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Abstract

This paper reviews the responses o f sorghum and pearl millet seedlings to abiotic 
stress and considers the implications for crop production, particularly with respect to 
the arid and semi-arid tropics. The growing season in much o f this area is characterized 
by high temperatures, high evaporative demand, unreliable and irregular rainfall, and 
soils o f poor structure, low fertility, and low water-holding capacity.. Poor seedbed 
preparation and inadequate sowing methods can increase the likelihood o f abiotic 
stresses developing. Such conditions result in reduced seedling growth rates/ injury, and 
ultimately mortality during the germination and seedling emergence stages. The wide 
range o f causes o f stand failure means there is no single solution. For a given target 
environment it is necessary to define the reasons for a stand establishment problem and 
to understand the requirements o f the farmer. Genetic variation for seedling stress 
tolerance, however, has been shown to exist in both sorghum andpearl millet. Screening 
techniques have been developed and used in population improvement programs and in 
identification o f molecular markers linked to the thermotolerance trait. Potential thus
exists fo r  the genetic improvement o f these crops for survival o f  abiotic stresses to
complement solutions brought about by changes in agronomic practice.

Failure of seedling establishment is a 
major factor limiting crop production.
This paper discusses the main environ
mental causes of crop establishment fail
ure in pearl millet \Pennisetum glaucum 
(L.) R.Br.] and sorghum \Sorghum bi
color (L.) Moench] in the semi-arid and 
arid tropics. Rain-fed agriculture pre
dominates in these areas of South Asia 
and the Sahelian-Sudanian zone of Af
rica; sorghum characteristically is grown 
where mean annual rainfall is 600-1000 
mm and pearl millet in areas where the 
mean is from 200-600 mm per year (Si-
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vakumar et al., 1984; Spencer and Sivaku- 
mar, 1987). The mean rainfall is not only 
low (and evaporative demand high), but 
also very erratic in its distribution through 
the growing season and variable between 
years. Pearl millet is one of the most 
drought- and heat-tolerant grasses to be 
domesticated. Its progenitors were desert 
grasses found on the southern fringes of 
the Sahara; pearl millet landraces have 
grown in the Sahel since 3000 BC and 
probably in India for some 2500 years 
(Branken etal., 1977; de Wet etal., 1992). 
It is still primarily grown by subsistence 
farmers under harsh environmental condi
tions where no other cereal can be grown; 
it may be described as a crop of necessity 
ra th e r than choice (B id inger and 
Parthasarathy Rao, 1990).
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If  pearl millet and sorghum are already 
so well-adapted, why is improvement 
needed? It is not so much a question of 
improving the adaptive range, but of im
proving yield and yield stability under 
conditions of abiotic stress. Improve
ments in yield and yield potential are well 
documented (e.g., Harinarayana, 1987), 
but these are expressed under favorable 
conditions quite unlike those encountered 
in many farmers’ fields in marginal envi
ronments. Adaptation to specific environ
mental stresses is a larger determinant of 
crop yield than is yield potential in these 
environments (Evans, 1993). Both im
proved hybrids and open pollinated varie
ties do not necessarily possess the stress 
tolerance of landraces with low grain 
yield potential and may have no yield 
advantage over traditional landraces in 
these harsh environments (Weltzien and 
Witcombe, 1989; Bidinger et al., 1994; 
Yadav, 1994).

Although modem cultivars account for 
more than 50% of the area sown to pearl 
millet in India as a whole, adoption has 
been limited in locations with lower and 
less reliable rainfall. In these areas pearl 
millet is the staple cereal crop and mean 
yields remained unchanged from 1956 to 
1988 at 144 kg ha'1, with grain yields of 
50 kg/ha not uncommon (Gupta et al.,
1992). An increasing unpredictability of 
yield also was found over this time period. 
In sub-Saharan Africa, adoption of im
proved pearl millet cultivars is limited for 
many reasons (Bidinger and Partha- 
sarathy Rao, 1990; Ouendeba et al.,
1995). Plant breeders may be unfamiliar 
with the specific production conditions 
and thus may have set inappropriate goals 
(Haugerud and Collinson, 1990). Farmers 
in Rajasthan indicated that they have not

adopted improved cultivars of pearl millet 
primarily because of poor grain yield in 
low rainfall years (Kelley et al., 1996). 
Poor stand establishment and straw yield 
were other important characteristics 
(Weltzien et al., 1996). Genetic advances 
achieved under favorable conditions and 
using elite breeding material do not nec
essarily benefit farmers in marginal areas 
(Weltzien and Fischbeck, 1990). Re
search with pearl millet has shown it is 
possible, however, to produce landrace- 
based topcross hybrids that combine the 
stress adaptation of indigenous landraces 
with the improved yield potential from 
elite male sterile lines (Bidinger et al., 
1994; Yadav and Manga, 1995). Consid
erable genetic diversity exists for survival 
of abiotic stresses, no doubt due to selec
tion in response to local environmental 
conditions. Blum and Sullivan (1986) 
found that landraces of sorghum and mil
let that had evolved in dry regions tended 
to be more drought-resistant than races 
that evolved in humid regions. Today as 
human populations increase, traditional 
management practices and landraces may 
not be sufficient.

Abiotic Causes of Crop 
Establishment Failure

Despite the level of environmental ad
aptation that both pearl millet and sor
ghum display, failure of seedling estab
lishment due to abiotic stress is a major 
problem. The environmental sensitivity 
of a plant varies throughout its develop
ment (Levitt, 1980), but the seedling 
phase is particularly vulnerable. The 
growing season in much of the arid and 
semi-arid tropics is characterized by high 
temperatures, high radiation, high evapo
rative demand, unreliable and irregular
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rainfall, and soils of poor structure, low 
fertility, and low water-holding capacity. 
Farmers sow on the first significant rain
fall of the monsoon. The timing of the 
onset of the monsoon is variable both in 
time and place (Van Oosterom et al.,
1996). A hot, diy seedbed environment 
during crop establishment is very likely, 
with soil surface temperatures often 
greater than 55°C (Figure 1; Gupta, 1986; 
Hoogmoed and Klaij, 1990; Peacock et 
al., 1993).

For a farmer in such environments, the 
timing of seed sowing is critical. If  the 
farmer chooses to sow after an early, pre

monsoon rain, seedbed conditions will be 
extremely hot and there is high risk of low 
moisture availability without subsequent 
substantial rainfall. Delay in sowing after 
rain can result in insufficient moisture in 
the seed zone of the soil for germination 
to take place. In the sandy soils of many 
pearl millet growing environments, mois
ture depletion to less than 2% often occurs 
three to four days after rainfall (Peacock 
et al., 1990). If sowing is delayed until a 
later rain, chances of drought stress at the 
end of the season are greater. Van Oos
terom et al. (1996) calculated the prob
ability of an 80-day rainy season based on 
sowing date, and found if planting were
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Figure 1. Maximum daily temperature recorded for each day of the first two weeks after sowing 

in June 1991, at Fatehpur-Shekhawati Research Station, Rajasthan Agricultural Uni
versity, India. Measurements were taken of air temperature ( • )  and soil temperatures 
at depths of 0.5 cm (■); 1.5 cm (A); and 5 cm (♦). Each temperature point is the mean 
of three readings.
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delayed from early June to late June, the 
probability dropped from over 80% to less 
than 50% in most sites in Rajasthan. By 
mid July, the probability was 20% or less 
in all sites. Thus if resowing has to take 
place due to poor crop establishment, the 
risks of crop failure increase because the 
length of the growing season is reduced. 
In addition, soil nitrate availability is de
creased due to leaching (Greenland, 
1958). Late planting results in lower grain 
yields (Krause et al., 1990; Maiti and 
Soto, 1990), although Reddy and Yisser
(1993) found differences between geno
types in the yield reduction of both straw 
and grain as influenced by sowing date. 
Re-sowing also places additional de
mands on labor and seed.

Poor stand establishment results not 
only in sub-optimal plant populations in 
farmers’ fields but also in an uneven dis
tribution o f plants (Soman et al., 1987a). 
Although the tillering capacity of pearl 
millet might enable it to compensate bet
ter than sorghum for variation in plant 
population, controlled experiments simu
lating the range o f plant populations and 
spacing found in farmers’ fields indicated 
that yields were greatly reduced by un
even plant spacing; the same total plant 
population yielded 47% less in an uneven 
spacing compared to the control. No 
amount of favorable weather during the 
growing season can compensate for the 
poor plant stands so common in the semi- 
arid tropics. Farmers often use high seed
ing rates, which could compensate for 
seedling survival of only 50%, but often 
stands of 10% or lower are found in farm
ers’ fields (Soman et al., 1987b).

Seedling death can occur at one of three 
defined stages in crop establishment: ger

mination, emergence, and post emer
gence. Table 1 summarizes the major 
causes. We will consider the sensitivities 
of these crops to abiotic stresses at each of 
these stages and describe the screening 
techniques available. The prevalent cli
matic variables must be characterized in 
detail to help explain what actually af
fects seedling growth and survival. Mean 
maximum air temperatures in July range 
from 30 to 35°C for sorghum growing 
areas, and from 3 5 to 40°C in millet grow
ing areas (Sivakurtiar et al., 1984). Sum
mary environmental data can appear to 
minimize the problem; mean daily air 
temperature or even mean maximal daily 
air temperatures do not indicate diurnal 
variations in temperature, nor the absolute 
extremes reached. Moreover, the tem
peratures actually encountered by the ger
minating and emerging seedling must be

Table 1. Causes of crop establishment failure 
_________ at different developmental stages.

A. Germination
♦ Seed quality

O maturation conditions 
0 maturity 
0 threshing damage 
0 storage conditions 
0 seed treatment 
0 dormancy 
O viability

♦ Moisture availability
♦ Temperature
B. Emergence
♦ Sewing depth
♦ Temperature
♦ Moisture Availability
♦ Soil surface crusting/compaction

C. Seedling Survival
♦ Temperature
♦ Moisture availability/Flooding
♦ Soil nutrient status
♦ Wind/ sand blast
♦ Radiation
♦ Humidity
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considered. Figure 2 presents the diurnal 
temperature cycle in Rajasthan five days 
after sowing. Although a maximum air 
temperature of approximately 46°C was 
measured, soil temperatures at 0.5 cm 
depth varied from nearly 60°C at mid-day 
to a pre-dawn minimum of less than 20°C. 
At 5 cm depth (where seed is sown), the 
temperature ranged from 28 to 44°C dur
ing a 24-hour period. Greater depths (10 
cm depth) were more buffered, but even 
so, a maximum of 40°C was detected. In 
many reports, detailed temperature meas
urements are not presented, making it dif
ficult to interpret the reasons for seedling 
death.

The conditions for seedling estab
lishment are hardly ideal in the semi-arid 
tropics. After the initial planting rain, and 
in the absence of subsequent rain, the soil 
surface rapidly dries out and gets hotter 
and hotter (Figure 1). The drying surface 
layers mean roots have to rapidly grow to 
access soil moisture. The shoot often has 
to penetrate a soil surface crust, and once 
emerged, the shoot is exposed to extremes 
of temperature, low humidity, high radia
tion, and wind. The sowing methods used 
by farmers, particularly when mecha
nized, are not ideal; the sowing.implement 
used does not firm the soil around the 
seed, and drier soil from the surface re-
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Figure 2. Diurnal temperature data recorded 5 days after sowing in June 1989 at Fatehpur, 
Rajasthan. Each measurement is the mean value of three thermocouples placed at either 
10 cm (<>), 5 cm (•) , or 0.5 cm (■) depth of soil; or 150 cm above the soil surface (A).
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duces the average seed zone moisture con
tent The loose structure of sandy soil 
compounds this. Compacted soil around 
the seed would improve moisture migra
tion from the soil to the seed. Even if 
farmers in the semi-arid tropics used im
proved soil preparation and planting tech
nologies, genetic improvements that in
crease adaptation to the physical con
straints to stand establishment would 
improve resultant stands.

Once the abiotic factors limiting stand 
establishment in farmers ’ fields have been 
defined, the genetic variation available for 
a given trait must be determined to ascer
tain the possibilities fo r . improvement. 
Screening techniques are required to char
acterize this variation, to identify appro
priate breeding material, and ultimately to 
select for improved adaptation. The tech
nique used for routine screening must be 
applicable for large numbers; economi
cal, rapid, and straightforward to assess; 
and able to detect heritable genetic differ
ences. Screening also needs to fit into a 
fixed calendar determined by other as
pects of a breeding program. Screening 
techniques in general can be based in 
either the field or the laboratory.

Screening in the target environment 
has the advantage of using relevant stress 
levels. However, there are many difficul
ties with respect to field screening, par
ticularly in relation to abiotic stress. The 
natural climate is not always reliable and 
is certainly variable both day to day and 
year to year; screening often is limited to 
small portions of the year; and the target 
environment is not always conveniently 
situated. Laboratory screening is not af
fected by these problems and can be con
ducted under controlled conditions with

out being subject to the variability of the 
natural environment. Laboratoiy-based 
screening often targets one aspect of re
sponse to stress, not the integrated effects 
of the environment on many physiologi
cal and developmental processes. Dis
secting a complex process such as seed
ling survival of stress into component 
parts that are under simpler genetic con
trol should permit rapid and precise im
provement. An understanding o f the 
physiology of seedling response to stress 
is required to enable the development of 
such screening techniques. It is important, 
however, that a laboratory-based tech
nique have a significant relationship to 
field performance. Although the effects of 
heat and drought are often examined sepa
rately, in the field these stresses fre
quently occur concurrently, along with 
low fertility, and the interactions between 
these stresses must be considered as well. 
For example, reduced water supplies may 
result in heat injury due to reduced tran- 
spirational cooling.

Germination

Without adequate germination, no 
seedling establishment is possible. Seeds 
can fail to germinate due to problems with 
viability as well as abiotic stress. Soman 
et al. (1987b) found that the germination 
of seeds that emerged poorly in farmers’ 
fields was excellent under standard labo
ratory conditions. However, many fac
tors, both management and environ
mental, affect the germinability of seeds, 
as indicated in Table 1. Harvest of imma
ture pearl millet seed can limit subsequent 
germination and seedling vigor, although 
Appa Rao et al. (1993) found full ger
minability by 21 days after pollination. By 
28 days, maximum dry matter accumula
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tion had occurred and subsequent seed
ling vigor was maximal. This confirmed 
the results of Fussell and Pearson (1980) 
who found that harvest at or after the 
middle of grain filling did not reduce seed 
viability. They suggested that this robust
ness of the grain-filling process and early 
viability of seeds confer ecological ad
vantage to a crop grown in semi-arid cli
mates where grain development may be 
terminated by drought or high tempera
tures. However, longevity of germinabil- 
ity was found to be maximal if seeds were 
allowed to mature for at least 3 5 days after 
pollination (KameswaraRao et al., 1991). 
Immature sorghum seeds also reach a high 
germination capacity by two weeks be
fore physiological maturity (Maiti et al., 
1985; Mora-Aguilar et al., 1992). Sor
ghum seeds developing on plants sub
jected to drought stress showed a high 
level of germination earlier in the matura
tion period as compared to control seeds 
(Benech-Arnold et al., 1991).

Pre-harvest sprouting also leads to loss 
of seed viability (Maiti et al., 1985). Ger- 
minability has also long been known to be 
affected by environmental conditions ex
perienced by the mother plant during 
grain filling (Clark et al., 1967). The in
fluence of environment during the devel
opment and maturation of seeds is evi
denced by the difference in seedling re
sponses of seed produced in different 
seasons and/or sites (Peacock et al., 
1993). This must be considered when as
sessing seedling characteristics of differ
ent genotypes of both sorghum and pearl 
millet. In addition, Lawlor et al. (1990) 
showed that the production environment 
influenced the minimum temperatures for 
germination and root elongation of sor
ghum seedlings. There are few reported

studies on the influence of high tempera
tures during grain filling on subsequent 
seed germination. Both Fussell and Pear
son (1980) and Mohamed et al. (1985) 
examined the effect of temperatures be
tween 19 and 33°C on pearl millet. Seeds 
that had developed at 19°C had poor vi
ability, but there was no difference in the 
viability of seed produced in the other 
environments tested.

Germinability is affected by seed stor
age conditions and seed treatment. In In
dia, sun heating of sorghum grain to re
duce insect infestation is common (More 
et al., 1992). Short-term exposure to high 
temperatures (12 minutes at 70°C) did not 
affect germinability and was sufficient to 
effectively reduce insect infestation as 
well as fungal contamination. Higher tem
peratures, however, significantly reduced 
germination. Longer term temperature 
treatments were not considered. Singh et 
al. (1988) examined 35 lines of pearl mil
let for the retention of viability in response 
to accelerated aging (80% RH, 40°C, 14 
days). Variation between genotypes was 
found with a range of viability loss be
tween 18 and 84 percent.

Moisture levels in farmers’ fields gen
erally are sufficient to ensure adequate 
germination (Soman et al., 1987b; Pea
cock et al., 1993). Smith et al. (1989), 
using polyethylene glycol to simulate 
drought stress, found pearl millet seed 
germination more resistant to low water 
potentials than that of sorghum, although 
differences between genotype_s are appar
ent (Gurmu and Naylor, 1991). In moist 
soil, temperature is the main environ
mental factor governing the germination 
of seeds. However, in both pearl millet 
and sorghum, the final germination per
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centage is maximal over a wide range of 
temperatures (from approximately 12 to 
40°C) with small variation between geno
types (Carberry and Campbell, 1989; 
Dunbabin et al., 1994; Garcia-Huidobro 
et al., 1982a; Harris et al., 1987; Khalifa 
and Ong, 1990; Mohamed et al., 1988; 
Brar and Stewart, 1994; Radford and Hen- 
zell, 1990; Mortlock and Vanderlip,
1989). The rate of germination, defined as 
the reciprocal of the time taken for half the 
population to germinate, usually in
creases linearly with temperature, at least 
within a defined range. From controlled 
temperature experiments, it is possible to 
calculate base, maximal, and optimal tem
peratures for germination, the so-called 
cardinal temperatures (Garcia-Huidobro 
et al., 1982a). These authors found an 
optimum temperature of 34°C for germi
nation at constant temperature, with base 
and maximum temperatures of 12°C and 
47°C, respectively.

Greater genotypic variation is found in 
the effect of temperature on the rate of 
germination (Dunbabin et al., 1994; Mo
hamed et al., 1988; Khalifa and Ong,
1990). Within a seed population, Garcia- 
Huidobro et al. (1982a) detected large 
variations in germination rates and found 
seeds that germinated earlier were less 
sensitive to high temperatures. The rate of 
germination largely determines how long 
a seedling will take to emerge in a particu
lar soil environment and, therefore, the 
duration of its exposure to high tempera
ture. In general, pearl millet germinates 
more quickly within its optimal range 
than does sorghum (Mortlock and Van
derlip, 1989). The high optimum tempera
ture for germination and seedling growth 
indicates the general adaptation of pearl 
millet and sorghum. Above the optimal

temperature, however, both the final per
centage of germination and germination 
rate fall rapidly. This great sensitivity to 
supra optimal temperatures suggests that 
small differences in soil temperature at 
the time of germination may have pro
found effects on germination and hence 
establishment of the crop.

The above reports all measure germi
nation at constant temperatures, whereas 
in the field a diurnal cycle of temperatures 
is found, even if seed zone temperatures 
are not as extreme as those at the soil 
surface (Figures 1 and 2). Garcia-Huido
bro et al. (1982b) found that germination 
rates at alternating temperatures were 
greater at higher amplitudes of tempera
ture variation, although temperatures 
above 42°C inhibited germination. In this 
case, the two temperature regimes were 
for 12 hours at constant temperatures 
rather than a normal diurnal cycle. In the 
field, seeds usually experience high tem
peratures for a few hours each day rather 
than 12 hours. The sensitivity of seeds to 
high temperature is likely to delay or pre
vent successful germination in the field. 
Shorter term treatments at high tempera
ture were examined by Garcia-Huidobro 
et al. (1985). Seeds were most sensitive to 
short-term treatments at 45°C or 50°C 
when they were absorbing water. The ad
verse effects of high temperature were 
much less severe when seeds were al
lowed to imbibe water for eight hours at 
control temps before exposure to high 
temperature. This implies that germina
tion would be more successful when seeds 
are sown in the early evening, after which 
soil temperatures remain relatively low 
for at least 18 hours. Laboratory germina
tion studies in general overestimate field 
germination and emergence (Raj and
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Khairwal, 1994). Factors that affect suc
cessful emergence in the field are dis
cussed in the next section.

Emergence and Seedling Survival

Even if seed germination is successful, 
diminishing soil water availability after 
germination greatly affects seedling 
growth and survival. Line source irriga
tion systems, which provide a range of 
moisture regimes, have been used to un
derstand the development and effects of 
moisture stress. Sorghum cultivars ex
hibit genotypic differences in their ability 
to both emerge at low soil moisture con
ditions (Soman, 1990) and subsequently 
grow (O’Neill and Diaby, 1987). Locally 
adapted Malian millet varieties not only 
did not show genotypic differences but 
also were capable of up to three times 
greater seedling growth than the best sor
ghum entry under water stress (O’Neill 
and Diaby, 1987).

Polyethylene glycol can be used to 
simulate drought under controlled tem
perature conditions. For example, simi
larities in "early seedling growth in two 
contrasting sorghum cultivars were found 
under field and simulated drought condi
tions (Gurmu and Naylor, 1991). Cell 
elongation is reduced at low water poten
tials and thus roots may not be able to 
grow sufficiently fast to permit escape 
from the rapidly drying surface layers of 
soil and penetration of deeper moisture 
containing layers. Significant genotypic 
variation in seedling root growth exists in 
pearl millet (M ’Ragwa et al., 1995). 
Longer term survival on drying soil de
pends on the initiation and growth of 
nodal roots. In both pearl millet and sor
ghum, a single primaiy root develops on

germination of the seed, and later, when 
the seedling has developed two to three 
leaves, the first adventitious or nodal roots 
develop at the shoot base. Reduced soil 
surface moisture levels can inhibit nodal 
root formation (Blum and Ritchie, 1984; 
Gregory, 1983; Harris, 1996) although 
this depends on diying rate (Soman and 
Seetharama, 1992).

One strategy for maintaining adequate 
moisture in the seed and root zone for a 
longer time period is deeper sowing of the 
seed, but in this case, growth depends 
longer on seed reserves before emergence 
occurs. In both sorghum and pearl millet, 
deeper sowings result in longer mesocotyl 
length, reducing the effect of sowing 
depth on shoot meristem depth (Soman 
and Seetherama, 1992; Harris, 1996; 
Howarth, Peacock, and Jayachandran, un
published). Sowing depth also conse
quently does not affect nodal root number 
or growth. Genotypic differences in 
mesocotyl growth rates have been shown 
in both sorghum and pearl millet (Mo- 
hamed et al., 1989; Radford and Henzell, 
1990; Soman et al., 1989), indicating that 
this characteristic is worth considering if 
deeper plantings are to be used.

Seedling vigor measurements also 
have been used to assess the importance 
of vigor differences in seedling survival 
of drought stress. Early vigor had a posi
tive association with both days to wilting 
initiation and days to permanent wilting 
under conditions of moisture stress in 
pearl millet (Manga and Yadav, 1995). 
The moisture stress in this experiment did 
not commence until 20 days after sowing, 
by which time an extensive root system 
would have been established. Seed size, 
as well, accounted for Significant differ
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ence in vigor and response to drought 
stress; larger seeds within a seed lot pro
duced more vigorous seedlings. Harris 
(1996) also found that vigor expressed as 
the rate of emergence in sorghum was 
linked to successful stand establishment; 
seed that emerged faster produced more 
complete stands. Fast seedling growth and 
consequent early seedling establishment 
is one strategy to escape a stressful envi
ronment, particularly as the conditions for 
seedling establishment become increas
ingly less optimal with time after sowing. 
However, rapid development of a greater 
leaf area might result in a faster depletion 
of soil water resources. Measurements of 
leaf growth in the field indicate that the 
therm otolerant pearl millet landrace 
IP3201 has a relatively slow rate of leaf 
growth compared to the thermosensitive 
cultivar ICMV155 under moderate stress. 
When the stress level was increased, how
ever, IP3201 continued to grow, whereas 
ICMV 155 showed a greatly reduced 
growth rate (Howarth, Jayachandran, and 
Peacock, unpublished). In extreme envi
ronments, a conservative growth strategy 
may ensure survival.

Temperature is the main factor deter
mining the rate of plant growth, but devel
opmental processes (e.g., germination, 
radicle elongation, leaf growth) differ in 
their cardinal temperatures (Ong and 
Montieth, 1985). Again, most studies 
have been conducted at constant tempera
tures. The temperatures for maximal 
mesocotyl and coleoptile rates for both 
sorghum and pearl millet are below maxi
mal temperatures for germination (Car- 
berry and Campbell, 1989; Ong and Mon- 
teith, 1985; Radford and Henzell, 1990). 
This indicates that the ability to germinate 
at high temperature, usually defined as

successful by radicle protrusion through 
the seed coat, may not mean that sub
sequent seedling growth can occur at that 
temperature. Radford and Henzell (1990) 
also found significant differences be
tween genotypes in seedling growth rate 
and response to temperature. As for ger
mination, seedlings stop growing at tem
peratures less than 10°C higher than the 
optimum temperature for growth (Ong 
and Monteith, 1985). Soil temperatures 
also affect root growth. Long term treat
ment at 40°C resulted in severe inhibition 
of primary root growth in sorghum (Par- 
dales et al., 1991). However, after six days 
at 40°C, followed by treatment at 25°C, 
seedlings were able to recover by the in
itiation of nodal roots. Temperature cy
cling of 40°C day and 25 °C night did not 
have a deleterious effect on root growth.

Specific effects of temperature need to 
be determined by controlling temperature 
independently of moisture status. This can 
be done in the field by changing the radia
tion absorption of the soil by covering the 
surface with kaolin or charcoal (Wilson et 
al., 1982; O’Neill and Diaby, 1987). 
Maximal diurnal soil temperatures can be 
altered by up to 20°C, both at the soil 
surface and at the depth of sowing. These 
experiments indicate that high soil surface 
temperatures delay or prevent seedling 
emergence of sorghum and pearl millet, 
and that in both species genetic variation 
exists in the ability to emerge under these 
conditions.

The charcoal pit screening method has 
considerable potential (O’Neill and Di
aby, 1987). It is easy to run and requires 
no sophisticated equipment, but is limited 
to use in the hot season and cannot differ
entiate lines with relatively small differ
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ences in field emergence. Soman and Pea
cock (1985) developed a laboratory 
screening system for seedling emergence 
under high temperature with no water 
stress. Seeds are sown in sand-filled clay 
pots placed in a water bath, and the soil 
surface is heated with a bank of infrared 
lamps placed above the pots. Lynch
(1994) conducted recurrent selection for 
emergence in this pot test and also for 
germination at a constant 45°C. Improved 
emergence under high temperature condi
tions was obtained using the former; the 
germination selection procedure was inef
fective. Kasalu et al. (1993) found field 
emergence correlated more closely with 
the ability to germinate at control tem
peratures than with germination ability at 
high temperature.

A laboratory screening technique 
based on embryo protein synthesis for the 
assessment of high temperature suscepti
bility during germination and seedling 
growth of sorghum also has been devel
oped (Ougham and Stoddart, 1985). A 
strong correlation was found between the 
ability of imbibing embryos to synthesize 
protein at temperatures above 40°C and 
germ ination at high tem peratures. 
Ougham et al. (1988) subsequently com
pared the embryo protein synthesis 
method with emergence at high tempera
ture in pots using the technique of Soman 
and Peacock (1985) and found a high de
gree of correlation, except for two lines 
that showed anomalous behavior, sug
gesting a greater complexity of the overall 
emergence process compared to germina
tion.

Extensive research has been conducted 
to examine individual proteins induced by 
high temperature and their potential for

use in screening techniques. Protein syn
thesis is a very thermosensitive process, 
and in two-day old sorghum and pearl 
millet seedlings, temperatures above 
45°C result in a very rapid shut-down in 
de novo protein synthesis (Howarth, 
1989; Howarth, 1990a; Howarth and 
Ougham, 1993). However, either an accli
mation period of two hours at 45°C or a 
gradual temperature increase from 35- 
50°C results in induced tolerance of both 
growth and protein synthesis at pre
viously lethal temperatures (Howarth, 
1990c, 1991; Howarth and Skot, 1994). 
Synthesis of the heat shock proteins 
(HSP) occurs concomitantly with this ac- 
climation process. The precise function of 
HSPs in thermotolerance is not under
stood (Vierling, 1991; Howarth and 
Ougham, 1993; Waters et al., 1996); how
ever, the strong correlation between their 
synthesis and thermotolerance suggests 
they could be used in screening systems 
(Vierling and Nguyen, 1992). The kinet
ics of their synthesis and breakdown is 
complex (Howarth and Skot, 1994) and 
must be considered before they can be 
used in large scale screening. Induced 
thermotolerance does not persist from one 
day to the next, although a subsequent 
heatshock, during which HSPs are again 
synthesized, returns the tissue to a ther- 
motolerant state. The ability to survive 
repeated heat shock is of prime impor
tance in parts of the world with high mid
day temperatures, and genotypic differ
ences in this ability have been shown 
(Howarth, 1991).

Sustained seedling growth following 
emergence depends not only on the physi
ological processes for germination and 
emergence, but also on the capacity of the 
seedling to elongate, produce leaves, and
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become autotrophic. Post-emergence 
seedling death due to abiotic stress under 
field conditions is primarily caused by the 
prevalent high soil surface temperatures, 
at least in the first ten days following 
sowing, and only after that does water 
deficit start to take effect (Stomph, 1990; 
Peacock et al., 1993). Peacock et al. 
(1990) developed a laboratory technique 
to control the temperature of a localized 
region of seedlings in order to simulate the 
elevated soil surface temperatures that 
can occur in the field. The rate of leaf 
growth in Graminae is largely determined 
by the temperature of the shoot apex 
(Watts, 1971; Peacock, 1975). At 29 
hours of treatment of only the shoot mer- 
istem at 52°C (the rest of the plant being 
maintained at 30°C), leaf growth ceased, 
although plant water relations were unaf
fected. An accumulation of soluble carbo
hydrates in the shoots of plants treated at 
high shoot meristem temperatures and a 
decline in root carbohydrate concentra
tion suggest that root starvation was oc
curring due to heat-induced phloem 
blockage (Peacock et al., 1990). Heat 
shock proteins may be important in pro
tecting meristematic tissue during the 
daily increase in temperature and are 
found to be associated with this region 
when seedlings are heat girdled (Howarth, 
1990b).

In pearl millet growing areas in the 
Sahel and Rajasthan, farmers’ fields often 
contain many trees. The localized areas 
under these trees have a higher soil nutri
ent status as well as a less extreme micro
climate, and frequently a better stand es
tablishment of pearl millet. Vandenbelt 
and Williams (1992) examined the effect 
of Faidherbia albida trees on soil surface 
temperature and pearl millet seedling

growth in Niger, and found that the can
opy of the tree reduced the maximum soil 
temperature at 2 cm depth by up to 10°C, 
although air temperatures were less af
fected. In a seedling growth experiment 
using a shade gradient and adequate soil 
moisture, it was found that seedling 
growth rates over six weeks were corre
lated with the mean daytime soil surface 
temperature, with no seedlings surviving 
temperatures higher than 46.6°C. This 
further suggests that soil surface tempera
tures are critical for seedling growth and 
survival.

A field screening procedure for emer
gence and seedling survival at high soil 
surface temperatures has been developed 
and used to identify genetic differences 
for seedling survival (Peacock et al.,
1993). This procedure is used in Rajas
than in the hot and dry pre-monsoon sea
son and has proved effective at identifying 
genotypes o f superior heat tolerance 
(Weltzien et al., 1994; Howarth et al., 
1995b). Selected results are shown in Ta
ble 2, which illustrates a range of response 
of both emergence and seedling survival. 
The sorghum genotype used was the most 
thermosensitive entry. Local landrace 
populations (IP3201 and IP3175) and the 
hybrid HHB67 were the most thermotol- 
erant. A population cross between IP3201 
and ICMV 155 has subsequently been 
made and the 155 fullsibs produced have 
been screened in the field. Bi-directional 
selection for seedling thermotolerance 
was conducted based on the considerable 
differential between the high and low 
20% of entries found (Table 2). This tech
nique, however, can be used only for two 
months of the year at most in an unpre
dictable environment where early mon
soon rains will prevent its success. The
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Table 2. Field data obtained from selected 
pearl millet genotypes screened at 
Fatehpur-Shekhavati Agricultural 
Research Station, Rajasthan Agricul- 

_________ tural University.__________________
Thermo
tolerance

Entry___________________ Emergence index
HHB67 0.77 0.86
IP 3201 0.75 0.85
IP 3175 0.75 0.79
ICMH451 0.74 0.75
Sadore Local 0.73 0.73
W Raj. Pop. 0.65 0.70
ICMH 423 0.77 0.61
ICTP 8203 0.65 0.57
ICMV 155 0.44 0.47
BSEC C4 0.79 0.37

Sorghum (SPV386) 0.59 0.30

Cycle I selection (high)* 0.65 0.69
Cycle 1 selection (low)* 0.54 0.38

Thermotolerance index calculated as the ratio o f seedlings sur
viving to the total number o f seedlings that emerged.

All results the mean o f experiments conducted in 1989 and 
1990 (from Peacock et al., 1993) except for * which represent 
the mean values for the selected fraction (high or low 20%) 
from 155 fullsibs produced from a population cross o f IP 3201 
and ICMV 155 and screened in 1992 (from Weltzien et al., 
1994).

results obtained from field screening de
pend on the actual environmental condi
tions experienced that year.

To overcome these limitations, a 
number of laboratory-based methods for 
evaluating post emergence seedling death 
have been devised (Howarth et al., 
1995a). These include the use of a sand 
bed, which can be heated electronically to 
simulate diurnal soil temperatures in Ra
jasthan, and the use of an electrolyte leak
age test as a measure of membrane 
thermostability. Initial results screening 
the 155 fullsibs produced from the IP3201 
and ICMV155 cross indicate that both 
procedures show good correlations with 
field results, but with higher heritabilities 
and increased flexibility regarding when 
and where the screening techniques are

conducted (W eltzien et al., 1994; 
Howarth et al., 1995b).

Although temperature and drought 
have been considered separately, toler
ance to one stress often is combined with 
tolerance to another (O’Neill and Diaby, 
1987; Maiti et al., 1994). These stresses 
also often occur concurrently. As indi
cated in Table 1, there are a number of 
other environmental reasons for stand 
failure. For example, wind storms carry
ing sand can cause considerable stand re
duction (Klaij andHoogmoed, 1993). Soil 
fertility effects on seedlings have been 
less extensively studied, but low fertility 
can reduce survival of other stresses by 
affecting seedling vigor. The soils where 
pearl millet and sorghum grow are often 
of very low fertility. Payne et al. (1991), 
examining the influence of phosphorus 
and water on growth of pearl millet, found 
that the efficiency of dry matter produc
tion decreased under both control and 
drought stress conditions when the soil 
phosphorus supply was inadequate. The 
possibility of improving early growth by 
the use of phosphorus-containing seed 
coatings was examined by Rebafka et al. 
(1993). Pearl millet is very small-seeded 
with low phosphorus reserves; thus, an 
external supplement could improve 
growth. However, although seed coating 
did improve early growth, there were con
siderable deleterious effects on seedling 
emergence, possibly due to the absence of 
glumes in pearl millet. Salinity is another 
abiotic stress encountered during seedling 
establishment that can affect growth and 
survival. Azhar and McNeilly (1988) 
found considerable genetic variation in 
sorghum for growth under salinity stress 
and conducted a genetic analysis identify
ing considerable dominance effects.
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Soil surface crusting results from the 
beating action of rainfall and subsequent 
drying of the soil at high temperature, 
causing difficulties for emerging seed
lings, which need to break through this 
barrier. Soman et al. (1984) developed a 
screening technique for emergence under 
crusting conditions and found that pearl 
millet was much more affected than sor
ghum, as the seedling is smaller and less 
vigorous. Sorghum lines vary in their abil
ity to emerge under soil crusting condi
tions. Soman et al. (1992) examined the 
relationship between sorghum coleoptile 
morphology and emergence potential and 
found that mesocotyl growth rate corre
lated best with emergence. This is effec
tively an avoidance strategy, as faster 
growing genotypes were able to emerge 
before maximal crust formation had oc
curred. Significant differences between 
pearl millet genotypes exist for coleoptile 
and mesocotyl growth rate (Soman et al., 
1989). Emergence through crusts was fur
ther studied by Mason et al. (1994) using 
piston displacement as an in vitro screen
ing technique. In this study, coleoptile 
length showed no correlation, but coleop
tile diameter showed a high correlation 
with the ability of sorghum to emerge 
through the simulated soil crust; avoid
ance of a soil crust by fast growth was not 
possible in this test. Seedlings emerge 
through crusts, either due to high pressure 
exerted by an individual seedling or to 
cumulative force exerted by a group of 
seedlings (Taylor, 1962). Joshi (1987) 
found that the mixed sowing of pearl mil
let and greengram resulted in improved 
emergence because of the joint thrust 
from legume and pearl millet together. 
The use of precision planters ensures even 
spacing o f seed, requiring individual 
seedlings to emerge through a crust.

Farmers rarely use precision planting 
equipment and often sow mixtures of ce
reals and legumes, thus minimizing the 
problem.

Improvement of Stand Establishment

This review has shown that consider
able genetic variation exists for tolerance 
to the environmental constraints on ger
mination, emergence, and seedling sur
vival in sorghum and pearl millet. The 
desirability of a plant trait in an environ
ment depends not only on the risk of stress 
but on the attitude of farmers toward risk 
and on the specific requirements of the 
local farming system (Van Oosterom et 
al., 1996; Weltzien et al., 1996). Each 
environment poses a different set of prob
lems, and in marginal environments 
where the climate is highly variable, it 
often is difficult to precisely define the 
causes of crop failure, but they must be at 
least approximated if successful crop im
provement is to occur.

As Boyer (1982) points out, there is 
often a dramatic difference between 
maximal and average yields for any given 
crop species. The actual yield achieved 
depends on the environmental conditions 
the crop encounters. Stress can be defined 
as a condition that limits a plant in realiz
ing its potential for growth, development, 
and reproduction; extremes of stress re
sult in plant death. Plants rarely grow in 
optimal environments, so they can be con
sidered to be under some degree of stress 
at all times. For pearl millet and sorghum 
growing in marginal environments this is 
certainly the case. Variation exists in the 
ability to survive and grow under stress 
conditions. The task is to exploit this vari
ation and combine improved tolerance to
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stress with increased yield potential so 
that not only is the discrepancy between 
yield under optimal conditions and actual 
yield reduced but also yield stability in
creased.

New technologies, improved screening 
techniques, and knowledge of appropriate 
germplasm can now exploit natural vari
ation to a greater effect. It is only possible, 
however, to improve the degree of toler
ance; there always will be a level beyond 
which it is not possible to improve. For 
seedlings, where stress often results in 
death, improvement in stress tolerance 
targets the ability to survive these stress 
conditions. To improve adaptation to 
Other stresses (for example, terminal 
drought), it often is necessary to target an 
enhancement in relative performance, 
often measured as yield, rather than sur
vival. The tasks involved in improving 
relative performance have received much 
attention from breeders and physiologists 
(Richards, 1989; Evans, 1993; Ludlow 
and Muchow, 1990). Seedling survival 
and the ability to yield well are not ex
pected to be as closely interrelated as are 
stress tolerances reflecting relative per
formance. Thus combining seedling 
stress tolerance and yielding ability would 
not be expected to need as much multi-lo- 
cation testing as is the case for relative 
yield improvement. Only yielding ability 
in the target environment should need to 
be evaluated for materials with improved 
seedling stress tolerance.

Understanding of the processes that 
lead to a failure of stand establishment has 
advanced sufficiently to permit develop
ment of specific screening methods. The 
screening techniques described above 
have direct application in the genetic im

provement of these traits. However, fewer 
studies are reported in which both the 
genetic variation identified and screening 
systems developed have been exploited in 
crop improvement. To do this it is neces
sary to select for improved adaptation and 
then to evaluate the response to selection 
for improved establishment ability in the 
field. Screening methods tend to be devel
oped using control genotypes with ex
treme differences in performance, often 
with many genetic differences for other 
traits. The results obtained often are spe
cific to the actual cultivars . and growing 
conditions used. It is harder to distinguish 
genotypes showing an intermediate re
sponse to a given stress. The capacity for 
improvement of stress tolerance, how
ever, can be found within a species and is 
amenable to conventional breeding tech
niques.

Adaptation to a given constraint is 
complex. Plant physiology can identify 
not only critical components of adaptation 
but also genes or regions of chromosomes 
linked to a given trait. This is done using 
molecular markers, such as restriction 
fragm en t leng th  po lym orphism s 
(RFLPs), combined with physiological 
screening, which permits the mapping, 
identification, manipulation, and combi
nation of specific genes involved in toler
ance. The challenge is to identify specific 
physiological or biochemical processes 
and to develop rapid, high-throughput 
screening techniques based on them. Mo
lecular marker maps exist for both sor
ghum (Hulbert et al., 1990; Chittenden et 
al., 1994; Pereira et al., 1994; Xu et al.,
1994) and pearl millet (Liu et al., 1994) 
and have been used to identify quantita
tive trait loci (QTLs) associated with 
downy mildew resistance (Jones et al.,
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1995; Hash et al., 1995). A similar ap
proach is being used to detect QTLs asso
ciated with seedling thermotolerance 
(Howarth et al., 1994). Once identified, 
marker-assisted selection can be used to 
precisely improve the required character 
by following closely the movement of 
desired and undesirable gene segments in 
the breeding process.

The potential of these modem, preci
sion breeding methods is considerable. 
Mapping potential physiological and bio
chemical components of adaptation also 
provides information on their involve
ment in adaptation and is a new way of 
elucidating the mechanism of plant re
sponse to the environment. Genetic map
ping not only shows in a much clearer 
fashion how traits are genetically corre
lated, but how they are linked on the chro
mosomes. Active collaboration between 
geneticists, molecular biologists, physi
ologists, breeders, germplasm collectors, 
and other relevant disciplines is required 
to ensure success. Genetic improvement 
of stand establishment is thus possible by 
plant breeding, and potential progress is 
substantial.

Plant breeding, however, is not the only 
way forward, and management solutions 
also must be considered, particularly as 
the current tillage and sowing methods 
used in farmers’ fields are not very sophis
ticated. Agronomic factors such as seed
bed preparation, sowing methods, timeli
ness of sowing, and sowing depth can 
exacerbate environm entally-induced 
stress and result in poor crop stands. Com
paction of the soil after sowing to ensure 
good soil-seed contact and minimize 
evaporation, for example, could assist in 
stand establishment. Traditional sowing

methods, however, can be appropriate for 
the conditions encountered in some cases. 
For example, stand establishment, sur
vival, and yield were better under the hill 
planting used in the Sahel than drilling 
seed (Klaij and Hoogmoed, 1993). Hill 
planting provides a certain amount of pro
tection from the extremes of temperature 
and from sand-bearing winds. It is not 
easily mechanized, however, and the 
large number of seedlings growing to
gether can result in rapid development of 
water deficit. Pre-sowing tillage increases 
initial stands and subsequent seedling sur
vival (Joshi, 1987; Klaij and Hoogmoed,
1993). Surface application of farmyard 
manure can reduce the likelihood of crust
ing, maintain moisture in the surface layer 
of soil (Joshi, 1987), and minimize the 
prevalence of temperature extremes at the 
soil surface. This practice resulted in a 
faster rate of emergence, increased total 
emergence, and reduced seedling mortal
ity of pearl millet (Joshi, 1987) but had no 
significant effect on stand establishment 
in sorghum (Harris, 1996).

If  planting technologies are refined to 
more precision-based methods and mixed 
cropping no longer practiced, then crust
ing could perhaps be a bigger problem in 
crop establishment. Pre-sowing seed 
priming, either by soaking in water or in 
osmotic solutions, has been investigated 
to examine its potential to improve emer
gence (Bradford, 1986; Joshi, 1987; Maiti 
and Moreno, 1995; Harris, 1996). Primed 
seeds germinate more rapidly and uni
formly and the rate of emergence is in
creased (Harris, 1996), although final 
stand establishment is not necessarily im
proved (Joshi, 1987). Priming conditions, 
the temperature and timing of any inter
vening period before sowing, and soil
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conditions at sowing will all influence the 
results obtained and need to be optimized. 
Recent data from on-farm trials with up
land rice, maize, and chickpea in semi- 
arid India show that farmers value on- 
farm seed priming for the benefits they 
gain from fast, vigorous crop estab
lishment.

Conclusion

Increasing stand establishment through 
a combination of well-adapted, improved 
cultivars and management practices re
mains a challenge. Seedling traits affect
ing establishment warrant high priority 
for research. Genetic improvement is 
most needed in those areas where depend
ence on the pearl millet and sorghum crop 
is so great, particularly if increases in 
population pressure result in the expan
sion of crop production into more and 
more marginal areas. Climatic change 
could exacerbate this need. Locally 
adapted germplasm often is capable of 
surviving the environmental conditions 
and should be widely used in breeding for 
improved stand establishment. An under
standing of both the prevailing conditions 
and the farmers’ requirements is critical. 
For a farmer to adopt a change in these 
high risk environments, demonstration of 
improvements actually on farmers’ fields 
is necessary. Varieties that perform well 
in national yield trials at research stations 
are not necessarily appropriate for these 
severe environments. Targeting of crop 
improvement research specifically for 
these environments is thus required.
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