.6 17.3 2.9 3.3 4.3 3.9 67.6 
SE + 0.5 0.7 0.8 6.2 3.0 2.0 4.0 0.2 0.6 0.6 1.2 18.0 
Fp <0.001 0.069 0.001 <0.001 <0.001 0.537 0.644 0.339 0.039 <0.001 <0.001 <0.001 
Vr 7.9 2.4 7.0 11.7 44.5 0.8 0.7 1.2 2.9 29.3 7.1 8.0 

LSD (P 0.05) 1.5* 2.1* 2.5* 19.0* 9.2* NS NS NS 1.8* 2.0* 3.7* 54.6* 
CV (%) 7.5 19.5 8.1 26.2 19.9 37.5 40.5 14.1 31 27.4 54.2 46.2 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

Figures in parenthesis are Angular transformed values.   



Table 4.28: Biology of C. chlorideae parasitizing H. armigera fed on leaves of transgenic chickpea lines (ICRISAT, Patancheru October 

2011-2012 and 2012-2013) (Pooled analysis). 

 
 

 

Genotype 

Egg+larval 

period 

(days) 

Pupal 

period 

(days) 

Post 

embryonic 

development 

period (days) 

Cocoon 

formatio

n (%) 

Adult 

emergence 

(%) 

Adult longevity 

(days) 

 

Wt of the adult  

(mg) 

No. of adults 

emerged 

Fecundity 

(eggs 

female 
-1

) 

Male Female Male Female Male Female 

BS5A.1(T2) 18-1 

P1 13.1
c
 6.5

b
 19.6

b
 

19.6
a
 

(25.8) 

8.1
a
 

(14.7) 6.1
a
 12.1

a
 2.1

a
 1.5

a
 1.3

a
 1.0

a
 25.8

ab
 

BS5A.1(T2) 18-2 

P1 11.0
acb

 6.5
b
 17.5

ab
 

33.8
a
 

(35.4) 

11.5
a 

(19.6) 6.8
a
 14.8

a
 2.0

a
 2.3

abc
 1.8

a
 1.3

a
 31.5

ab
 

BS5A.2(T2) 19-1 

P2 11.2
abc

 4.0
a
 15.2

a
 

24.1
a
 

(28.6) 

7.3
a 

(12.5) 5.8
a
 7.3

a
 1.4

a
 1.8

ab
 1.1

a
 1.0

a
 6.6

a
 

BS5A.2(T2) 19-2 

P1 10.9
abc

 6.5
b
 17.4

ab
 

25.2
a
 

(29.9) 

16.8
a
 

(24.0) 7.6
a
 14.0

a
 2.3

a
 3.3

bc
 2.0

a
 2.6

a
 62.6

b
 

BS5A.2(T2) 19-3 

P1 11.1
abc

 6.0
b
 17.2

ab
 

30.4
a
 

(32.9) 

17.3
a
 

(23.5) 6.0
a
 11.5

a
 2.3

a
 3.0

abc
 2.3

a
 2.6

a
 42.0

ab
 

BS5A.2(T2) 19-3 

P2 11.3
bc

 5.3
ab

 16.6
ab

 

31.6
a
 

(34.1) 

14.4
a
 

(22.2) 8.6
a
 12.3

a
 2.1

a
 2.1

abc
 2.1

a
 1.8

a
 58.0

b
 

Semsen (Control) 9.0
a
 5.3

ab
 14.3

a
 

72.0
b
 

(58.5) 

47.0
b
 

(43.2) 9.0
a
 14.0

a
 2.7

a
 3.9

c
 6.0

b
 6.6

b
 125.3

c
 

ICC 506 EB 

(Resistant check) 9.0
ab

 5.6
ab

 14.7
a
 

68.4
b
 

(56.1) 

53.4
b 

(46.9) 9.5
a
 16.3

a
 2.7

a
 3.7

c
 8.6

c
 8.0

b
 126.6

c
 

Mean 10.8 5.7 16.6 38.2 22.0 7.4 12.8 2.2 2.7 3.1 3.1 59.8 

SE + 0.7 0.7 1.0 4.4 3.5 1.7 3.3 0.4 0.5 0.8 0.7 13.5 

Fp 0.004 0.27 0.021 <0.001 <0.001 0.654 0.694 0.625 0.027 

<0.00

1 <0.001 <0.001 

Vr 3.6 1.3 2.7 20.5 25.6 0.7 0.6 0.7 2.6 9.5 11.8 10.8 

LSD (P 0.05) 2.0* NS 3.0* 12.8* 10.1* NS NS NS 1.6* 2.4* 2.2* 38.6* 

CV (%) 15.8 32.1 15.8 28.8 39.3 56.4 63.3 49.9 50.4 66.7 60.9 55.3 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

  Figures in parenthesis are Angular transformed values. 



Table 4.29: Biology of C. chlorideae parasitizing H. armigera fed on leaves of transgenic chickpea lines (ICRISAT, Patancheru 

November 2011-2012).  
 

 

Genotype 

Egg+lar

val 

period 

(days) 

Pupal 

period 

(days) 

Post 

embryonic 

development 

period 

(days) 

Cocoon 

formation 

(%) 

Adult 

emergence 

(%) 

Adult longevity 

(days) 

Wt of the adult 

(mg) 

 

No. of adults 

emerged 

Fecundity 

(eggs female 

-
1
) 

Male Female Male Female  Male Female 

BS5A.1(T2) 18-1 P1 12.3
b
 5.3

b
 17.6

a
 

10.6
a
 

(18.5) 

9.3
ab

 

(17.2) 7.3
ab

 12.6
ab

 1.9
a
 2.7

a
 0.6

ab
 1.6

abcd
 33.3

ab
 

BS5A.1(T2) 18-2 P1 9.6
ab

 3.0
a
 11.3

a
 

23.8
abc

 

(27.5) 

8.6
ab 

(14.0) 7.6
ab

 0.6
a
 1.7

a
 2.6

a
 1.3

ab
 1.0

ab
 33.3

ab
 

BS5A.2(T2) 19-1 P2 6.3
a
 6.0

b
 12.3

a
 

14.9
a 

(21.6) 15.3
abc

 (22.7) 7.0
ab

 9.4
ab

 2.6
a
 2.5

a
 2.0

ab
 2.0

abcd
 75.0

abc
 

BS5A.2(T2) 19-2 P1 10.1
ab

 5.8
b
 15.9

a
 

17.1
ab 

(24.4) 11.3
ab

 (16.1) 8.6
ab

 18.5
ab

 1.3
a
 2.6

a
 2.0

ab
 1.0

abc
 15.0

a
 

BS5A.2(T2) 19-3 P1 10.6
ab

 4.6
ab

 15.3
a
 

17.6
ab 

(24.3) 16.0
abc 

(23.2) 8.3
ab

 22.8
b
 2.8

a
 2.4

a
 2.0

ab
 2.3

abcd
 45.0

abc
 

BS5A.2(T2) 19-3 P2 9.9
ab

 4.0
ab

 13.9
a
 

3.3
a
 

(6.2) 

2.3
a
 

(5.1) 11.6
b
 16.8

ab
 2.7

a
 3.0

a
 0.3

a
 0.3

a
 25.0

a
 

Semsen (Control) 9.3
ab

 5.2
b
 14.6

a
 

43.8
bc

 

(41.3) 

32.0
bc

 

(33.6) 4.6
a
 1.3

ab
 2.3

a
 2.1

a
 3.6

bc
 4.3

bc
 102.3

c
 

ICC 506 EB 

(Resistant check) 10.2
ab

 5.4
b
 15.6

a
 

47.2
c
 

(43.3) 

39.3
c 

(38.5) 5.3
a
 12.0

ab
 2.6

a
 2.7

a
 5.3

c
 4.6

d
 91.6

bc
 

Mean 9.8 4.7 14.6 22.3 16.8 7.5 11.8 2.2 2.6 2.1 2.1 52.6 

SE + 1.3 1.0 1.9 8.2 7.3 1.5 6.4 0.6 0.4 0.9 0.9 19.6 

Fp 0.245 0.178 0.387 0.022 0.043 0.141 0.246 0.689 0.9 0.04 0.067 0.05 

Vr 1.5 1.7 1.1 3.5 2.8 1.9 1.5 0.6 0.3 2.9 2.5 2.7 

LSD (P 0.05) NS NS NS 25.0* 22.3* NS NS NS NS 2.8* 3.0* 59.5* 

CV (%) 24.1 38.7 22.5 64.2 76.1 35.4 94.3 49.5 27.1 76 79.2 64.7 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. Figures in parenthesis are Angular transformed 

values. 

 



Table 4.30:  Biology of C. chlorideae parasitizing H. armigera fed on leaves of transgenic chickpea lines (ICRISAT, Patancheru 

November 2012-2013). 
Genotype Egg+larval 

period 

(days) 

Pupal 

period 

(days) 

Post 

embryonic 

development 

period (days) 

Cocoon 

formation 

(%) 

Adult 

emergence 

(%) 

Adult longevity 

(days) 

 

Wt of the adult 

(mg) 

 

No. of adults 

emerged 
Fecundity 

(eggs 

female 
-1

) 

Male Female Male Female Males Females 

BS5A.1(T2) 18-1 

P1 10.0
b 8.3

a 18.3
b 

48.8
abc 

(44.3)  
26.6

ab
 

(30.7) 9.0
ab 11.3

ab 2.9
b 2.5

abc 4.0
ab 4.0

ab 38.3
ab 

BS5A.1(T2) 18-2 

P1 12.3
c 8.0

a 20.3
c 

25.5
a  

(30.1) 
12.2

a
  

(20.1) 7.6
ab 16.3

ab 1.8
ab 2.8

abc 1.3
a 2.3

a 0.0
a 

BS5A.2(T2) 19-1 

P2 10.0
b 7.6

a 17.6
b 

32.2
ab

 

(33.0) 
18.8

a 
 
(21.3) 7.0

a 13.6
ab 0.9

a 1.7
a 2.3

a 3.3
ab 33.3

ab 
BS5A.2(T2) 19-2 

P1 11.0
bc 8.0

a 19.0
bc 

28.8
ab 

(32.4) 
21.1

a  

(27.1) 10.6
ab 21.0

b 2.3
ab 2.1

ab 2.6
a 3.6

ab 68.3
bc 

BS5A.2(T2) 19-3 

P1 12.0
c 7.3

a 19.3
bc 

33.3
ab

 

(35.2) 
20.0

a  

(26.1) 13.3
b 7.0

a 2.3
ab 2.6

abc 4.0
ab 2.0

a 0.0
a 

BS5A.2(T2) 19-3 

P2 10.3
b 8.3

a 18.6
bc 

31.1
ab

 

(32.7) 
18.8

a  

(23.9) 11.0
ab 15.0

ab 1.5
ab 3.3

bc 3.0
ab 2.6

ab 23.3
ab 

Semsen 

(Control) 8.3
a 7.3

a 15.6
a 

57.7
bc

 

(49.6) 42.2
bc 

(40.3) 8.3
ab 18.0

b 2.3
ab 2.6

abc 6.6
bc 6.0

ab 111.6
c 

ICC 506 EB 

(Resistant 

check) 8.0
a 6.6

a 14.6
a 

68.8
c  

(56.4) 
54.4

c  

(47.5) 9.6
ab 14.0

ab 2.3
ab 3.9

c 9.3
c 7.0

b 105.0
c 

Mean  10.2 7.7 17.9 40.8 26.8 9.5 14.5 2.0 2.7 4.1 3.8 47.5 

SE + 0.5 0.5 0.5 9.3 6.4 1.3 3.2 0.4 0.4 1.1 1.3 13.8 

Fp <0.001 0.33 <0.001 0.047 0.006 0.303 0.179 0.12 0.111 0.005 0.158 <0.001 

Vr 9.1 1.2 10.1 2.8 4.8 1.7 1.7 2.0 2.1 4.9 1.8 9.9 

LSD (P 0.05) 1.5* NS 1.8* 28.4* 19.6* NS NS NS NS 3.5* NS 41.8* 

CV (%) 8.6 11.5 5.8 39.8 41.9 32 38.2 36.3 29.5 48.7 58.5 50.4 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. Figures in parenthesis are Angular transformed 

values. 

 



Table 4.31:  Biology of C. chlorideae parasitizing H. armigera fed on leaves of transgenic chickpea lines November planting (ICRISAT, 

Patancheru 2011-12 and 2012-13) (pooled analysis).  

 

 

 
Genotype 

Egg+la

rval 

period 

(days) 

Pupal 

period 

(days) 

Post 

embryonic 

developmen

t period 

(days) 

Cocoon 

formation 

(%) 

Adult 

emergence 
(%) 

Adult longevity 

(days) 

 

Wt of the adult 

(mg) 

 

No. of adults 

emerged 
Fecundit

y (eggs 

female 
-1

) 

Male Female Male Female Male Female 

BS5A.1(T2) 18-1 P1 11.1
b 6.8

a 18.0
a 

29.7
a 

(31.4) 
18.0

a 
(24.0) 8.1

abc 12.0
a 2.4

a 2.6
ab 2.3

a 2.8
a 35.8

a 

BS5A.1(T2) 18-2 P1 11.0
b 4.8

a 15.8
a 

24.6
a 

(28.8) 
10.4

a 
(17.1) 7.6

abc 8.5
a 1.7

a 2.7
ab 1.3

a 1.6
a 16.6

a 

BS5A.2(T2) 19-1 P2 8.1
a 6.8

a 15.0
a 

23.5
a 

(27.3) 
17.1

a 
(22.0) 7.0

ab 11.6
a 1.8

a 2.1
a 2.1

a 2.6
ab 54.1

a 

BS5A.2(T2) 19-2 P1 10.5
ab 6.9

a 17.4
a 

23.0
a 

(28.4) 
16.2

a 
(21.6) 9.6

abc 19.7
a 1.8

a 2.3
ab 2.3

a 2.3
a 41.6

a 

BS5A.2(T2) 19-3 P1 11.3
b 6.0

a 17.3
a 

25.4
a 

(29.7) 
18.0

a 
(24.7) 10.8

bc 14.9
a 2.5

a 2.5
ab 3.0

ab 2.1
a 22.5

a 

BS5A.2(T2) 19-3 P2 10.1
ab 6.1

a 16.3
a 

17.2
a 

(19.4) 
10.6

a 
(14.5) 11.3

c 15.9
a 2.1

a 3.1
b 1.6

a 1.5
a 24.1

a 

Semsen (Control) 8.8
ab 6.3

a 15.1
a 

50.8
b 

(45.4) 
37.1

b 

(36.9) 6.5
a 9.6

a 2.3
a 2.3

ab 5.1
bc 5.1

bc 107.0
b 

ICC 506 EB 

(Resistant check) 9.1
ab 6.0

a 15.1
a 

58.0
b 

(49.9) 
46.8

b 

(43.0) 7.5
ab 13.0

a 2.4
a 3.3

b 7.3
c 5.8

c 98.3
b 

Mean 10.0 6.2 16.2 31.6 21.8 8.5 13.2 2.1 2.6 3.1 3.0 50.0 

SE + 0.8 0.9 1.3 7.2 5.1 1.2 4.0 0.4 0.3 0.9 0.8 12.9 

Fp 0.078 0.809 0.647 0.002 <0.001 0.06 0.574 0.697 0.145 <0.001 0.004 <0.001 

Vr 2.0 0.5 0.7 4.0 6.5 2.1 0.8 0.6 1.6 5.0 3.6 7.1 

LSD (P 0.05) 2.4* NS NS 20.7* 14.6* 3.5* NS NS NS 2.6* 2.4* 37.1* 

CV (%) 20.5 36.8 20.8 56.2 57.5 35.1 74.4 45.8 28.6 70.3 68.1 63.5 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. Figures in parenthesis are Angular transformed 

values. 



Table 4.32: Biology of C. chlorideae parasitizing H. armigera fed on diets with lyophilized leaf powders of different transgenic chickpea 

lines (ICRISAT, Patancheru 2011-2012).  

 
Genotype Egg+lar

val 

period 

(days) 

Pupal 

period 

(days) 

Post 

embryonic 

developmen

t period 

(days) 

Cocoon 

formation 

(%) 

Adult 

emergence 

(%) 

Adult longevity 

(days) 

 

Wt of the adult 

(mg) 

 

No. of adults 

emerged 

Fecundit

y (eggs 

female 
-

1
) Male Femal

e 

Male Female Male Female 

BS5A.1(T2) 18-1 P1 15.6
d
 11.0

b
 26.6

d
 

65.5
ab 

(54.5) 

52.2
b 

(46.2) 10.0
a
 14.0

ab
 2.4

a
 4.0

a
 8.3

abc
 7.6

bc
 71.0

a
 

BS5A.1(T2) 18-2 P1 15.0
d
 9.3

ab
 24.3

cd
 

80.0
bc

 

(63.8) 

63.3
b 

(52.7) 9.3a 20.0
bc

 3.0
ab

 4.4
a
 9.6

abc
 9.3

c
 53.3

a
 

BS5A.2(T2) 19-1 P2 14.0
cd

 9.6
ab

 23.6
bcd

 

60.0
ab

 

(51.0) 

21.1
a
 

(25.5) 10.3
a
 30.8

d
 3.1

ab
 2.5

a
 4.6

a
 1.6

a
 24.6

a
 

BS5A.2(T2) 19-2 P1 12.6
bcd

 8.6
ab

 21.3
abcd

 

70.0
abc

 

(57.3) 

26.6
a
 

(31.0) 8.6
a
 24.0

cd
 2.8

ab
 2.2

a
 6.6

ab
 1.3

a
 51.6

a
 

BS5A.2(T2) 19-3 P1 11.0
abc

 9.6
ab

 20.6
abc

 

58.8
ab

 

(50.2) 

25.5
a
 

(30.2) 8.6
a
 9.3

a
 2.8

ab
 3.5

a
 4.0

a
 3.6

abc
 30.6

a
 

BS5A.2(T2) 19-3 P2 10.0
ab

 8.0
ab

 18.0
ab

 

54.4
a 

(47.5) 

25.5
a
 

(29.9) 8.0
a
 14.0

ab
 2.7

ab
 4.3

a
 4.3

a
 3.3

ab
 52.6

a
 

Semsen (Control) 8.6
a
 7.0

a
 15.67

a
 

88.8
c 

(70.8) 

61.1
b
 

(51.4) 9.0
a
 18.3

bc
 3.1

ab
 3.3

a
 12.0

bc
 6.3

abc
 119.3

b
 

ICC 506 EB 

(Resistant check) 9.3
a
 8.6

ab
 18.0

ab
 

91.1
c 

(75.7) 

63.3
b
 

(53.2) 11.3
a
 19.6

bc
 3.5

b
 3.2

a
 14.0

c
 5.0

abc
 152.3

b
 

Mean 12.0 9.0 21.0 71.1 42.3 9.4 18.7 2.9 3.4 7.9 4.7 69.5 

SE + 0.9 0.9 1.7 6.6 5.7 1.2 2.2 0.2 0.6 1.7 1.7 14.3 

Fp <0.001 0.189 0.01 0.008 <0.001 0.616 <0.001 0.249 0.242 0.01 0.05 <0.001 

Vr 7.8 1.7 4.3 4.5 11.0 0.7 8.5 1.4 1.5 4.3 2.7 9.5 

LSD (P 0.05) 2.8* NS 5.4* 20.0* 17.5* NS 6.9* NS NS 5.4* 5.1* 43.5* 

CV (%) 13.7 17.8 14.8 16.1 23.6 22.5 21 15.1 32.8 39 61.8 35.8 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

Figures in parenthesis are Angular transformed values. 



Table 4.33: Biology of C. chlorideae parasitizing H. armigera fed on diets with lyophilized leaf powders of different transgenic chickpea 

lines (ICRISAT, Patancheru 2012-2013).  

 

 

 

Genotype 

Egg+l

arval 

perio

d 

(days) 

Pupal 

period 

(days) 

Post 

embryonic 

developme

nt period 

(days) 

Cocoon 

formatio

n (%) 

Adult 

emerge

nce 

(%) 

Adult longevity 

(days) 

 

Wt of the adult 

(mg) 

 

No. of adults 

emerged 

 

Fecundi

ty (eggs 

female 
-

1
)  Male Female Male Female Male Fema

le 

BS5A.1(T2) 18-1 

P1  9.6
abc

 6.6
ab

 16.3
ab

 

38.8
a 

(38.3) 

24.4
a
  

(29.4) 9.3
bc

 12.3
ab

 2.1
a
 3.1

ab
 4.6

a
 2.6

a
 83.3

bc
 

BS5A.1(T2) 18-2 

P1  12.0
c
 9.3

c
 21.3

f
 

52.2
ab

 

(46.2) 

30.0
a
  

(33.1) 8.3
bc

 14.6
ab

 2.1
a
 4.0

c
 5.0

a
 4.0

a
 50.0

ab
 

BS5A.2(T2) 19-1 

P2  11.0
bc

 6.3
ab

 17.3
abcd

 

28.8
a
 

(32.4) 

21.1
a 

 (27.2) 6.0
ab

 8.6
a
 2.0

b
 3.8

bc
 3.6

a
 2.6

a
 20.0

a
 

BS5A.2(T2) 19-2 

P1  9.3
ab

 7.0
a
 16.3

abc
 

46.6
a
 

(42.9) 

22.2
a
  

(27.5) 10.3
c
 15.0

ab
 1.8

a
 3.4

abc
 3.3

a
 3.3

a
 48.3

ab
 

BS5A.2(T2) 19-3 

P1  

10.6
ab

c
 8.0

bc
 18.6

bde
 

43.3
a
 

(40.6) 

28.8
a
  

(31.6) 6.6
abc

 13.6
ab

 2.5
ab

 2.8
a
 4.3

a
 4.3

a
 70.0

abc
 

BS5A.2(T2) 19-3 

P2  11.0
bc

 9.0
c
 20.0

ef
 

37.7
a 

(37.7) 

22.2
a
  

(27.5) 3.3
a
 10.0

a
 2.5

ab
 2.9

a
 4.3

a
 2.3

a
 26.6

a
 

Semsen 

(Control)  9.0
ab

 6.0
a
 15.0

a
 

76.6
b 

(61.4) 

58.8
a
  

(50.2) 8.0
bc

 13.0
ab

 1.9
a
 3.0

ab
 9.0

b
 8.6

b
 163.3

d
 

ICC 506 EB 

(Resistant check) 8.3
a
 7.0

ab
 15.3

a
 

56.6
ab

 

(48.8) 

32.2
a
  

(34.5) 8.0
bc

 19.3
b
 3.0

b
 3.1

ab
 5.3

a
 4.3

a
 112.3

c
 

Mean  10.1 7.4 17.5 47.6 30.0 7.5 13.3 2.3 3.3 4.9 4.0 71.8 

SE + 0.7 0.5 0.7 8.2 5.9 1.1 2.4 0.2 0.2 1.1 0.9 16.2 

Fp 0.036 0.002 <0.001 0.033 0.009 0.022 0.158 0.01 0.042 0.081 0.007 <0.001 

Vr 3.0 5.9 9.8 3.1 4.3 3.4 1.8 4.2 2.9 2.3 4.6 8.6 

LSD (P 0.05) 2.1* 1.5* 2.1* 25.0* 17.9* 3.0* NS 0.6* 0.7* 3.4* 2.88* 49.1* 

CV (%) 12.1 11.8 7.1 30.0 34.1 26.8 31.3 15.2 13.5 39.9 40.3 39.1 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

Figures in parenthesis are Angular transformed values. 



Table 4.34: Biology of C. chlorideae parasitizing H. armigera fed on diets with lyophilized leaf powders of different transgenic chickpea 

lines (ICRISAT, Patancheru 2011-12 and 2012-2013) (pooled analysis) 

 

 

*Figures followed by the same letter within a column are not significantly different at P< 0.05.  Figures in parenthesis are Angular transformed 

values. 

 

 

Genotype Egg+larval 

period 

(days) 

Pupal 

period 

(days) 

Post 

embryonic 

developmen

t period 

(days) 

Cocoon 

formation 

(%) 

Adult 

emergence 

(%) 

 Adult longevity 

(days) 

  

Wt of the adult (mg) 

 

No. of adults 

emerged 
Fecundity 

(eggs 

female 
-

1
) 

Male Female Male Female Male Femal

e 
BS5A.1(T2) 18-1 

P1  12.6
bc

 8.8
b
 21.5

c
 

52.2
ab

 

(46.4) 

38.3
ab 

(37.8) 9.6
b
 13.1

a
 2.3

a
 3.5

ab
 6.5

ab
 5.1

abc
 77.1

b
 

BS5A.1(T2) 18-2 

P1  13.5
c
 9.3

b
 22.8

c
 

66.1
abc 

(55.0) 

46.6
bc

 

(42.9) 8.8
b
 17.3

a
 2.5

abc
 4.2

b
 7.3

ab
 6.6

bc
 51.6

ab
 

BS5A.2(T2) 19-1 

P2  12.5
bc

 8.0
ab

 20.5
bc

 

44.4
a 

(41.7) 

21.1
a  

(26.5) 8.1
ab

 19.7
a
 3.0

bc
 3.1

ab
 4.1

a
 2.1

a
 22.3

a
 

BS5A.2(T2) 19-2 

P1  10.1
abc

 7.8
ab

 18.8
abc

 

58.3
ab 

(50.1) 

24.4
a
  

(29.3) 9.5
b
 19.5

a
 2.3

abc
 2.8

a
 5.0

a
 2.3

a
 50.0

ab
 

BS5A.2(T2) 19-3 

P1  10.8
abc

 8.8
b
 19.6

abc
 

51.1
ab

 

(45.4) 

27.2
a
  

(30.9) 7.6
ab

 11.5
a
 2.6

abc
 3.1

ab
 4.1

a
 4.0

ab
 50.3

ab
 

BS5A.2(T2) 19-3 

P2  10.5
ab

 8.5
ab

 19.0
abc

 

46.1
a
 

(42.6) 

23.8
a
  

(28.7) 5.6
a
 12.0

a
 2.6

abc
 3.6

ab
 4.3

a
 2.8

a
 39.6

a
 

Semsen (Control)  8.8
a
 6.5

a
 15.3

a
 

82.7
c
 

(66.1) 

60.0
c 
 

(50.8) 8.5
ab

 15.6
a
 2.5

abc
 3.2

ab
 10.5

b
 7.5

c
 141.3

c
 

ICC 506  EB 

(Resistant check) 8.8
a
 7.8

ab
 16.6

ab
 

73.8
bc

 

(62.2) 

47.7
bc

 

(43.9) 9.6
b
 19.5

a
 3.2

c
 3.2

ab
 9.6

b
 8.6

c
 132.3

c
 

Mean  11.0 8.2 19.2 59.4 36.2 8.4 16.0 2.6 3.3 6.4 4.4 70.6 

SE + 0.8 0.7 1.4 7.2 5.8 0.9 2.6 0.2 0.3 1.3 1.0 11.5 

Fp 0.002 0.18 0.013 0.005 <0.001 0.104 0.122 0.06 0.291 0.005 0.008 <0.001 

Vr 4.2 1.5 3.0 3.5 5.8 1.8 1.7 2.1 1.2 3.5 3.2 14.2 

LSD (P 0.05) 2.4* 

 

NS 4.0* 20.8* 16.7* NS NS 0.6* NS 3.8* 3.1* 33.1* 

CV (%) 18.6 21 17.9 30.1 39.6 28.6 39.9 20 27.3 51.1 60.7 40.1 



Table 4.35: Direct effect of Cry IIa transgenic chickpea lines on Cheilomenes sexmaculatus at different concentrations (0.02%, 0.05%  

and 0.1%) (ICRISAT, Patancheru 2012-2013). 
 

 
0.02% 

Genotype 

Larval survival 

(%) 

Larval 

period 

(days) 

Mean 

grub 

weight 

(mg) 

Pupal 

period 

(days) 

Pupation 

(%) 

Adult 

emergence 

(%) 

Adult weight (mg) 

Male Female 

BS5A.1(T2) 18-1 P1  

66.6
abcd 

(54.7) 7.0
a
 17.2

a
 3.0

a
 

40.0
ab 

(43.0) 

33.3
ab

 

(35.0) 5.6
a
 7.6

a
 

BS5A.1(T2) 18-2 P1  

60.0
ab

 

(50.8) 7.3
a
 20.7

a
 4.3

a
 

40.0
ab

 

(39.2) 

23.3
a 

(28.7) 6.0
a
 9.6

a
 

BS5A.2(T2) 19-1 P2  

66.6
abcd

 

(55.0) 7.0
a
 10.7

a
 3.0

a
 

46.6
bc 

(43.0) 

36.6
ab

 

(37.2) 4.9
a
 5.7

a
 

BS5A.2(T2) 19-2 P1  

56.6
a
 

(48.9) 7.3
a
 19.0

a
 4.0

a
 

36.6
ab 

(36.9) 

26.6
a
 

(30.7) 4.0
a
 8.0

a
 

BS5A.2(T2) 19-3 P1  

60.0
abc

 

(50.8) 6.3
a
 10.8

a
 4.0

a
 

30.0
a
 

(33.2) 

23.3
a
 

(28.7) 8.0
b
 8.6

a
 

BS5A.2(T2) 19-3 P2  

70.0
abcd

 

(57.0) 6.0
a
 10.9

a
 5.3

a
 

36.6
a 

(37.2) 

30.0
a
 

(33.0) 8.2
b
 8.9

a
 

Semsen (Control)  

80.0
bd

 

(63.9) 6.6
a
 19.4

a
 3.0

a
 

56.6
cd

 

(48.9) 

40.0
ab

 

(39.1) 8.2
b
 7.8

a
 

ICC 506 EB 

(Resistant check) 

83.3
d
 

(66.1) 6.3
a
 11.8

a
 3.0

a
 

63.3
d
 

(52.7) 

50.0
b
 

(44.9) 8.6
b
 8.3

a
 

Mean 67.9 6.7 15.1 5.0 44.6 32.9 6.7 11.8 

SE + 5.9 0.5 5.4 0.6 4.3 5.4 0.6 9.4 

Fp 0.064 0.618 0.699 0.45 0.001 0.044 <0.001 0.445 

Vr 2.5 0.7 0.6 1.0 6.5 2.8 8.1 1.0 

LSD (P 0.05) 18.1* NS NS NS 13.1* 16.3* 1.8* NS 

CV (%) 15.3 14.5 61.9 128.8 16.9 28.4 15.9 138.4 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

Figures in parenthesis are Angular transformed values 



Table 4.35 (Conti.)                

 

 

Genotype 

 

0.05% 

Larval 

survival (%) 

Larval 

period 

(days) 

Mean grub 

weight (mg) 

Pupal 

period 

(days) 

Pupation 

(%) 

Adult emergence 

(%) 

Adult weight (mg) 

Male Female 

BS5A.1(T2) 18-

1 P1  

60.0
a
 

(50.8) 9.0
b
 2.6

a
 4.3

bc
 

46.6
b
 

(43.0) 

36.6
b
 

(37.2) 6.1
a
 8.2

ab
 

BS5A.1(T2) 18-

2 P1  

46.6
a
 

(43.0) 9.3
b
 1.7

a
 5.0

c
 

33.3
a
 

(35.2) 

20.0
a
 

(26.5) 5.8
a
 8.4

abc
 

BS5A.2(T2) 19-

1 P2  

53.3
a
 

(46.9) 9.3
b
 2.2

a
 5.0

c
 

30.0
a
 

(33.2) 

10.0
a
 

(15.0) 5.8
a
 8.3

abc
 

BS5A.2(T2) 19-

2 P1  

53.3
a
 

(46.9) 9.3
b
 1.8

a
 5.0

c
 

30.0
a
 

(33.0) 

20.0
a
 

(26.0) 6.0
a
 8.5

abc
 

BS5A.2(T2) 19-

3 P1  

53.3
a
 

(46.9) 9.0
b
 2.3

a
 4.3

bc
 

40.0
ab

 

(39.2) 

16.67
a
 

(23.8) 6.3
a
        7.7

a
 

BS5A.2(T2) 19-

3 P2  

46.6
a
 

(43.0) 8.3
ab

 2.6
b
 3.6

ab
 

30.0
a
 

(33.2) 

10.0
a
 

(15.0) 5.5
a
 8.6

abc
 

Semsen 

(Control)  

80.0
b
 

(63.9) 7.3
ab

 9.9
a
 3.0

a
 

63.3
c
 

(52.7) 

40.0
b
 

(39.1) 8.0
b
 9.7

abc
 

ICC EB 506 

(Resistant 

check) 

80.0
b
 

(63.9) 6.6
a
 9.5

a
 3.0

a
 

63.3
c
 

(52.7) 

40.0
b
 

(39.1) 7.9
b
 8.6

b
 

Mean  59.2 8.5 6.6 4.1 42.1 24.2 6.4 8.5 

SE + 4.5 0.6 3.8 0.3 3.2 5.1 0.4 9.5 

Fp <0.001 0.092 0.018 0.001 <0.001 0.002 0.008 0.272 

Vr 8.8 2.2 3.7 6.5 19.9 6.1 4.4 1.4 

LSD (P 0.05) 13.84* 2.0* 11.5* 1.0* 9.7* 15.7* 1.3* NS 

CV (%) 13.4 13.8 99.5 13.9 13.2 37.1 12.3 131.8 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

Figures in parenthesis are Angular transformed values. 

 



 

Table 4.35 (Conti.)                                                     

 

 

Genotype 

 

0.1% 

Larval 

survival 

(%) 

Larval 

period 

(days) 

Mean 

grub 

weight 

(mg) 

Pupal period 

(days) 

Pupation 

(%) 

Adult emergence 

(%) 

Adult weight (mg) 

Male Female 

BS5A.1(T2) 18-1 P1  

46.6
ab

 

(43.0) 9.3
c
 1.9

a
 4.6

a
 

23.3
a
 

(28.7) 

3.3
a
 

(6.1) 1.5
a
 2.1

a
 

BS5A.1(T2) 18-2 P1  

53.3
b
 

(46.9) 9.3
c
 3.4

a
 4.6

a
 

33.3
a
 

(34.1) 

13.3
ab

 

(17.2) 3.9
ab

 4.7
ab

 

BS5A.2(T2) 19-1 P2  

26.6
a
 

(30.2) 9.6
c
 2.2

a
 2.6

a
 

13.3
a
 

(17.7) 

6.6
ab

 

(12.2) 3.6
ab

 6.4
bc

 

BS5A.2(T2) 19-2 P1  

40.0
ab

 

(39.1) 10.6
c
 2.8

a
 3.3

a
 

26.6
a
 

(31.0) 

6.6
ab

 

(12.2) 4.6
ab

 7.2
bc

 

BS5A.2(T2) 19-3 P1  

36.6
ab

 

(36.9) 10.0
c
 2.2

a
 4.3

a
 

20.0
a
 

(26.0) 

13.3
ab

 

(21.1) 6.5
b
 6.4

bc
 

BS5A.2(T2) 19-3 P2  

43.3
ab

 

(41.0) 8.6
bc

 3.4
a
 4.0

a
 

23.3
a
 

(28.0) 

20.0
b
 

(26.0) 7.1
b
 6.8

bc
 

Semsen (Control)  

80.0
c
 

(63.9) 7.0
ab

 9.7
b
 3.0

a
 

53.3
bc

 

(46.9) 

36.6
c
 

(37.2) 6.5
b
 9.8

c
 

ICC 506 EB (Resistant 

check) 

83.3
c
 

(66.1) 6.6
a
 11.6

b
 3.6

a
 

66.6
c
 

(54.7) 

43.3
c
 

(41.1) 7.5
b
 9.7

c
 

Mean  51.2 8.9 4.6 3.7 32.5 17.9 5.1 6.6 

SE + 7.9 0.5 2.5 0.6 7.3 4.9 1.4 1.2 

Fp 0.001 0.003 <0.001 0.29 0.002 <0.001 0.135 0.01 

Vr 6.6 5.6 26.5 1.3 6.0 8.9 1.9 4.3 

LSD (P 0.05) 23.9* 1.8* 2.2* NS 22.4* 14.8* NS 3.6* 

CV (%) 26.7 11.6 27.1 29.4 39.4 47.4 49.8 31.4 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

Figures in parenthesis are Angular transformed values. 



Table 4.36: Direct effect of Cry IIa transgenic chickpea lines on Cheilomenes sexmaculatus at different concentrations (0.02%, 0.05% 

and 0.1%) (ICRISAT, Patancheru 2013-2014). 

Genotype 

0.02% 

Larval 

survival (%) 

Larval 

period 

(days) 

Mean 

grub 

weight 

(mg) 

Pupal 

period 

(days) 

Pupation 

(%) 

Adult 

emergence 

(%) 

Adult weight (mg) 

Male Female 

BS5A.1(T2) 18-1 

P1  

50.0
ab

 

(45.0) 7.3
b
 9.0

a
 5.0

b
 

40.0
ab

 

(39.2) 

30.0
abc

 

(33.2) 4.5
a
 8.8

abc
 

BS5A.1(T2) 18-2 

P1  

43.3
a
 

(41.1) 7.6
b
 10.3

a
 4.0

ab
 

30.0
a 

(33.2) 

20.0
ab

 

(26.5) 5.9
b
 9.0

abc
 

BS5A.2(T2) 19-1 

P2  

56.6
bc

 

(48.8) 7.0
ab

 10.7
a
 4.0

ab
 

43.3
b 

(41.1) 

43.3
cd

 

(41.1) 7.6
cd

 9.1
abc

 

BS5A.2(T2) 19-2 

P1  

43.3
a 

(41.1) 7.6
b
 8.6

a
 4.0

ab
 

30.0
a
 

(33.2) 

16.6
a
 

(19.9) 7.2
c
 7.9

a
 

BS5A.2(T2) 19-3 

P1  

63.3
cd

 

(52.7) 6.6
ab

 12.1
a
 4.0

ab
 

40.0
ab

 

(39.1) 

33.3
bc

 

(35.2) 6.5
bc

 8.7
ab

 

BS5A.2(T2) 19-3 

P2  

53.3
abc 

(46.9) 6.0
a
 12.1

a
 4.3

ab
 

33.3
ab

 

(35.2) 

30.0
abc

 

(33.0) 7.5
cd

 9.3
bc

 

Semsen (Control)  

80.0
e
 

(63.4) 6.6
ab

 26.5
b
 3.3

a
 

66.6
c
 

(54.7) 

56.6
de

 

(48.8) 9.1
e
 8.6

ab
 

ICC 506 EB 

(Resistant check) 

73.3
de

 

(59.0) 6.0
a
 25.0

b
 3.3

a
 

66.6
c
 

(54.7) 

60.0
e
 

(50.8) 8.5
de

 10.0
c
 

Mean  57.9 6.8 14.3 4.0 43.8 36.2 7.1 8.9 

SE + 3.5 0.3 2.0 0.3 3.3 4.9 0.3 0.3 

Fp <0.001 0.01 <0.001 0.08 <0.001 <0.001 <0.001 0.05 

Vr 14.0 4.0 12.4 2.4 20.1 10.1 14.4 2.8 

LSD (P 0.05) 10.8* 1.0* 6.1* 1.0* 10.1* 15.1* 1.1* 1.0* 

CV (%) 10.7 8.3 24.6 14.9 13.2 23.8 9.4 6.9 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

Figures in parenthesis are Angular transformed values. 



Table 4.36 (Conti.) 

 

 

Genotype 

 

0.05% 

Larval 

survival 

(%) 

Larval 

period 

(days) 

Mean grub 

weight 

(mg) 

Pupal 

period 

(days) 

Pupation 

(%) 

Adult emergence 

(%) 

Adult weight (mg) 

Male Female 

BS5A.1(T2) 18-1 P1  

63.3
c 

(50.8) 7.0
bc

 9.1
a
 4.3

a
 

36.6
c
 

(37.1) 

20.0
b
 

(26.5) 6.7
bc

 8.8
b
 

BS5A.1(T2) 18-2 P1  

53.3
bc

 

(46.9) 7.0
bc

 4.1
a
 4.0

a
 

36.6
c
 

(37.2) 

23.3
b
 

(28.2) 6.9
bc

 8.2
b
 

BS5A.2(T2) 19-1 P2  

33.3
a 

(35.2) 9.3
d
 3.9

a
 4.0

a
 

23.3
bc

 

(28.7) 

16.6
ab

 

(19.9) 4.6
ab

 8.3
b
 

BS5A.2(T2) 19-2 P1  

36.6
a
 

(37.2) 8.3
cd

 6.4
a
 4.3

a
 

6.6
a
 

(8.8) 

3.3
a
 

(6.1) 1.8
a
 7.8

ab
 

BS5A.2(T2) 19-3 P1  

36.6
a 

(37.2) 7.0
bc

 6.6
a
 4.3

a
 

16.6
ab

 

(23.8) 

16.6
ab

 

(23.8) 6.8
bc

 7.8
ab

 

BS5A.2(T2) 19-3 P2  

46.6
ab 

(43.0) 7.6
bcd

 7.3
a
 4.3

a
 

26.6
bc

 

(31.0) 

16.6
ab

 

(23.8) 7.2
bc

 7.2
ab

 

Semsen (Control)  

83.3
d 

(66.6) 6.0
ab

 21.8
b
 3.0

a
 

70.0
d
 

(57.0) 

60.0
c
 

(50.8) 9.0
c
 9.9

b
 

ICC 506 EB 

(Resistant check) 

80.0
d 

(63.4) 5.0
a
 22.9

b
 3.3

a
 

70.0
d
 

(56.7) 

56.6
c
 

(48.8) 8.9
c
 8.4

b
 

Mean  54.2 7.1 10.2 3.9 35.8 26.7 6.5 7.3 

SE + 4.3 0.5 1.8 0.4 4.8 4.4 1.2 1.5 

Fp <0.001 0.001 <0.001 0.21 <0.001 <0.001 0.02 0.11 

Vr 20.0 5.8 16.6 1.6 23.5 20.7 3.7 2.1 

LSD (P 0.05) 13.3* 1.6* 5.6* NS 14.5* 13.5* 3.6* NS 

CV (%) 14.0 13.3 31.6 17.9 23.2 29.1 32.0 36.2 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

Figures in parenthesis are Angular transformed values. 

 



Table 4.36 (Conti.) 

 

 

 

Genotype 

 

0.1% 

Larval 

survival 

(%) 

Larval 

period 

(days) 

Mean 

grub 

weight 

(mg) 

Pupal 

period 

(days) 

Pupation 

(%) 

Adult emergence 

(%) 

Adult weight (mg) 

Male Female 

BS5A.1(T2) 18-1 

P1  

33.3
ab

 

(35.2) 8.3
de

 1.7
a
 4.6

a
 

20.0
b
 

(26.5) 

3.3
ab

 

(6.1) 1.8
ab

 2.5
ab

 

BS5A.1(T2) 18-2 

P1  

26.6
a
 

(31.0) 7.6
cde

 2.2
a
 4.6

a
 

6.6
a
 

(12.2) 

0.0
a
 

(0.0) 0.0
a
 0.0

a
 

BS5A.2(T2) 19-1 

P2  

43.3
b
 

(41.1) 7.0
bcd

 3.2
a
 2.6

a
 

16.6
ab

 

(23.8) 

10.0
ab

 

(18.4) 4.7
abc

 5.1
ab

 

BS5A.2(T2) 19-2 

P1  

36.6
ab

 

(37.2) 6.6
abc

 3.3
a
 3.3

a
 

23.3
b
 

(28.7) 

16.6
b
 

(23.8) 4.3
abc

 5.2
ab

 

BS5A.2(T2) 19-3 

P1  

36.6
ab

 

(37.2) 8.6
e
 2.5

a
 4.3

a
 

16.6
ab

 

(23.8) 

3.3
ab

 

(6.1) 2.1
b
 2.5

ab
 

BS5A.2(T2) 19-3 

P2  

33.3
ab

 

(35.2) 7.6
cde

 4.1
a
 4.0

a
 

16.6
ab

 

(23.8) 

10.0
ab

 

(15.0) 5.0
abc

 5.5
ab

 

Semsen (Control)  

76.6
c
 

(61.2) 5.6
ab

 19.7
b
 3.0

a
 

60.0
c
 

(50.8) 

53.3
c
 

(46.9) 6.8
bc

 8.5
b
 

ICC 506 EB 

(Resistant check) 

80.0
c
 

(63.9) 5.3
a
 24.0

b
 3.6

a
 

66.6
c
 

(54.9) 

53.3
c
 

(47.0) 7.6
c
 8.2

b
 

Mean  45.8 7.1 7.6 3.7 28. 18.8 4.0 4.7 

SE + 3.4 0.4 1.6 0.6 3.5 4.7 1.6 2.0 

Fp <0.001 0.001 <0.001 0.29 <0.001 <0.001 0.07 0.11 

Vr 35.0 6.0 27.6 1.3 38.1 21.1 2.5 2.1 

LSD (P 0.05) 10.5* 1.4* 5.1* NS 10.8* 14.4* 4.9* NS 

CV (%) 13.1 11.8 38.4 29.4 22.0 44.1 69.7 74.1 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

Figures in parenthesis are Angular transformed values. 

 



Table 4.37: Direct effect of Cry IIa transgenic chickpea lines on Cheilomenes sexmaculatus at different concentrations (0.02%, 0.05% 

and 0.1%) (ICRISAT, Patancheru 2012-2013 and 2013-14) (pooled analysis). 

Genotype 

0.02% 

Larval 

survival 

(%) 

Larval period 

(days) 

Mean grub 

weight (mg) 

Pupal 

period 

(days) 

Pupation 

(%) 

Adult 

emergence 

(%) 

Adult weight (mg) 

Male Female 

BS5A.1(T2) 18-1 P1  

58.3
a
 

(49.8) 7.1
cd

 13.1
ab

 4.0
a
 

43.3
bc 

(41.1) 

31.6
ab

 

(34.1) 5.1
a
 8.2

a
 

BS5A.1(T2) 18-2 P1  

51.6
a
 

(46.0) 7.5
d
 15.5

ab
 4.1

a
 

35.0
ab

 

(36.2) 

21.6
a
 

(27.6) 5.9
ab

 9.3
a
 

BS5A.2(T2) 19-1 P2  

61.6
a
 

(51.9) 7.0
bcd

 10.7
a
 3.5

a
 

45.0
c
 

(42.1) 

40.0
bc

 

(39.1) 6.2
ab

 8.4
a
 

BS5A.2(T2) 19-2 P1  

50.0
a
 

(45.0) 7.5
d
 13.8

ab
 9.0

a
 

33.3
a
 

(35.0) 

21.6
a
 

(25.3) 5.6
a
 8.0

a
 

BS5A.2(T2) 19-3 P1  

61.6
a
 

(51.8) 6.5
abc

 11.5
a
 4.0

a
 

35.0
ab

 

(36.1) 

28.3
ab

 

(32.0) 7.2
bc

 8.7
a
 

BS5A.2(T2) 19-3 P2  

61.6
a
 

(51.9) 6.0
a
 11.5

a
 4.8

a
 

35.0
ab

 

(36.2) 

30.0
ab

 

(33.0) 7.9
c
 9.1

a
 

Semsen (Control)  

80.0
b
 

(63.6) 6.6
abcd

 22.9
b
 3.1

a
 

61.6
d 

(51.8) 

48.3
cd

 

(44.0) 8.7
c
 8.2

a
 

ICC 506 EB (Resistant 

check) 

78.3
b
 

(62.5) 6.1
ab

 18.4
b
 3.1

a
 

65.0
d
 

(53.7) 

55.0
d
 

(47.8) 8.5
c
 9.1

a
 

Mean 62.9 6. 14.7 4.4 44.2 34.6 6.9 8.4 

SE + 4.1 0.2 3.1 0.4 3.0 3.9 0.5 4.7 

Fp <0.001 0.001 0.001 0.001 <0.001 <0.001 <0.001 0.40 

Vr 6.9 3.9 1.8 1.0 17.2 9.4 7.4 1.0 

LSD (P 0.05) 11.9* 0.8* NS NS 8.6* 11.3* 1.4* NS 

CV (%) 16.3 10.4 51.8 102.5 16.8 28.0 17.7 111.1 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. Figures in parenthesis are Angular transformed 

values. 



Table 4.37 (Conti.) 

 

 

Genotype 

 

0.05% 

Larval 

survival 

(%) 

Larval 

period 

(days) 

Mean grub 

weight (mg) 

Pupal 

period 

(days) 

Pupation 

(%) 

Adult 

emergence 

(%) 

Adult weight (mg) 

Male Female 

BS5A.1(T2) 18-1 

P1  

61.6
b
 

(50.8) 8.0
bc

 5.9
a
 4.3

b
 

41.6
c
 

(40.1) 

28.3
b
 

(34.1) 6.4
bc

 8.5
a
 

BS5A.1(T2) 18-2 

P1  

50.0
a
 

(45.0) 8.1
bc

 2.9
a
 4.5

b
 

35.0
bc 

(36.2) 

21.6
ab

 

(27.6) 6.3
bc

 8.3
a
 

BS5A.2(T2) 19-1 

P2  

43.3
a
 

(41.0) 9.3
c
 3.0

a
 4.5

b
 

26.6
ab 

(31.0) 

13.3
a
 

(39.1) 5.2
ab

 6.8
a
 

BS5A.2(T2) 19-2 

P1  

45.0
a
 

(42.0) 8.8
c
 4.1

a
 4.6

b
 

18.3
a 

(20.9) 

11.6
a
 

(25.3) 3.9
a
 5.7

a
 

BS5A.2(T2) 19-3 

P1  

45.0
a
 

(42.0) 8.0
bc

 4.5
a
 4.3

b
 

28.3
ab 

(31.5) 

16.6
ab

 

(32.0) 6.6
bc

 7.7
a
 

BS5A.2(T2) 19-3 

P2  

46.6
a
 

(43.0) 8.0
bc

 5.0
a
 4.0

b
 

28.3
ab

 

(32.1) 

13.3
a
 

(33.0) 6.3
bc

 7.9
a
 

Semsen (Control)  

81.6
c
 

(65.2) 6.6
ab

 15.8
b
 3.0

a
 

66.6
d 

(54.8) 

50.0
c
 

(44.0) 8.5
c
 9.8

a
 

ICC 506 EB 

(Resistant check) 

80.0
c
 

(63.6) 5.8
a
 16.2

b
 3.1

a
 

66.6
d
 

(54.7) 

48.3
c
 

(47.8) 8.4
c
 8.5

b
 

Mean  56.7 7.85 8.4 4.0 39.0 25.4 0.7 7.9 

SE + 3.7 0.5 2.7 0.2 3.8 4.2 1.9 5.0 

Fp <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.23 

Vr 17.8 4.6 4.8 5.3 22.5 13.2 4.7 1.4 

LSD (P 0.05) 10.8* 1.5* 7.8* 0.7* 11.0* 12.2* 6.5* NS 

CV (%) 16.4 16.3 79.8 16.6 24.3 41.4 26.2 124.6 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

Figures in parenthesis are Angular transformed values. 

 



Table 4.37 (Conti.) 

 

 

Genotype 

 

0.1% 

Larval 

survival 

(%) 

Larval 

period 

(days) 

Mean 

grub 

weight 

(mg) 

Pupal 

period 

(days) 

Pupation 

(%) 

Adult emergence 

(%) 
Adult weight (mg) 

Male Female 

BS5A.1(T2) 18-1 P1  

53.3
ab

 

(46.9) 5.8
a
 4.8

a
 3.3

ab
 

40.0
a
 

(38.9) 

30.0
bc

 

(32.5) 6.2
a
 9.2

a
 

BS5A.1(T2) 18-2 P1  

60.0
bc

 

(51.0) 5.6
a
 6.4

a
 3.3

ab
 

43.3
ab

 

(40.9) 

35.0
bcd

 

(35.8) 7.7
a
 10.4

a
 

BS5A.2(T2) 19-1 P2  

53.3
ab

 

(46.9) 5.6
a
 5.4

a
 3.5

ab
 

38.3
ab

 

(38.0) 

23.3
ab 

(28.5) 8.3
a
 10.6

a
 

BS5A.2(T2) 19-2 P1  

70.0
cd

 

(57.0) 5.5
a
 8.8

a
 4.0

b
 

43.3
a
 

(41.0) 

30.0
bc

 

(32.6) 8.7
a
 10.1

a
 

BS5A.2(T2) 19-3 P1  

50.0
ab

 

(45.0) 5.8
a
 5.1

a
 3.8

ab
 

35.0
a
 

(35.7) 

 20.0
ab

  

(18.0) 8.2
a
 9.0

a
 

BS5A.2(T2) 19-3 P2  

45.0
a
 

(42.0) 6.1
a
 4.7

a
 3.6

ab
 

33.3
a
 

(34.5) 

11.6
a
 

(26.0) 8.3
a
 9.2

a
 

Semsen (Control)  

71.6
cd

 

(58.0) 5.5
a
 23.5

b
 3.5

ab
 

60.0
b
 

(50.9) 

45.0
cd

 

(42.1) 13.2
a
 9.7

a
 

ICC 506 EB 

(Resistant check) 

75.0
d
 

(60.4) 5.3
a
 21.5

b
 3.1

a
 

61.6
b
 

(51.9) 

48.3
d
 

(43.8) 10.8
b
 9.3

a
 

 Mean  59.8 5.6 10.0 3.5 44.4 30.4 8.2 9.7 

SE + 4.3 0.3 1.9 0.2 6.1 5.2 2.3 0.5 

Fp <0.001 0.75 <0.001 0.14 0.01 <0.001 0.001 0.27 

Vr 6.5 0.6 16.3 1.7 3.0 5.4 3.9 1.3 

LSD (P 0.05) 12.5* NS 5.5* NS 17.6* 15.1* 6.8* NS 

CV (%) 17.9 14.3 47.1 14.8 34.0 42.5 57.1 13.1 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

  Figures in parenthesis are Angular transformed values. 

 



Table 4.38:  Indirect effect of Cry IIa transgenic chickpea lines on different biological parameters of the coccinellid, C. sexmaculatus 

reared on Bt  intoxicated artificial diet fed Aphis craccivora (ICRISAT, Patancheru 2012-2013). 

 

Genotype 

0.02% 

Larval 

survival 

(%) 

Larval 

period 

(days) 

Mean 

grub 

weight 

(mg) 

Pupal 

period 

(days) 

Pupation 

(%) 

Adult 

emergence 

(%) 

Adult weight (mg) 

Male Female 

BS5A.1(T2) 18-1 P1  

76.6
a 
 

(61.7) 9.0
c
 2.7

a
 3.6

b
 

70.0
b
 

(57.0) 

56.6
a  

(48.8)  6.1
ab

 8.5
ab

 

BS5A.1(T2) 18-2 P1  

73.3
a
  

(59.0) 8.3
c
 7.0

ab
 4.0

bc
 

63.3
ab

  

(52.7) 

50.0
a  

(45.0) 6.8
ab

 7.8
ab

 

BS5A.2(T2) 19-1 P2  

80.0
a
  

(63.9) 8.6
c
 5.8

ab
 4.3

c
 

66.6
b
  

(54.7) 

60.0
a  

(51.1) 5.9
ab

 8.6
ab

 

BS5A.2(T2) 19-2 P1  

70.0
a
  

(56.7) 9.0
c
 3.0

a
 3.0

a
 

70.0
b
 

 (56.7) 

63.3
a  

(53.0) 6.9
ab

 6.6
a
 

BS5A.2(T2) 19-3 P1  

76.6
a 
 

(61.7) 8.0
bc

 3.8
a
 3.0

a
 

56.6
ab

 

 (48.8) 

53.3
a  

(46.9) 7.7
bc

 9.1
ab

 

BS5A.2(T2) 19-3 P2  

76.6
a
 

 (61.7) 9.0
c
 8.9

ab
 3.0

a
 

36.6
a
  

(32.0) 

30.0
a 
  

 (32.5) 5.3
a
 7.0

ab
 

Semsen (Control)  

83.3
a
 

 (66.1) 6.6
a
 6.9

ab
 3.0

a
 

66.6
b
 

(54.7) 

50.0
a
  

(45.0) 6.4
ab

 8.8
ab

 

ICC 506 EB (Resistant 

check) 

83.3
a
  

(70.0) 7.0
ab

 11.2
b
 3.0

a
 

73.3
b
  

(59.7) 

63.3
a 

 
(53.0) 9.3

c
 9.4

b
 

Mean 77.5 8.2 6.2 3.4 62.9 56.2 6.8 8.3 

SE + 5.8 0.4 1.9 0.2 8.7 7.7 0.6 0.8 

Fp 0.723 0.002 0.074 <0.001 0.162 0.818 0.011 0.251 

Vr 0.6 6.3 2.4 11.6 1.8 0.5 4.2 1.5 

LSD (P 0.05) NS 1.1* 5.7* 0.4* NS NS 1.8* NS 

CV (%) 13.0 7.8 53.0 8.2 24.0 23.8 15.2 17.1 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. Figures in parenthesis are Angular transformed 

values 



Table 4.38 (Conti.) 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. Figures in parenthesis are Angular transformed      

values. 

 

 

 

 

Genotype 

 

0.05% 

Larval 

survival 

(%) 

Larval period 

(days) 

Mean grub 

weight (mg) 

Pupal period 

(days) 

Pupation 

(%) 

Adult emergence 

(%) 

Adult weight (mg) 

Male Female 

BS5A.1(T2) 18-1 P1  

50.0
a 
 

(45.0) 6.0
ab

 3.8
a
 3.3

ab
 

40.0
a 
 

(39.1) 

26.6
ab 

 
(31.0) 7.0

a
 9.6

a
 

BS5A.1(T2) 18-2 P1  

56.6
a
  

(48.8) 6.6
b
 4.7

ab
 3.0

a
 

36.6
a
  

(37.2) 

26.6
ab

  

(31.0) 7.5
a
 13.7

b
 

BS5A.2(T2) 19-1 P2  

56.6
a
 

(48.9) 6.0
ab

 4.6
ab

 3.3
ab

 

40.0
a
 

 (39.2) 

30.0
b  

(33.0) 6.8
a
 11.9

ab
 

BS5A.2(T2) 19-2 P1  

43.3
a
  

(41.1) 5.3
ab

 3.8
a
 4.0

b
 

40.0
a
  

(39.0) 

30.0
b  

(33.0) 6.6
a
 10.9

a
 

BS5A.2(T2) 19-3 P1  

60.0
a
 

 (50.7) 5.6
ab

 6.1
bc

 3.3
ab

 

50.0
a
  

(44.9) 

16.6
ab

  

(23.8) 6.7
a
 11.2

a
 

BS5A.2(T2) 19-3 P2  

53.3
a
  

(46.9) 6.3
ab

 7.3
c
 3.6

ab
 

40.0
a
  

(39.2) 

20.0
ab 

 (26.5) 6.7
a
 10.2

a
 

Semsen (Control)  

50.0
a
  

(45.0) 5.6
ab

 5.2
ab

 3.0
a
 

43.3
a
  

(41.0) 

13.3
a
  

(21.1) 5.2
a
 10.6

a
 

ICC 506  EB 

(Resistant check) 

60.0
a
  

(50.8) 5.0
a
 7.9

c
 3.0

a
 

46.6
a 
 

(43.0) 

23.3
ab

  

(28.2) 6.9
a
 10.5

a
 

 Mean  53.8 5.8 5.5 3.3 42.1 23.3 6.7 11.1 

SE + 5.0 0.5 0.6 0.2 6.9 4.4 0.8 0.7 

Fp 0.304 0.320 0.002 0.118 0.894 0.1 0.757 0.044 

Vr 1.3 1.3 5.9 2.0 0.3 1.94 0.59 2.8 

LSD (P 0.05) NS NS 1.9* NS NS NS NS NS 

CV (%) 16.0 13.9 20.2 12.9 28.7 32.9 21.9 11.6 



Table 4.38 (Conti.) 
 

 

 

Genotype 

 

0.1% 

Larval 

survival 

(%) 

Larval period 

(days) 

Mean grub 

weight (mg) 

Pupal period 

(days) 

Pupation 

(%) 

Adult emergence 

(%) 

Adult weight (mg) 

Male Female 

BS5A.1(T2) 18-1 P1  

60.0
ab

  

(50.8) 5.3
a
 5.5

a
 3.3

ab
 

53.3
a 
 

(46.9) 

43.3
ab

 

 (41.1) 6.0
a
 9.1

ab
 

BS5A.1(T2) 18-2 P1  

66.6
b
  

(55.0) 5.6
a
 6.6

a
 3.6

ab
 

56.6
a 
 

(48.9) 

46.6
b 
 

 (42.9) 8.6
ab

 10.8
bc

 

BS5A.2(T2) 19-1 P2  

60.0
ab

  

(50.7) 4.6
a
 5.9

a
 3.6

ab
 

50.0
a 
 

(45.0) 

33.3
ab

  

(35.2) 9.4a
bcd

 11.7
c
 

BS5A.2(T2) 19-2 P1  

70.0
b
  

(57.0) 5.0
a
 6.6

a
 3.6

ab
 

50.0
a 
 

(45.0) 

36.6
ab 

 

(37.2) 8.8
abc

 8.7
a
 

BS5A.2(T2) 19-3 P1  

60.0
ab

  

(50.8) 5.3
a
 6.6

a
 3.6

ab
 

50.0
a 
 

(45.0) 

36.6
ab 

 

(37.2) 8.6
ab

 8.4
a
 

BS5A.2(T2) 19-3 P2  

46.6
a 
 

(43.0) 5.6
a
 5.0

a
 3.6

ab
 

43.3
a 
 

(41.0) 

23.3
a  

 

(28.7) 8.8
abc

 9.0
ab

 

Semsen (Control)  

66.6
b 
 

(54.7) 5.6
a
 18.7

c
 3.0

a
 

56.6
a 
 

(48.8) 

36.6
ab 

 

(37.2) 17.3
bd

 8.5
a
 

ICC 506 EB 

(Resistant check) 

70.0
b 
 

(57.0) 5.0
a
 17.8

b
 4.0

b
 

56.6
a 
 

(48.9) 

40.0
ab

   

(38.8) 12.6
e
 9.0

ab
 

 Mean  62.5 5.3 10.4 3.6 52.1 37.1 12.6 9.5 

SE + 5.8 0.4 3.0 0.3 6.0 5.9 2.6 0.6 

Fp 0.176 0.418 <.001 0.338 0.742 0.276 <.001 0.011 

Vr 1.8 1.1 8.0 1.3 0.6 1.4 11.3 4.2 

LSD (P 0.05) NS NS 9.1* NS NS NS 7.9* 1.7* 

CV (%) 16.1 11.8 50.3 12.7 20 27.5 36 10.9 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. Figures in parenthesis are Angular transformed 

values. 



Table 4.39:  Indirect effect of Cry IIa transgenic chickpea lines on different biological parameters of the coccinellid, C. sexmaculatus 

reared on Bt intoxicated artificial diet fed Aphis craccivora (ICRISAT, Patancheru 2013-2014). 
 

Genotype 

0.02% 

Larval 

survival 

(%) 

Larval 

period 

(days) 

Mean grub 

weight (mg) 

Pupal 

period 

(days) 

Pupation 

(%) 

Adult 

emergence 

(%) 

Adult weight (mg) 

Male Female 

BS5A.1(T2) 18-1 P1 

76.6
b
  

(61.7) 6.6
bc

 6.6
a
 4.3

bc
 

56.6
abc

 

 (48.8) 

50.0
abc  

(45.0) 8.4
b
 8.0

a
 

BS5A.1(T2) 18-2 P1 

70.0
ab

 

(57.0)  5.6
ab

 10.4
a
 4.3

bc
 

50.0
ab

   

(45.0) 

50.0
abc

  

(45.0) 6.5
a
 8.4

ab
 

BS5A.2(T2) 19-1 P2 

60.0
a 
 

(50.7) 7.0
c
 8.5

a
 4.6

c
 

43.3
a 
  

(41.1) 

46.6
abc

  

(42.9) 7.7
ab

 8.7
abc

 

BS5A.2(T2) 19-2 P1 

83.3
b
 

 (66.1) 6.6
bc

 6.0
a
 4.3

bc
 

43.3
a
   

(41.1) 

36.6
a
  

(37.2) 7.0
a
 9.3

abc
 

BS5A.2(T2) 19-3 P1 

73.3
ab

  

(59.0) 6.6
bc

 5.5
a
 4.0

abc
 

66.6
cd

  

 (54.9) 

46.6
abc 

 (43.0) 7.6
ab

 10.1
bc

 

BS5A.2(T2) 19-3 P2 

83.3
b
 

(66.1) 7.3
c
 2.2

a
 4.0

abc
 

50.0
ab

   

(45.0) 

40.0
ab

 

 (39.2) 7.6
ab

 8.9
abc

 

Semsen (Control) 

83.3
b
 

 (66.1) 5.3
a
 12.1

b
 4.3

ab
 

63.3
bcd 

 

 (52.7) 

53.3
bc

  

(46.9) 9.9
c
 10.3

c
 

ICC 506 EB 

(Resistant check) 

83.3
b 

 

(66.1) 5.3
a
 12.3

b
 3.0

a
 

76.6
d 

  

(61.2) 

56.6
c
 

 (48.8) 10.5
c
 12.2

c
 

Mean 76.7 6.3 8.7 4.0 56.2 47.5 8.2 9.5 

SE + 4.2 0.4 2.4 0.4 4.3 4.8 0.4 0.6 

Fp 0.011 0.008 <0.001 0.112 <0.001 0.143 <0.001 0.002 

Vr 4.1 4.5 8.3 2.1 7.7 1.9 11.7 6.0 

LSD (P 0.05) 12.7* 1.1* 7.2* NS 13.0* NS 1.2* 1.6* 

CV (%) 9.5 10.0 35.1 16.8 13.2 17.4 8.6 10.0 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. Figures in parenthesis are Angular transformed 

values. 



Table 4.39 (Conti.) 

Genotype 

0.05% 

Larval 

survival             

(%) 

Larval 

period 

(days) 

Mean grub 

weight (mg) 

Pupal 

period 

(days) 

Pupation 

(%) 

Adult 

emergence 

(%) 

Adult weight (mg) 

Male Female 

BS5A.1(T2) 18-1 P1 

46.6
a
  

(43.0) 7.0
b
 5.3

a
 3.6

a
 

36.6
ab 

 
(37.2) 

26.6
ab

 

 (31.0) 6.5
a
 8.3

ab
 

BS5A.1(T2) 18-2 P1 

53.3
a
   

(46.9) 7.0
b
 9.3

a
 4.3

a
 

40.0
ab

  

(39.2) 

36.6
ab

  

(37.2) 7.0
ab

 9.3
abc

 

BS5A.2(T2) 19-1 P2 

46.6
a
  

(43.0) 6.0
ab

 8.4
a
 4.3

a
 

30.0
a
  

(33.0) 

30.0
ab

  

 (33.0) 7.7
abc

 10.3
bcd

 

BS5A.2(T2) 19-2 P1 

53.3
a
  

 (47.2) 5.3
a
 7.8

a
 4.3

a
 

43.3
ab

  

(41.0) 

36.6
ab

  

(37.1) 9.0
c
 7.0

a
 

BS5A.2(T2) 19-3 P1 

63.3
a
  

 (52.7) 6.0
ab

 5.8
a
 4.6

a
 

53.3
b
 

 (46.9) 

40.0
b 

  

(39.1) 7.2
abc

 9.0
abc

 

BS5A.2(T2) 19-3 P2 

56.6
a 
  

(48.8) 7.0
b
 8.7

a
 3.6

a
 

40.0
ab

  

(39.2) 

23.3
a
   

(28.7) 7.4
abc

 7.9
ab

 

Semsen (Control) 

60.0
a
  

 (50.8) 6.0
ab

 9.1
a
 3.6

a
 

50.0
ab  

(45.0) 

26.6
ab

 

 (31.0) 8.4
bc

 12.0
d
 

ICC 506 EB 

(Resistant check) 

63.3
a
  

 (53.0) 6.0
ab

 12.5
a
 4.3

a
 

50.0
ab  

(45.0) 

26.6
ab

  

(31.0) 7.8
abc

 11.7
cd

 

Mean 55.4 6.3 9.0 4.1 42.9 30.8 7.7 9.5 

SE + 7.1 0.4 2.3 0.6 6.1 4.8 0.5 0.8 

Fp 0.552 0.052 0.056 0.842 0.193 0.209 0.090 0.006 

Vr 0.9 2.7 2.7 0.5 1.7 1.6 2.3 4.8 

LSD (P 0.05) NS 1.1* 6.9* NS NS NS 1.6* 2.5* 

CV (%) 22.3 10.5 43.8 24.3 24.5 26.9 12.1 14.9 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

Figures in parenthesis are Angular transformed values. 

 



Table 4.39 (Conti.) 

 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

  Figures in parenthesis are Angular transformed values. 

 

 

 

 

Genotype 

 

0.1% 

Larval 

survival (%) 

Larval 

period 

(days) 

Mean 

grub 

weight 

(mg) 

Pupal 

period 

(days) 

Pupation 

(%) 

Adult 

emergence 

(%) 

Adult weight (mg) 

Male Female 

BS5A.1(T2) 18-1 P1  

46.6
a
  

(43.0) 6.3
a
 4.2

a
 3.3

ab
 

26.6
a 
 

(31.0) 

16.6
a
 

 (23.8) 6.5
a
 9.3

a
 

BS5A.1(T2) 18-2 P1  

53.3
a 
 

(46.9) 5.6
a
 6.2

ab
 3.0

a
 

30.0
a
  

(33.0) 

23.3
a
 

 (28.7) 6.9
a
 9.9

a
 

BS5A.2(T2) 19-1 P2  

46.6
a
 

 (43.0) 6.6
a
 5.0

ab
 3.3

ab
 

26.6
a
 

 (31.0) 

16.6
a
 

 (23.8) 7.3
a
 9.4

a
 

BS5A.2(T2) 19-2 P1  

70.0
b 
 

(57.0) 6.0
a
 11.1

b
 4.3

c
 

36.6
a
 

 (37.1) 

23.3
a
 

 (28.0) 8.6
a
 11.5

b
 

BS5A.2(T2) 19-3 P1  

40.0
a 
 

(39.2) 6.3
a
 3.7

a
 4.0

bc
 

20.0
a
 

 (26.5) 

10.0
a 
 

(18.4)  7.8
a
 9.7

a
 

BS5A.2(T2) 19-3 P2  

43.3
a 

 (41.0) 6.6
a
 4.4

a
 3.3

ab
 

23.3
a
 

 (28.0) 

20.0
a
  

(26.0) 7.8
a
 9.5

a
 

Semsen (Control)  

76.6
b
  

(61.2) 5.3
a
 18.4

c
 3.3

ab
 

63.3
b
  

(53.0) 

53.3
b
 

 (47.0) 9.1
a
 10.9

ab
 

ICC 506  EB 

(Resistant check) 

80.0
b
 

 (63.9) 5.6
a
 15.3

d
 3.3

ab
 

66.6
b 
 

(54.9) 

56.6
b
 

 (48.8) 9.1
a
 9.6

a
 

Mean  57.1 6.1 9.8 3.5 36.7 27.5 7.9 10.0 

SE + 5.1 0.4 1.9 0.3 6.4 5.6 0.8 0.5 

Fp <.001 0.224 <.001 0.072 <.001 <.001 0.208 0.194 

Vr 10.0 1.6 17.1 2.5 8.2 9.9 1.6 2.3 

LSD (P 0.05) 15.3* NS 5.8* 0.8* 19.2* 16.8* NS NS 

CV (%) 15.4 11.3 34.2 13.8 30.0 35.0 16.9 9.3 



Table 4.40:  Indirect effect of Cry IIa transgenic chickpea lines on different biological parameters of the coccinellid, C. sexmaculatus 

reared on Bt intoxicated artificial diet fed A. craccivora (ICRISAT, Patancheru 2013 and 2014) (pooled analysis). 
 

Genotype 

0.02% 

Larval 

survival 

(%) 

Larval 

period 

(days) 

Mean grub 

weight (mg) 

Pupal 

period 

(days) 

Pupation 

(%) 

Adult 

emergence 

(%) 

Adult weight (mg) 

 

Male Female 

BS5A.1(T2) 18-1 P1  

76.6
ab 

 

(61.7) 7.8
b
 4.6

a
 4.0

bc
 

63.3
bc

  

(52.9) 

53.3
a 
 

(46.9) 7.3
a
 8.2

a
 

BS5A.1(T2) 18-2 P1  

71.6
ab

 

 (58.0) 7.0
a
 8.7

ab
 4.1

bc
 

56.6
ab

  

(48.8) 

50.0
a 
 

(45.0) 6.6
a
 8.1

a
 

BS5A.2(T2) 19-1 P2  

70.0
a
 

 (57.3) 7.8
b
 7.1

a
 4.5

c
 

55.0
ab

 

 (47.9) 

53.3
a
  

(47.0) 6.8
a
 8.7

a
 

BS5A.2(T2) 19-2 P1  

76.6
ab 

 

(61.4) 7.8
b
 4.5

a
 3.6

ab
 

56.6
ab

  

(48.9) 

50.0
a 
 

(45.1) 7.0
a
 7.9

a
 

BS5A.2(T2) 19-3 P1  

75.0
ab 

 

(60.3) 7.3
ab

 4.6
a
 3.5

ab
 

61.6
bc

  

(51.9) 

50.0
a 
 

(45.0) 7.6
a
 9.6

ab
 

BS5A.2(T2) 19-3 P2  

80.0
ab 

 

(63.9) 8.1
b
 10.5

abc
 3.5

ab
 

43.3
a
 

 (38.5) 

46.6
a 
 

(43.0) 6.5
a
 7.9

a
 

Semsen (Control)  

83.3
b
 

 (66.1) 6.0
a
 14.5

bc
 3.1

a
 

65.0
bc 

 

(53.7) 

51.6
a 
 

(45.9) 8.2
a
 9.5

ab
 

ICC 506 EB 

(Resistant check) 

83.3
b
 

 (68.1) 6.1
a
 16.7

c
 3.0

a
 

75.0
c
  

(60.4) 

60.0
a 
 

(50.9) 9.9
b
 10.8

b
 

Mean  77.1 7.3 9.0 3.7 59.6 51.9 7.5 8.9 

SE + 3.8 0.5 2.1 0.3 5.5 4.9 0.5 0.6 

Fp 0.147 0.022 <.001 0.003 0.02 0.708 <.001 0.022 

Vr 1.7 2.7 5.0 3.8 2.8 0.7 4.5 2.7 

LSD (P 0.05) NS 1.4* 6.0* 0.7* 15.7* NS 1.5* 1.7* 

CV (%) 12.2 16.7 57.5 17.2 22.6 22.9 17.3 17 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

  Figures in parenthesis are Angular transformed values. 

 



Table 4.40 (Conti.) 
 

 

 

Genotype 

 

.05% 

Larval 

survival 

(%) 

Larval 

period 

(days) 

Mean grub 

weight (mg) 

Pupal period 

(days) 

Pupation 

(%) 

Adult emergence 

(%) 
Adult weight (mg) 

Male Female 

BS5A.1(T2) 18-1 

P1  

48.3
a 
 

(44.0) 6.5
bc

 4.6
a
 3.5

a
 

38.3
ab

  

(38.1) 

26.6
ab 

 

(31.0) 6.7
a
 8.9

a
 

BS5A.1(T2) 18-2 

P1  

55.0
abc 

 (47.8) 6.8
c
 7.0

a
 3.6

a
 

38.3
ab 

 

(38.2) 

31.6
ab

  

(34.1) 7.2
a
 11.5

a
 

BS5A.2(T2) 19-1 

P2  

51.6
abc  

(46.0) 6.0
abc

 6.5
a
 3.8

a
 

35.0
a 
 

(36.1) 

30.0
ab

  

(33.0) 7.3
a
 11.1

a
 

BS5A.2(T2) 19-2 

P1  

48.3
ab

  

(44.1) 5.3
a
 5.8

a
 4.1

a
 

41.6
ab 

 

(40.0) 

33.3
b
  

(35.0) 7.8
a
 9.0

a
 

BS5A.2(T2) 19-3 

P1  

61.6
ac 

 

(51.7) 5.8
ab

 6.0
a
 4.0

a
 

51.6
b
  

(45.9) 

28.3
ab 

 

(31.5) 6.9
a
 10.1

a
 

BS5A.2(T2) 19-3 

P2  

55.0
abc  

(47.8) 6.6
bc

 8.0
a
 3.6

a
 

40.0
ab

 

(39.2) 

21.6
ab 

 

(27.6) 7.0
a
 9.0

a
 

Semsen (Control)  

55.0
abc

  

(47.9) 5.8
ab

 7.1
a
 3.3

a
 

46.6
ab

  

(43.0) 

20.0
a
  

(26.0) 6.8
a
 11.3

a
 

ICC 506  EB 

(Resistant check) 

61.6
abc

  

(51.9) 5.5
a
 12.7

b
 3.6

a
 

48.3
ab

  

(44.0) 

25.0
ab

  

(29.6) 7.4
a
 11.1

a
 

Mean  54.6 6.1 7.3 3.7 42.5 27.1 7.2 10.3 

SE + 4.1 0.3 1.5 0.4 4.2 3.8 0.6 0.8 

Fp 0.168 0.005 0.020 0.781 0.093 0.18 0.933 0.064 

Vr 1.6 3.5 2.8 0.6 1.9 1.6 0.3 2.1 

LSD (P 0.05) NS 0.8* 1.4* NS 11.9* NS NS 2.2* 

CV (%) 18.4 11.9 49.7 23.3 24.0 34.1 19.4 18.4 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

Figures in parenthesis are Angular transformed values. 

 
 

 



Table 4.40 (Conti.) 

 

 

 

Genotype 

 

0.1% 

Larval 

surviva

l (%) 

Larval 

period 

(days) 

Mean 

grub 

weight 

(mg) 

Pupal period 

(days) 

Pupation 

(%) 

Adult 

emergence 

(%) 

Adult weight (mg) 

Male Female 

BS5A.1(T2) 18-1 P1 

53.3
ab

 

 (46.9) 5.8
a
 4.8

a
 3.3

ab
 

40.0
a 
 

(38.9) 

30.0
ab

  

(32.5) 6.2
a
 9.2

a
 

BS5A.1(T2) 18-2 P1 

60.0
bc

  

(51.0) 5.6
a
 6.4

a
 3.3

ab
 

43.3
ab 

 

(40.9) 

35.0
abc

  

(35.8) 7.7
a
 10.4

a
 

BS5A.2(T2) 19-1 P2 

53.3
ab

  

(46.9) 5.6
a
 5.4

a
 3.5

ab
 

38.3
a
 

 (38.0) 

25.0
a
  

(29.5) 8.3
a
 10.6

a
 

BS5A.2(T2) 19-2 P1 

70.0
cd

 

 (57.0) 5.5
a
 8.8

a
 4.0

b
 

43.3
ab

  

(41.0) 

30.0
ab

 

 (32.6) 8.7
a
 10.1

a
 

BS5A.2(T2) 19-3 P1 

50.0
ab

 

 (45.0) 5.8
a
 5.1

a
 3.8

ab
 

35.0
a 
 

(35.7) 

23.3
a 
 

(27.8) 8.2
a
 9.0

a
 

BS5A.2(T2) 19-3 P2 

45.0
a
  

(42.0) 6.1
a
 4.7

a
 3.5

ab
 

33.3
a 
  

(34.5) 

21.6
a 
 

(27.4) 8.3
a
 9.2

a
 

Semsen (Control) 

71.6
cd

 

 (58.0) 5.5
a
 13.5

a
 3.1

a
 

60 .0
b
 

 (50.9) 

45.0
bc

  

(42.1) 13.2
b
 9.7

a
 

ICC 506 EB 

(Resistant check) 

75.0
d
 

 (60.4) 5.3
a
 11.5

a
 3.6

ab
 

61.6
b 
 

(51.9) 

48.3
c
  

(43.8) 10.8
b
 9.3

a
 

Mean 59.8 5.7 5.1 3.5 44.4 32.3 10.2 9.7 

SE + 4.4 0.3 1.9 0.2 6.2 5.7 2.4 0.5 

Fp <.001 0.746 <.001 0.138 0.012 0.012 0.002 0.271 

Vr 6.5 0.6 16.4 1.7 3.1 3.0 4.0 1.3 

LSD (P 0.05) 12.5* NS 5.5* NS 17.6* 16.2* 6.8* NS 

CV (%) 17.9 14.3 47.1 14.8 34.0 43 57.1 13.1 

*Figures followed by the same letter within a column are not significantly different at P< 0.05. 

Figures in parenthesis are Angular transformed values. 



Chapter V 

SUMMARY AND CONCLUSIONS  

The studies on “Characterization of Cry IIa transgenic chickpea lines and their 

interaction with natural enemies of Helicoverpa armigera (Hubner)” were conducted in the 

glasshouse and under laboratory conditions at the International Crops Research Institute for 

Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India, during 2011-14. 

The transgenic plants suffered significantly lower leaf damage as compared to the 

non-transgenic plants. The larval survival and weight gained by H. armigera larvae after 5 

days was significantly reduced on transgenic lines as compared to that on non-transgenic 

chickpeas during October and November plantings of 2011-12 and 2012-13.  

Among the transgenic plants tested, significantly lower leaf damage rating, larval 

survival and mean larval weight was observed on BS5A.2(T2) 19-2P1. Similarly, during 

November planting across the seasons (2011-12 and 2012-13), the transgenic lines 

BS5A.2(T2) 19-1P2 and BS5A.2(T2) 19-2P1 exhibited significantly lower leaf damage 

rating, larval survival and mean larval weight under laboratory conditions. 

In glasshouse conditions, BS5A.1(T2) 18-1P1 suffered significantly lower leaf 

damage and mean larval weight was also reduced. The larval survival of H. armigera was 

significantly reduced on  BS5A.2(T2) 19-2P1. Significant differences in grain yield were 

observed between transgenic and non-transgenic plants infested with H. armigera. The dry 

matter weight, pod weight, seed weight and number of seeds formed were significantly more 

on transgenic lines as compared to that on non-transgenic chickpea plants. BS5A.2(T2) 19-

2P1 had the highest dry matter weight, pod weight, seed weight and number of seeds formed 

as compared to the other transgenic and non-transgenic chickpea lines under infested and un-

infested conditions.  

From the present study, it is clear that the survival and development of H. armigera 

larvae was significantly lower on transgenic chickpea diets as compared to those reared on 

non-transgenic chickpea diets. During 2012-13, when the neonate larvae were fed on artificial 

diet with BS5A.2(T2) 19-2P1 leaf powder they exhibited lowest larval survival, larval 

weights at 5 and 10 DAI and pupal weights as compared to insects reared on diets with leaf 

powder of non-transgenic plants. Insects reared on diets with BS5A.2(T2) 19-2P1 leaf 

powder showed maximum resistance to H. armigera.  

The survival and development of H. armigera was significantly better when reared on 

the standard artificial diet compared to those reared on diets with lyophilized leaf powders of 



transgenic and non-transgenic chickpeas. Compared to the first season 2011-12, the survival 

and development of third-instar H. armigera during 2012-13 was significantly reduced in 

insects reared on diets with leaf powder of  transgenic chickpea BS5A.1(T2) 18-1P1 as 

against those reared on non-transgenic chickpea ICC 506EB.   

The transgenic line BS5A.1(T2) 18-1P1 showed high levels of resistance to  third-

instar larvae of H. armigera. The survival and development of H. armigera neonate larvae 

reared on diets with leaf powder of transgenic chickpea was very poor as compared to third-

instar larvae.  

Maximum amount of protein was recorded in ICC 506EB and among the transgenic lines, 

the protein content was highest in BS5A.1(T2) 18-2P1. The amounts of carbohydrates were 

significantly higher in the leaves of ICC 506EB as compared to that on transgenic lines. The 

highest amount of lipids were recorded in BS5A.2(T2) 19-3P1 than in BS5A.2(T2) 19-3P2. 

There were no significant differences in phenol and tannin contents between the transgenic 

and non transgenic chickpea lines. 

The protein content was negatively correlated with larval survival, larval weight and leaf 

damage rating. Significant positive correlation was observed between carbohydrate content 

and leaf damage. Negative, non-significant relationship of phenols was observed with leaf 

damage, larval survival and larval weight. There was a negative significant association of 

tannins with leaf feeding damage, larval survival and larval weight. 

Significantly higher amounts of oxalic acid were recorded in BS5A.2(T2) 19-1P2 and 

BS5A.2(T2) 19-3P1 than in BS5A.2(T2) 19-2P1. Highest malic acid content was recorded on 

BS5A.1(T2) 18-1P1 and lowest on BS5A.2(T2) 19-3P2.  

Among the non-transgenics, the maximum amount of oxalic acid was observed in ICC 

506EB, followed by Semsen. Oxalic acid content was positively correlated with larval 

survival and larval weight. A significant and negative association was observed between the 

amounts of the malic acid and leaf feeding, larval survival and larval weight.  

Chlorogenic acid content was significantly greater in BS5A.2(T2) 19-2P1 as 

compared to BS5A.1(T2) 18-1P1. Gentisic acid content was highest in BS5A.2(T2) 19-2P1, 

while in BS5A.2 (T2) 19-1P2 had the lowest. Maximum amount of phloretic acid was 

recorded in BS5A.1(T2) 18-2P1 and least in BS5A.2(T2) 19-3P2. The amount of ferulic acid 

was greater in Semsen than in BS5A.2(T2) 19-1P2  and ICC 506EB. 

Naringin content was highest in ICC 506EB, while it was lowest in BS5A.1(T2) 18-

2P1, but below detectable limits in BS5A.1(T2) 18-1P1 and Semsen. Maximum amounts of 



3,4 dihydroxy flavone, quercetin, naringenin, formononetin and biochanin A were recorded 

in Semsen. 

Among the transgenic lines tested, the amount of 3,4 dihydroxy flavone was 

maximum in BS5A.2(T2) 19-3P2 and quercetin was significantly higher in BS5A.1(T2) 18-

2P2 as compared to BS5A.1(T2) 18-1P1. Naringenin content was highest in BS5A.2(T2) 19-

2P1 and lowest amount in BS5A.2(T2) 19-3P1 and was nil in BS5A.2(T2) 19-1P2, and ICC 

506EB.  

In the leaves of BS5A.2(T2) 19-3P2 genistein content was highest and in BS5A.1(T2) 

18-1P1 had the lowest amounts. In BS5A.2(T2) 19-3P2 had the highest amount of 

formononetin, while lowest amount was recorded in BS5A.2(T2) 19-3P1. Maximum amount 

of biochanin A was recorded in BS5A.1(T2) 18-2P1 and BS5A.1(T2) 18-1P1 and least was in 

BS5A.2(T2) 19-1P2 while nil in BS5A.2(T2) 19-3P1. 

Chlorogenic acid, gentisic acid, ferulic acid, naringin, naringenin and quercetin had a 

positive but non-significant correlation with resistance to H. armigera. There was a positive 

and significant association between 3,4 dihydroxy flavone, genistein, formononetin and 

biochanin A with leaf damage, larval survival and larval weight. 

           The amount of CryIIa protein was highest in the fresh leaf samples, followed by green 

pod wall, green seeds, dry pod wall, dry seeds and dry stems. In dry roots the protein 

concentration was quite low whereas in soil samples, it was below detectable levels. The 

CryIIa protein content was significantly higher in larvae fed on BS5A.2 (T2) 19-2P1 and 

BS5A.1 (T2) 18-1P1. The CryIIa protein in Bt fed aphids, coccinellid grubs and Bt fed C. 

chlorideae larvae was almost nil. Hence, the amount of CryIIa protein transferred from leaves 

to the non-target insects and natural enemies was negligible.   

             In both the seasons (2011-12 and 2012-13), the correlation co-efficient of CryIIa 

protein in fresh leaf, green pod wall, green seeds, dry pod wall, dry seeds, dry stems, dry 

roots and H. armigera larvae with leaf damage, larval survival and larval weight was negative 

and significant. 

   Among the transgenic lines tested, during October 2011-12 planting, a significant 

increase in egg+larval period, post embryonic development period and reduction in cocoon 

formation, adult emergence, adult longevity, adult weights, sex ratio and fecundity was 

recorded in C. chlorideae reared on H. armigera fed on leaves of BS5A.1(T2) 18-1P1 and 

BS5A.2(T2) 19-1P2. There was a prolongation of egg+larval period, pupal period and 

reduction in adult longevity, weights and sex ratio, and increase in cocoon formation of C. 



chlorideae reared on H. armigera fed on leaves of BS5A.2(T2) 19-3P1 and BS5A.2(T2) 19-

3P2 during October 2012-13 planting.  

During November 2011-12 planting, among the transgenic lines tested, the survival 

and development of C. chlorideae was significantly better when reared on H. armigera fed on 

leaves of BS5A.2(T2) 19-1P2 and BS5A.2(T2) 19-3P1. Among the transgenic lines tested, 

the survival and development of C. chlorideae was significantly better when reared on H. 

armigera fed on leaves of BS5A.1(T2) 18-1P1 and BS5A.2(T2) 19-2P1 as compared to that 

on other transgenic lines during November 2012-13 planting. 

The survival and development of parasitoids were affected when reared on H. 

armigera larvae fed on diets with transgenic BS5A.2(T2) 19-1P2 and BS5A.2(T2) 19-3P1 

leaf powder as compared to that on other transgenics lines during 2011-12. Survival and 

development of C. chlorideae wasps obtained from H. armigera larvae fed on diets with 

transgenic BS5A.1(T2) 18-1P1, BS5A.1(T2) 18-2P1 and BS5A.2(T2) 19-3P1 leaf powder 

was better as compared to that on BS5A.2(T2) 19-1P2 and BS5A.2(T2) 19-3P2 lines during 

2012-13. 

No CryIIa protein was detected in the C. chlorideae larvae, the negative effects of 

transgenic chickpeas on survival and development of C. chlorideae were due to the early 

mortality of H. armigera as a result the parasitoids failed to complete the development on 

such larvae. The survival and development of C. chlorideae was poorer when reared on H. 

armigera larvae fed on fresh leaf samples than the artificial diets intoxicated with transgenic 

chickpea leaf powders.  

In diets having 0.02% and 0.05% leaf powder, the survival and development of 

coccinellids was greater when reared on BS5A.1(T2) 18-1P1 intoxicated diet as compared to 

that on the other transgenic lines tested during 2012-13. The survival and development of 

coccinellid was significantly affected when fed on diets intoxicated with BS5A.1(T2) 18-1P1 

leaf powder but better survival was recorded on BS5A.1(T2) 18-2P1 and BS5A.2(T2) 19-

3P2. In general, the direct effects on coccinellids were greater when fed on 0.1% Bt 

intoxicated diet, followed by diets with 0.05% and 0.02% Bt. 

Among the transgenic lines tested, coccinellids were least affected when fed on 

BS5A.1(T2) 18-1P1 and BS5A.1(T2) 18-2P1 intoxicated leaf powder diets as compared to 

those fed on BS5A.2(T2) 19-2P1. The survival and development of the coccinellids was 

significantly reduced when fed on diet with 0.1% transgenic chickpea BS5A.1(T2) 18-2P1 

leaf powder as compared to that on BS5A.2(T2) 19-2P1 during 2013-14.  



The survival and development of coccinellids was reduced when fed on diets with 

0.1% of BS5A.2 (T2) 19-3P1 and BS5A.2 (T2) 19-3P2 leaf powder, but not on diets with 

BS5A.1(T2) 18-2P1 leaf powder, the direct effects of transgenic chickpeas on survival and 

development of lady bird beetles were 0.02% < 0.05% < 0.1%.  

In general, there were no significant effects on survival and development of 

coccinellid grubs when fed on aphids reared on diets with 0.02% and 0.1% leaf powder of 

transgenic chickpeas. The survival and development was slightly affected on diets with 

BS5A.2(T2) 19-3P2 leaf powder. The coccinellids fed on diets with 0.05% BS5A.2(T2) 19-

3P1 leaf powder showed a marginal reduction in survival and development as compared to 

that on other transgenic lines during 2012-13.  

The survival and development of coccinellids were slightly affected when fed on diets 

with BS5A.2(T2) 19-3P2 leaf powder as compared to that on other transgenic lines. In diets 

with 0.1%, the survival and development was affected adversely when the coccinellid grubs 

were fed on diets with BS5A.2(T2) 19-3P1 leaf powder during 2013-14.  

The survival and development of coccinellid grubs were slightly affected when reared 

on aphids fed on diets with different concentrations (0.02%, 0.05% and 0.1%) of transgenic 

chickpea leaf powder. 

From the present studies it can be concluded that  

 The transgenic plants suffered significantly lower leaf damage as compared to the 

non-transgenic plants.  

 The larval survival and weight gained by H. armigera larvae after 5 days was 

significantly reduced on transgenic lines as compared to that on non-transgenic 

chickpeas.  

 Significantly higher grain yield was recorded in transgenic plants when infested with 

H. armigera as compared to non-transgenic chickpeas.  

 The survival and development of H. armigera larvae was significantly lower on 

transgenic chickpea diets as compared to those reared on non-transgenic chickpea 

diets. 

 The neonates reared on diets with BS5A.2(T2) 19-2P1 and BS5A.1(T2) 18-1P1 leaf 

powder showed maximum resistance to H. armigera and BS5A.1(T2) 18-1P1 showed 

high levels of resistance to  third-instar larvae of H. armigera.  



 The survival and development of H. armigera neonate larvae reared on diets with leaf 

powder of transgenic chickpea was very poor as compared to third-instar larvae.  

 The amount of proteins, carbohydrates, lipids, phenols and tannins were non-

significant between the transgenic and non-transgenic chickpea lines. 

 The protein content was negatively correlated with larval survival, larval weight and 

leaf damage rating.  

 Significantly higher amounts of oxalic acid were recorded in BS5A.2(T2) 19-1P2 and 

BS5A.2(T2) 19-3P1 than in BS5A.2(T2) 19-2P1. Highest malic acid content was 

recorded on BS5A.1(T2) 18-1P1 and lowest on BS5A.2(T2) 19-3P2.  

 Chlorogenic acid, gentisic acid, ferulic acid, naringin, naringenin and quercetin had a 

positive but non-significant correlation with resistance to H. armigera.  

 There was a positive and significant association between 3,4 dihydroxy flavone, 

genistein, formononetin and biochanin A with leaf damage, larval survival and larval 

weight. 

 The amount of CryIIa protein was highest in the fresh leaf samples, followed by green 

pod wall, green seeds, dry pod wall, dry seeds and dry stems. 

 The amount of CryIIa protein transferred from leaves to the non-target insects and 

natural enemies were negligible. 

 A significant increase in egg+larval period, post embryonic development period, 

pupal period and reduction in cocoon formation, adult emergence, adult longevity, 

adult weights and fecundity of C. chlorideae when reared on H. armigera fed on fresh 

leaves of transgenic lines. 

 The survival and development of parasitoids were affected when reared on H. 

armigera larvae fed on diets with transgenic BS5A.2(T2) 19-1P2 and BS5A.2(T2) 19-

3P1 leaf powder as compared to that on other transgenics lines. 

 No CryIIa protein was detected in the C. chlorideae larvae, the negative effects of 

transgenic chickpeas on survival and development of C. chlorideae were due to the 

early mortality of H. armigera as a result the parasitoids failed to complete the 

development on such larvae.  



 The survival and development of C. chlorideae was poorer when reared on H. 

armigera larvae fed on fresh leaf samples than the artificial diets intoxicated with 

transgenic chickpea leaf powders.  

 The direct effects on coccinellids were greater when fed on 0.1% Bt intoxicated diet, 

followed by diets with 0.05% and 0.02% transgenic leaf powder. 

 The coccinellids fed on diets with 0.05% BS5A.2(T2) 19-3P1 leaf powder showed a 

marginal reduction in survival and development as compared to that on other 

transgenic lines. 

 The survival and development of coccinellid grubs were slightly affected when reared 

on aphids fed on diets with different concentrations (0.02%, 0.05% and 0.1%) of 

transgenic chickpea leaf powder. 
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